

वार्षिक प्रतिवेदन ANNUAL REPORT **2023**

भाक्अनुप-खुम्ब अनुसंधान निदेशालय ICAR-DIRECTORATE OF MUSHROOM RESEARCH CHAMBAGHAT, SOLAN - 1732 13 (H.P)

Annual Report वार्षिक रिपोर्ट 2023

ICAR-DIRECTORATE OF MUSHROOM RESEARCH

Chambaghat, Solan-173 213 (H.P.), India

भाकृअनुप—खुम्ब अनुसंधान निदेशालय चम्बाघाट, सोलन—173 213 (हिमाचल प्रदेश), भारत

Correct Citation

ICAR-DMR Annual Report 2023, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (Himachal Pradesh), India

Published by:

Dr V. P. Sharma Director

Compiled & Edited by

Dr B. L. Attri, Principal Scientist Dr Anuradha Srivastava, Scientist Dr Anarase Dattatray Arjun, Scientist Dr Shweta Bijla, Scientist

Assisted by

Sh. Deepak Sharma (Cover Page Design)

Published

May 2024

Copies printed

20

Contact

Phone: +91-1792 230 451 (O), 230 401 (R)

Fax: +91-1792 231 207

Email: director.mushroom@icar.gov.in Website: www.dmrsolan.icar.gov.in

Designed and printed by/

M/s Prem Printo Graphics, New Delhi

Mobile: 9999062731

Email: premprintographics@gmail.com

सही उद्धरण

भाकृअनुप—खु.अनु.नि. वार्षिक प्रतिवेदन 2023, भाकृअनुप— खुम्ब अनुसंधान निदेशालय, चम्बाघाट, सोलन (हिमाचल प्रदेश), भारत

द्वारा प्रकाशितः

डॉ वेद प्रकाश शर्मा निदेशक

द्वारा संकलित एवं सम्पादित

डॉ बृज लाल अत्री, प्रधान वैज्ञानिक डॉ अनुराधा श्रीवास्तव, वैज्ञानिक डॉ अनारसे दत्तात्रय अर्जुन, वैज्ञानिक डॉ खेता बिजला, वैज्ञानिक

सहायक

श्री दीपक शर्मा (कवर पेज डिजाइन)

प्रकाशन

मई 2024

मुद्रित प्रतियां

20

संपर्क

फोन: 91—1792 230 451 (कार्या.), 230 401 (आवास) फैक्स: 91—1792 231 207 ई— मेल: director.mushroom@icar.gov.in वेबसाइट: www.dmrsolan.icar.gov.in

डिजाइन व मुद्रण

मै. प्रेम प्रिंटो ग्राफिक, नई दिल्ली

मोबाइल: 9999062731

ई-मेलः premprintographics@gmail.com

CONTENT विषय सूची

Pre	face	v-vi	प्रस्तावना	v-vi
Exe	ecutive Summary	1-6	कार्यकारी सारांश	1-6
1.	ICAR-DMR, Solan – An Introduction	7-11	1. खुम्ब अनुसन्धान निदेशालय, सोलन–एक परि	चिय 7—11
2.	Research Achivements		2. अनुसंधान उपलब्धियां	
	2.1. Mushroom Genetic Resources	12-18	2.1 खुम्ब अनुवांशिक संसाधन	12-18
	2.2. Crop Improvement	19-42	2.2 फसल सुधार	19-42
	2.3. Crop Production	43-47	2.3 फ़सल उत्पादन	43-47
	2.4. Crop Protection	48-49	2.4 फसल सुरक्षा	48-49
	2.5. Postharvest Technology	50-75	2.5 कटाई उपरांत प्रौद्योगिकी	50-75
	2.6. Other Research Activities	76-80	2.6 अन्य अनुसन्धान गतिविधियां	76-80
3.	Transfer of Technology	81-102	3. प्रौद्योगिकी हस्तांतरण	81-102
4.	AICRP Mushroom Centres	103-105	 अखिल भारतीय समन्वित खुम्ब अनुसन्धान परियोजना केंद्र 	103—105
5.	List of Publications	106-109	 प्रकाशनों की सूची 	106—109
6.	Approved on-going Research Projects	110-111	 6. स्वीकृत चल रही अनुसंधान परियोजनायें	110-111
7.	Consultancy and Advisory Services	112-126	7. परामर्श और सलाहकार सेवाएं	112—126
8.	Committee Meetings	127-140	8. समिति की बैठकें	127—140
9.	Implementation of Official Language	141-149	9. राजभाषा का कार्यान्वयन	141—149
10.	Institutional Activities	150-161	10. संस्थागत गतिविधियां	150—161
11.	Training and Capacity Building	162	11. प्रशिक्षण और क्षमता निर्माण	162
12.	Distinguished Visitors	163	12. विशिष्ट आगंतुक	163
13.	ICAR-DMR, Solan in Press	164-170	13. प्रेस में खुम्ब अनुसन्धान निदेशालय, सोलन	164-170
Anı	nexures		अनुबंध	
i.	Personnel of ICAR-DMR, Solan	171-173	i. भा.कृ.अनु.प.—खु.अनु.नि., सोलन के कार्मिक	171—173
ii.	Staff News	174	ii. कर्मचारी समाचार	174
iii.	Awards and Recognitions	175	iii. पुरस्कार और मान्यताएँ	175
iv.	Financial Statement for 2022	176	iv. वित्तीय वर्ष 2023 के लिए वित्तीय विवरण	176
v.	Sale of Mushroom Spawn and Cultures	177	v. खुम्ब स्पॉन और कल्चर की बिक्री	177

PREFACE प्रस्तावना

ICAR-Directorate of Mushroom Research, Solan (H.P.) is playing a pivotal role in the basic and applied research for strengthening Mushroom Science in the country since its inception in 1983. In last four decades, it has come to the expectations and needs of the stakeholders involved in mushroom cultivation by developing improved

mushroom varieties and novel modern innovative low cost technologies suitable for different regions of the country, keeping in view the climatic condtions. The mushroom production in the country has increased from 1.55 lakh MT to 3.15 lakh MT in last five years. The concerted efforts of the growers along with the new varieties of different mushrooms and low cost location specific technologies developed by ICAR-DMR, Solan have played an important role for the substantial increase of mushroom production in the country. During 2023 scientists of the Directorate have collected 210 accessions of different mushrooms from different parts of the country which have further enriched the germplasm collection.

During the year under report a number of crop management practices have been developed for different mushrooms. In Morchella sp., the Directorate has further taken up the advanced trials to grow it under semi-controlled conditions. The technologies for other mushrooms such Trametes versicolor, Ganoderma lucidum, Flammulina sp., Hericium sp., Cordyceps militaris were also standardized at the Directorate. Value added products like mushroom and millets based pasta, vermicelli and flour were developed and standardized. The other products included shiitake mushroom supplemented tortilla chips, Hericium mushroom soup mix, Cordyceps militaris tea and soup mix. Work on development of vegan meat has also been initiated. Hybrid solar dryer was further validated for simulation of thermal performance

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन (हिमाचल प्रदेश) 1983 में अपनी स्थापना के बाद से देश में मशरूम विज्ञान को मजबूत करने के लिए बुनियादी और व्यावहारिक अनुसंधान में महत्वपूर्ण भूमिका निभा रहा है। पिछले चार दशकों में, जलवायु परिस्थितियों को ध्यान में रखते हुए, देश के विभिन्न क्षेत्रों के लिए उपयक्त उन्नत

मशरूम किरमों और नवीन आधुनिक नवीन कम लागत वाली प्रौद्योगिकियों को विकसित करके मशरूम की खेती में शामिल हितधारकों की अपेक्षाओं और जरूरतों को पूरा किया गया है। पिछले पांच वर्षों में देश में मशरूम का उत्पादन 1.55 लाख मीट्रिक टन से बढ़कर 3.15 लाख मीट्रिक टन हो गया है। भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन द्वारा विकसित विभिन्न मशरूम की नई किरमों और कम लागत वाले स्थान विशिष्ट प्रौद्योगिकियों के साथ—साथ उत्पादकों के ठोस प्रयासों ने देश में मशरूम उत्पादन में पर्याप्त वृद्धि के लिए महत्वपूर्ण भूमिका निभाई है। 2023 के दौरान निदेशालय के वैज्ञानिकों ने देश के विभिन्न हिस्सों से विभिन्न मशरूमों के 210 परिग्रहण एकत्र किए हैं, जिन्होंने जननद्रव्य संग्रह को और समुद्ध किया है।

रिपोर्ट के तहत वर्ष के दौरान विभिन्न मशरूमों के लिए कई फसल प्रबंधन पद्धतियाँ विकसित की गई हैं। मोर्चेला प्रजाति में, निदेशालय ने अर्ध-नियंत्रित परिस्थितियों में इसे उगाने के लिए उन्नत परीक्षण किए हैं। अन्य मशरूम जैसे *ट्रैमेट्स वर्सीकोलर, गैनोडर्मा* ल्युसिडम, फ्लेम्लिना स्पीशीज, हेरिशियम स्पीशीज कॉर्डिसेप्स मिलिटेरिस की प्रौद्योगिकियों को भी निदेशालय में मानकीकृत किया गया था। मशरूम और बाजरा आधारित पास्ता, सेंवई और आटा जैसे मूल्य वर्धित उत्पाद विकसित और मानकीकृत किए गए। अन्य उत्पादों में शिटाके मशरूम पुरक टॉर्टिला चिप्स, हेरिशियम मशरूम सूप मिक्स, कॉर्डिसेप्स मिलिटेरिस चाय और सुप मिक्स शामिल हैं। शाकाहारी मांस के विकास पर भी काम शुरू किया गया है। विभिन्न मशरूमों को सुखाने पर परीक्षण करने के लिए थर्मल प्रदर्शन के अनुकरण के लिए हाइब्रिड सौर ड्रायर को

for undertaking trials on drying of different mushrooms. Impact assessment of Hericium and Cordyceps militaris cultivation technologies has been completed. To address the need for trained manpower ICAR-DMR, Solan has organized number of on and off campus training programmes. During the year 56 training programmes (45 on and 11 off campus) were organized in which 1788 participants participated across the country. Mushroom cultivation awareness was also created through TSP, NEH and SC-SP components in which more than 1250 participants participated. Besides, individual trainings on shiitake, cordyceps as well as spawn production technology were also organized. Directorate produced more than 46 tonnes of spawn of different mushrooms to cater the demand of the mushroom growers. A number of events like National Science Day, International Day, Women's Day, World Environment International Yoga Day, Hindi Pakhwara, Rashtriya Mahila Diwas, Agriculture Education Day, World Soil Day, National Kisan Diwas, Swachhata Pakhwara etc. were also organized at ICAR-DMR, Solan. During this period RAC, IRC meetings and AICRP mushroom workshop were organized along with 26th National Mushroom Mela on 10th September.

I am delighted to present the annual report 2023 of ICAR-DMR, Solan and highly thankful to all the staff members for their contribution in research and other developmental activities during 2023. My sincere gratitude to Dr Himanshu Pathak, Secretary (DARE) & DG (ICAR), Dr A.K. Singh, DDG (HS), Dr T.R. Sharma, DDG (CS/HS), Dr V.B. Patel and Dr Sudhakar Pandey, ADGs (Hort.) for their constant support, encouragement and advise in carrying forward the progress of the Diretorate. The editorial team deserves special appreciation for their timely compilation, editing and bringing out the bilingual annual report.

और अधिक मान्य किया गया था। *हेरिशियम* और कॉर्डिसेप्स मिलिटेरिस खेती प्रौद्योगिकियों का प्रभाव मुल्यांकन पूरा हो गया है। प्रशिक्षित जनशक्ति की आवश्यकता को पूरा करने के लिए भा.कृ.अनू.प.—खुम्ब अनुसंधान निदेशालय, सोलन ने कई ऑन और ऑफ कैंपस प्रशिक्षण कार्यक्रम आयोजित किए हैं। वर्ष के दौरान 56 प्रशिक्षण कार्यक्रम (45 परिसर में और 11 परिसर से बाहर) आयोजित किए गए जिनमें देश भर से 1788 प्रतिभागियों ने भाग लिया। टीएसपी, एनईएच और एससी–एसपी घटकों के माध्यम से मशरूम की खेती के बारे में जागरूकता भी पैदा की गई जिसमें 1250 से अधिक प्रतिभागियों ने भाग लिया। इसके अलावा, शिटाके, कॉर्डिसेप्स के साथ–साथ स्पॉन उत्पादन तकनीक पर व्यक्तिगत प्रशिक्षण भी आयोजित किए गए। मशरूम उत्पादकों की मांग को पुरा करने के लिए निदेशालय ने विभिन्न मशरूमों के 46 टन से अधिक स्पॉन का उत्पादन किया। भा.कृ.अनू.प.—खुम्ब अनुसंधान निदेशालय, सोलन में राष्ट्रीय विज्ञान दिवस, अंतर्राष्ट्रीय महिला दिवस, विश्व पर्यावरण दिवस, अंतर्राष्ट्रीय योग दिवस, हिंदी पखवाडा, राष्ट्रीय महिला दिवस, कृषि शिक्षा दिवस, विश्व मृदा दिवस, राष्ट्रीय किसान दिवस, स्वच्छता पखवाडा आदि जैसे कई कार्यक्रम भी आयोजित किए गए। इस अवधि के दौरान 10 सितंबर को 26वें राष्ट्रीय मशरूम मेले के साथ—साथ आरएसी, आईआरसी बैठकें और एआईसीआरपी मशरूम कार्यशाला का आयोजन किया गया।

मुझे आईसीएआर—डीएमआर, सोलन की वार्षिक रिपोर्ट 2023 प्रस्तुत करते हुए खुशी हो रही है और 2023 के दौरान अनुसंधान और अन्य विकासात्मक गतिविधियों में उनके योगदान के लिए सभी स्टाफ सदस्यों का बहुत आभारी हूं। डॉ. हिमांशु पाठक, सचिव (डेयर) और महानिदेशक (आईसीएआर), डॉ. ए.के. सिंह, डीडीजी (बागवानी विज्ञान), डॉ. टी.आर. शर्मा, डीडीजी (सीएस / एचएस), डॉ. वी.बी. पटेल और डॉ. सुधाकर पांडे, एडीजी (बागवानी) को निदेशालय की प्रगति को आगे बढ़ाने में उनके निरंतर समर्थन, प्रोत्साहन और सलाह के लिए मेरा हार्दिक आभार एवं धन्यवाद। संपादकीय टीम अपने समयबद्ध संकलन, संपादन और द्विभाषी वार्षिक रिपोर्ट को प्रकाशित करने के लिए विशेष सराहना की पात्र है।

quenn

(V.P.Sharma) Director The mi

(वी.पी. शर्मा) निदेशक

EXECUTIVE SUMMARY कार्यकारी सारांश

A significant progress in research, transfer of technology and human resource development was made by ICAR-Directorate of Mushroom Research, Solan (H.P.) during 2023. The major achievements of the Directorate in the area of germplasm conservation, crop improvement, crop production, crop protection, postharvest technology, other research activities and transfer of technology are summarized here:

Germplasm collection

- During the year under report, 210 new wild edible mushroom accessions were collected from forest areas of different parts of the country. Out of these, 200 were identified upto genus level and approximately 100 speciemens upto species level.
- Among these specimens some of interesting specimens namely Cantharellus cibarius, Helvella atra, Lactarius rubidus, Lactifluus volemus, Lentinus cladopus, Lycoperdom perlatum, Russula delica, Sarcoscypha coccinea, Volvariella valvacea etc were there
- Culturing of 6 specimens namely Lentinus cladopus, Lentinus squarrosulus, Laetiporus sulphureus, Clitocybe sp., Pleurotus ostreatus, Volvariella bombycina etc. have been done. All the specimens have been deposited in herbarium of ICAR- Directorate of Mushroom Research, Chambaghat Solan H.P.

Crop improvement

 Under Agaricus Resource Programme (ARP), 180 germplasm of button mushroom were evaluated for yield and quality. A total of 15 germplasm were selected after preliminary evaluation for yield and quality of fruit body against NBS-5 and A-63 control. भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन (हि.प्र.) द्वारा 2023 के दौरान अनुसंधान, प्रौद्योगिकी हस्तांतरण और मानव संसाधन विकास में महत्वपूर्ण प्रगति की गई। जननद्रव्य संरक्षण, फसल सुधार, फसल उत्पादन, फसल के क्षेत्र में निदेशालय की प्रमुख उपलब्धियां संरक्षण, कटाई उपरांत प्रौद्योगिकी, अन्य अनुसंधान गतिविधियाँ और प्रौद्योगिकी हस्तांतरण का सारांश यहाँ दिया गया है:

जननद्रव्य संग्रह

- रिपोर्ट के तहत वर्ष के दौरान, देश के विभिन्न हिस्सों के वन क्षेत्रों से 210 नए जंगली खाद्य मशरूम एकत्र किए गए। इनमें से 200 को जीनस स्तर तक और लगभग 100 नमूनों को प्रजाति स्तर तक पहचाना गया।
- इन नमूनों में केंथरेलस सिबेरियस, हेलवेल्ला अत्रा, लैक्टेरियस रूबिडस, लैक्टिफ्लूस वोलेमस, लेंटिनस क्लैडोपस, लाइकोपेरडोम पेरलाटम, रसूला डेलिका, सरकोसिफा कोकिनिया, वोल्वेरीला वोल्वेसिया आदि कुछ दिलचस्प नमूने थे।
- 6 नमूनों का संवर्धन किया गया है, जैसे लेंटिनस क्लैडोपस, लेंटिनस स्क्वैरोसुलस, लेटिपोरस सल्फ्यूरियस, क्लिटोसाइबे एसपी, प्लुरोटस ओस्ट्रीटस, वोल्वेरीला बॉम्बाइसीना आदि। सभी नमूनों को आईसीएआर—मशरूम अनुसंधान निदेशालय, चंबाघाट सोलन एच.पी. के हर्बेरियम में जमा कर दिया गया है।

फसल सुधार

 एगेरिकस रिसोर्स प्रोग्राम (एआरपी) के तहत, उपज और गुणवत्ता के लिए बटन मशरूम के 180 जर्मप्लाज्म का मूल्यांकन किया गया। एनबीएस-5 और ए-63 नियंत्रण के विरुद्ध फलन की उपज और गुणवत्ता के प्रारंभिक मूल्यांकन के बाद कुल 15 जर्मप्लाज्म का चयन किया गया। मूल्यांकन किए गए 15 जर्मप्लाज्म में से 6 उपभेदों को एआईसीआरपी और वाणिज्यिक

Out of 15 germplasm evaluated, 6 strains were selected for AICRP and commercial level trials. A total of 5 strains proved to be wet bubble resistant which were selected for molecular analysis and development of breeding lines.

- A total of 07 Agaricus bisporus strains released by ICAR-DMR, Solan along with three exotic strains and three collections from AICRP centres were evaluated for yield and quality. Results showed that DMR-773 and DMR-1084 performed best amongst all the strains evaluated.
- Out of 10 selected strains of button mushroom evaluated under AICRP trials for three consecutive years revelaed highest average yield in strain A-63 in all the years and was recommended for release for commercial cultivation.
- Molecular markers like SSR, ISSR, IRAP and ReMAP were used to identify markers linked with fertility in button mushroom.
- In oyster mushroom, eight hybrids were developed out of 36 crosses. The evaluation of these hybrids indicated maximum yield (53% B.E.) in one hybrid.
- In *Flammulina*, variability was observed in different strains at morphological and molecular level. Beside this, 24 hybrids were developed out of 45 crosses of different strains of *Flammulina*. Eight high yielding hybrids were identified through cultivation trial in Flammulina.
- Mating type characterization and SCAR marker analysis of the different SSIs of paddy straw mushroom revealed variations in these SSIs at molecular level. Out of 53 crosses, eleven hybrids were evaluated and maximum yield was recorded in the one hybrid in paddy straw mushroom.

- स्तर के परीक्षणों के लिए चुना गया था। कुल 5 उपभेद गीला बुलबुला प्रतिरोधी साबित हुए जिन्हें आणविक विश्लेषण और प्रजनन लाइनों के विकास के लिए चुना गया था।
- आईसीएआर—डीएमआर, सोलन द्वारा जारी कुल 07 एगारिकस बिस्पोरस उपभेदों के साथ—साथ तीन विदेशी उपभेदों और एआईसीआरपी केंद्रों से तीन संग्रहों का उपज और गुणवत्ता के लिए मूल्यांकन किया गया था। परिणामों से पता चला कि DMR—773 और DMR—1084 ने मूल्यांकन किए गए सभी उपभेदों के बीच सबसे अच्छा प्रदर्शन किया।
- लगातार तीन वर्षों तक एआईसीआरपी परीक्षणों के तहत मूल्यांकन किए गए बटन मशरूम के 10 चयनित उपभेदों में से उपभेद ए—63 में सभी वर्षों में सबसे अधिक औसत उपज प्राप्त हुई और इसे व्यावसायिक खेती के लिए जारी करने की सिफारिश की गई।
- बटन मशरूम में प्रजनन क्षमता से जुड़े मार्करों की पहचान करने के लिए एसएसआर, आईएसएसआर, आईआरएपी और रीमैप जैसे आणविक मार्करों का उपयोग किया गया था।
- ऑयस्टर मशरूम में 36 क्रॉस में से आठ संकर विकसित किए गए। इन संकरों के मूल्यांकन से एक संकर में अधिकतम उपज (53% बी.ई.) का संकेत मिला।
- पलैमुलिना में, रूपात्मक और आणविक स्तर पर विभिन्न उपभेदों में परिवर्तनशीलता देखी गई। इसके अलावा, पलेमुलिना के विभिन्न उपभेदों के 45 क्रॉस से 24 संकर विकसित किए गए। पलैमुलिना में खेती परीक्षण के माध्यम से आठ उच्च उपज देने वाली संकर किस्मों की पहचान की गई।
- पराली मशरूम के विभिन्न एसएसआई के संभोग प्रकार के लक्षण वर्णन और एससीएआर मार्कर विश्लेषण से आणविक स्तर पर इन एसएसआई में भिन्नता का पता चला। 53 क्रॉस में से, ग्यारह संकरों का मूल्यांकन किया गया और पराली मशरूम में एक संकर में अधिकतम उपज दर्ज की गई।

- In milky mushroom, genetic diversity analysis of 33 strains was performed using ten SRAP markers/combinations. The Unweighted Pair-group Method with Arithmetic Averages (UPGMA)-based phylogenetic analysis categorized the 33 strains along with the control into three clusters. Cluster I possesses the maximum number of strains.
- The five strains of the Macrocybe were evaluated and resulted into one high yielding strain as compared with other strains. Further, all these strains were subjected to ITS-based molecular identification and confirmed as *Macrocybe gigantea*.

Crop production

- Experimental trials for identification of standard casing soil mixture for cultivation of button mushroom were conducted. Casing soil mixture containing Coir pith + FYM in the proportion of (1:1) yielded maximum biological efficiency of 13.95%.
- Experimental trials on cultivation of *Ganoderma lucidum* were conducted in which use of saw dust substrate amended with activated charcoal was investigated. Out of the different treatments, highest fruit body weight and BE (%) was recorded in the substrates having 30% and 25% wheat bran amended with 150mg of activated charcoal.

Crop protection

- During 2023 the seasonal abundance of mushroom flies was studied by recording their population in cropping rooms throughout the year
- Practices in mushroom cultivation have been identified for effective control of major disease (wet bubble) and mushroom flies.
- Studies on susceptibility of different mushroom strains against mushroom flies were carried out. It was found that maximum

- दूधिया मशरूम में 33 उपभेदों का अनुवांशिक विविधता विश्लेषण दस एसआरएपी मार्करों / संयोजनों का उपयोग करके किया गया था। अंकगणितीय औसत (यूपीजीएमए) आधारित फाइलोजेनेटिक विश्लेषण के साथ अनवेटेड जोड़ी—समूह विधि ने नियंत्रण के साथ 33 उपभेदों को तीन समूहों में वर्गीकृत किया। क्लस्टर I में उपभेदों की संख्या सबसे अधिक है।
- मैक्रोसाइबी के पांच उपभेदों का मूल्यांकन किया गया और परिणामस्वरूप अन्य उपभेदों की तुलना में एक उच्च उपज देने वाला उपभेद निकला। इसके अलावा, इन सभी उपभेदों को आईटीएस—आधारित आणविक पहचान के अधीन किया गया और मैक्रोसाइबे गिगेंटिया के रूप में पुष्टि की गई।

फसल उत्पादन

- बटन मशरूम की खेती के लिए मानक आवरण मिट्टी मिश्रण की पहचान के लिए प्रायोगिक परीक्षण आयोजित किए गए। 1:1 के अनुपात में कॉयर पिथ+एफवाईएम युक्त आवरण मिट्टी के मिश्रण से 13.95% की अधिकतम जैविक दक्षता प्राप्त हुई।
- गैनोडर्मा ल्यूसिडम की खेती पर प्रायोगिक परीक्षण किए गए जिसमें सिक्रय चारकोल के साथ संशोधित चूरा धूल सब्सट्रेट के उपयोग की जांच की गई। विभिन्न उपचारों में से, सबसे अधिक फलन का वजन और बीई (%) उन सब्सट्रेट्स में दर्ज किया गया था जिनमें 30% और 25% गेहूं की भूसी को 150 मिलीग्राम सिक्रय चारकोल के साथ संशोधित किया गया था।

फसल सुरक्षा

- 2023 के दौरान पूरे वर्ष फसल कक्षों में उनकी आबादी को रिकॉर्ड करके मशक्तम मिखयों की मौसमी बहुतायत का अध्ययन किया गया।
- प्रमुख बीमारी (गीला बुलबुला) और मशरूम मिक्खयों के प्रभावी नियंत्रण के लिए मशरूम की खेती के तरीकों की पहचान की गई है।
- मशरूम मिख्यों के खिलाफ विभिन्न मशरूम उपभेदों की संवेदनशीलता पर अध्ययन किया गया, यह पाया गया कि अधिकतम उपज

yield (9.33%) was recorded in U3 followed by 465 (9.25%). However, U3 found to be slightly susceptible to mushroom flies as compared to other strains.

Postharvest technology

- Mushroom based meat analogues were created using fruit bodies of various mushrooms, including button, oyster, king oyster, shiitake, milky, and *Hericium*.
- The impact of medicinal plant-based substrates (ginger straw and turmeric straw) on the bioactive compounds of *Hericium*, oyster, and king oyster mushrooms was studied, showing a significant increase in total polysaccharides, phenols, flavonoids, and antioxidant activities compared to the control (wheat straw).
- Additionally, innovative products such as mushroom-millet pasta, mushroom-millet vermicelli, and mushroom-millets composite flour were developed. Furthermore, value-added items like shiitake mushroom-supplemented tortilla chips, mixed mushroom soup mix, and flavored tea and soup mix from *Cordyceps militaris* were developed.
- The hybrid solar drying chamber, designed using CFD simulation, exhibited outstanding thermal performance, aligning closely with simulated values. The modified solar-electric drying chamber effectively achieved target temperatures, ensuring uniform temperature distribution and enhancing the quality of dried white button mushroom slices.
- Furthermore, an optimized rotary sieve demonstrated peak performance in terms of effectiveness and capacity for preparing casing soil in mushroom cultivation.

Other research activities

 A preliminary economic analysis of growing Hericium mushroom was done at farm level. (9.33%) U3 में दर्ज की गई और उसके बाद 465 (9.25%) में पाई गई। हालाँकि, अन्य उपभेदों की तुलना में U3 को मशरूम मक्खियों के प्रति थोड़ा संवेदनशील पाया गया।

कटाई उपरांत प्रौद्योगिकी

- बटन, ऑयस्टर, किंग ऑयस्टर, शिटाके, मिल्की और *हेरिशियम* सहित विभिन्न मशरूमों के फल निकायों का उपयोग करके मशरूम आधारित मांस एनालॉग बनाए गए।
- हेरिशियम, ऑयस्टर और किंग ऑयस्टर मशरूम के बायोएक्टिव यौगिकों पर औषधीय पौधे—आधारित सब्सट्रेट्स (अदरक का भूसा और हल्दी का भूसा) के प्रभाव का अध्ययन किया गया, जिसमें नियंत्रण (गेहूं का भूसा) की तुलना में कुल पालीसेके राइड, फिनोल, फ्लावो नोइड और एंटीऑक्सीडेंट गतिविधियों में उल्लेखनीय वृद्धि देखी गयी।
- इसके अतिरिक्त, मशरूम—बाजरा पास्ता, मशरूम—बाजरा सेंवई, और मशरूम—बाजरा मिश्रित आटा जैसे नवीन उत्पाद विकसित किए गए। इसके अलावा, शिटाके मशरूम—पूरक टॉर्टिला चिप्स, मिश्रित मशरूम सूप मिश्रण, और कॉर्डिसेप्स मिलिटेरिस से सुगंधित चाय और सूप मिश्रण जैसी मूल्य वर्धित वस्तुएं विकसित की गई।
- सीएफडी सिमुलेशन का उपयोग करके डिजाइन किए गए हाइब्रिड सौर सुखाने कक्ष ने सिम्युलेटेड मूल्यों के साथ निकटता से संरेखित करते हुए उत्कृष्ट थर्मल प्रदर्शन प्रदर्शित किया। संशोधित सौर—विद्युत सुखाने कक्ष ने प्रभावी ढंग से लक्ष्य तापमान प्राप्त किया, समान तापमान वितरण सुनिश्चित किया और सूखे सफेद बटन मशरूम स्लाइस की गुणवत्ता में वृद्धि की।
- इसके अलावा, एक अनुकूलित रोटरी छलनी ने मशरूम की खेती में आवरण मिट्टी तैयार करने के लिए प्रभावशीलता और क्षमता के मामले में चरम प्रदर्शन का प्रदर्शन किया।

अन्य अनुसंघान गतिविधियाँ.

 खेत स्तर पर हेरिशियम मशरूम उगाने का प्रारंभिक आर्थिक विश्लेषण किया गया। परिवर्तनीय लागत

The overall return over variable cost was Rs. 250 per bag per crop cycle.

- The overall operating ratio was 0.28 showing that the units were able to cover their operating expenses significantly with their gross returns.
- The cost elasticity of -0.79 indicated that with the production of one more unit of *Hericium*, the cost of cultivation will decrease significantly, showing the presence of scale economies.
- A preliminary economic analysis of growing *Cordyceps* mushroom was done at farm level. The net returns of small, marginal, and large growers were Rs. -11.78, Rs 44.77 and Rs. 29.23 (in 000) per kg per crop cycle respectively.
- The returns over variable cost of small, marginal, and large growers were Rs. 9.10, Rs. 56.34, and Rs. 33.15 (in 000) per kg per crop cycle of *Cordyceps* respectively.
- The overall operating ratio was 0.46 showing that the units were able to cover their operating expenses significantly with their gross returns. The breakeven point analysis suggested that all the units had passed their break even stage and were operating at higher capacities than the breakeven point.

Transfer of Technology

- During 2023, the Directorate organized 56 training programmes which included 45 on-campus, and 11 off-campus for farmers, farmwomen, unemployed youth and entrepreneurs under various component attended by 1788 participants from different parts of the country.
- Among training programmes, 7 were conducted for farmers under Tribal Sub Plan (TSP), 4 under North-Eastern Hilly (NEH) region component, and 13 on and off campus training programmes were conducted under Scheduled Caste-Sub Plan

- पर कुल रिटर्न रु. प्रति फसल चक्र 250 प्रति बैग पाया गया ।
- समग्र पिरचालन अनुपात 0.28 था जो दर्शाता है कि इकाइयाँ अपने सकल रिटर्न के साथ अपने पिरचालन खर्चों को महत्वपूर्ण रूप से कवर करने में सक्षम थीं।
- –0.79 की लागत लोच ने संकेत दिया कि हेरिशियम की एक और इकाई के उत्पादन के साथ, खेती की लागत में काफी कमी आएगी, जो पैमाने की अर्थव्यवस्थाओं की उपस्थिति को दर्शाता है।
- कॉर्डिसेप्स मशरूम उगाने का प्रारंभिक आर्थिक विश्लेषण खेत स्तर पर किया गया था। छोटे, सीमांत और बड़े उत्पादकों का शुद्ध रिटर्न रु. 11.78, 44.77 रुपये और रु. क्रमशः 29.23 (000 में) प्रति किलोग्राम प्रति फसल चक्र पाया गया।
- छोटे, सीमांत और बड़े उत्पादकों की परिवर्तनीय लागत पर रिटर्न रु. था। 9.10, रु. 56.34, और रु. कॉर्डिसेप्स के प्रति फसल चक्र में क्रमशः 33. 15 (000 में) प्रति किग्रा.
- समग्र पिरचालन अनुपात 0.46 था जो दर्शाता है
 कि इकाइयाँ अपने सकल रिटर्न के साथ अपने
 परिचालन खर्चों को महत्वपूर्ण रूप से कवर करने
 में सक्षम थीं। ब्रेकईवन बिंदु विश्लेषण से पता
 चला कि सभी इकाइयाँ अपने ब्रेकईवन चरण को
 पार कर चुकी थीं और ब्रेकईवन बिंदु की तुलना
 में उच्च क्षमता पर काम कर रही थीं।

प्रौद्योगिकी का हस्तांतरण

- 2023 के दौरान, निदेशालय ने विभिन्न घटकों के तहत किसानों, कृषक महिलाओं, बेरोजगार युवाओं और उद्यमियों के लिए 56 प्रशिक्षण कार्यक्रम आयोजित किए, जिनमें 45 ऑन—कैंपस और 11 ऑफ—कैंपस शामिल थे, जिसमें देश के विभिन्न हिस्सों से 1788 प्रतिभागियों ने भाग लिया।
- प्रशिक्षण कार्यक्रमों में, जनजातीय उपयोजना (टीएसपी) के तहत किसानों के लिए 7, उत्तर—पूर्वी पहाड़ी (एनईएच) क्षेत्र घटक के तहत 4 और अनुसूचित जाति—उपयोजना (एससी—एसपी) के तहत 13 ऑन और ऑफ कैंपस प्रशिक्षण कार्यक्रम आयोजित किए गए जिस में

(SC-SP) component attended by 217, 33 and 1018 participants respectively.

- During 2023, 1 training on shiitake mushroom cultivation and 5 trainings on cultivation technology of *Cordyceps* were organized and were attended by two and 29 participants in total.
- Three training programmes on three months hands on training were organized at ICAR-DMR, Solan during 2023 and were attended by 33 participants from different parts of the country.
- One day National Mushroom Mela was organized on 10th September, 2023 in offline mode chaired by Dr. Vijay Singh Thakur (Former VC, UHF Nauni) along with other dignitaries: Dr. Brajesh Singh and Dr. V. P. Sharma. It was attended by more than 800 participants. In the Mela, 4 progressive mushroom growers from different parts of the country were felicitated with progressive mushroom grower award.
- Under *Mera Gaon Mera Gaurav* (MGMG) teams of the scientists visited the adopted villages regularly and interacted with 110 farmers on different issues including mushroom cultivation. Around 100 Kgs spawn was distributed along with literature on mushroom cultivation.
- During, 2023, 3 exhibitions were organized by the Directorate on National Science Day, National Kisan Diwas and Mushroom Day at the campus.

ICAR-DMR, Solan provided advisory services through emails, telephones and face-to-face interaction on various aspects of mushroom cultivation, training programmes under different components/schemes and marketing during 2023. The various groups of entrepreneurs, farmers, rural youth, students from Universities/ colleges and schools who visited the Directorate were shown all the activities related to mushroom cultivation.

- क्रमशः 217, 33 और 1018 प्रतिभागियों ने भाग लिया।
- 2023 के दौरान, शिटाके मशरूम की खेती पर 1 प्रशिक्षण और कॉर्डिसेप्स की खेती तकनीक पर 5 प्रशिक्षण आयोजित किए गए और इसमें कुल मिलाकर 29 प्रतिभागियों ने भाग लिया।
- 2023 के दौरान आईसीएआर—डीएमआर, सोलन में तीन महीने के व्यावहारिक प्रशिक्षण पर तीन प्रशिक्षण कार्यक्रम आयोजित किए गए और इसमें देश के विभिन्न हिस्सों से 33 प्रतिभागियों ने भाग लिया।
- एक दिवसीय राष्ट्रीय मशरूम मेला 10 सितंबर,
 2023 को ऑफ़लाइन मोड में डॉ. विजय सिंह ठाकुर (पूर्व वीसी, यूएचएफ नौणी) की अध्यक्षता में अन्य गणमान्य व्यक्तियों: डॉ. ब्रजेश सिंह और डॉ. वी. पी. शर्मा के साथ आयोजित किया गया। इसमें 800 से अधिक प्रतिभागियों ने भाग लिया। मेले में देश के विभिन्न हिस्सों से आए 4 प्रगतिशील मशरूम उत्पादकों को प्रगतिशील मशरूम उत्पादकों को प्रगतिशील गशरूम उत्पादकों से सम्मानित किया गया।
- मेरा गांव मेरा गौरव (एमजीएमजी) के तहत वैज्ञानिकों की टीमों ने गोद लिए गए गांवों का नियमित दौरा किया और मशरूम की खेती सहित विभिन्न मुद्दों पर 110 किसानों से बातचीत की। मशरूम की खेती पर साहित्य के साथ लगभग 100 किलोग्राम स्पॉन वितरित किया गया।
- 2023 के दौरान, निदेशालय द्वारा परिसर में राष्ट्रीय विज्ञान दिवस, राष्ट्रीय किसान दिवस और मशरूम दिवस पर 3 प्रदर्शनियाँ आयोजित की गई।

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन ने 2023 के दौरान मशरूम की खेती, विभिन्न घटकों / योजनाओं के तहत प्रशिक्षण कार्यक्रमों और विपणन के विभिन्न पहलुओं पर ईमेल, टेलीफोन और आमने—सामने बातचीत के माध्यम से सलाहकार सेवाएं प्रदान कीं। उद्यमियों, किसानों, ग्रामीण युवाओं, छात्रों के विभिन्न समूह निदेशालय का दौरा करने वाले विश्वविद्यालयों / कॉलेजों और स्कूलों से आए छात्रों को मशरूम की खेती से संबंधित सभी गतिविधियां दिखाई गईं।

DMR-AN INTRODUCTION

खुम्ब अनुसन्धान निदेशालय – एक परिचय

During last couple of decades, mushroom farming has contributed immensely in the nutritional security and employment generation of the people in the urban and rural areas of the country. Through the exploitation and potential of mushroom wealth available in India, the livelihood status of the people could be uplifted. The Directorate has contributed for the enhancement of mushroom production in the country through strainal development programme of different mushrooms during these years. The mushroom strains were enriched with novel quality traits using various biotechnological approaches. The various diseases like wet bubble and yellow mould have been managed using eco-friendly mushroom cultivation techniques developed by the Direcotrate. The mandate and the scope of the Directorate have been expanded and the research programmes were targeted to extend the shelf life and storage of the mushrooms for longer duration with good quality. The mushroom farming is a remunerative option for the farmers keeping in view the reduction in land holdings and depleting natural resources like

As compared to other field and Horticultural crops, mushroom cultivation utilizes vertical space with minimum quantity of water. The available agricultural residue in the country may be utilized for generating wealth from the waste. As there is constant farm income and employment opportunity, the livelihood of the farmers is strengthened from mushroom farming. Keeping in view the importance of the mushroom because of its nutritional and medicinal properties, a systematic research was initiated in India with the establishment of National Centre for Mushroom Research and Training (NCMRT) in 1983 at Solan (H.P.)

पिछले कुछ दशकों के दौरान, खुम्ब की खेती ने देश के शहरी और ग्रामीण क्षेत्रों में लोगों की पोषण सुरक्षा और रोजगार सृजन में अत्यधिक योगदान दिया है। भारत में उपलब्ध खुम्ब सम्पदा के दोहन और क्षमता के माध्यम से लोगों की आजीविका की स्थिति को ऊपर उठाया जा सकता है। निदेशालय ने इन वर्षों के दौरान विभिन्न खुम्बों के स्ट्रेन विकास कार्यक्रम के माध्यम से देश में खुम्ब उत्पादन बढ़ाने में योगदान दिया है। विभिन्न जैव–प्रौद्योगिकी दृष्टिकोणों का उपयोग करते हुए खुम्ब की किस्मों को नए गुणवत्ता लक्षणों से समृद्ध किया गया। निदेशालय द्वारा विकसित पर्यावरण के अनुकूल खुम्ब की खेती तकनीकों का उपयोग करके गीले बुलबुले और पीले मोल्ड जैसे विभिन्न रोगों का प्रबंधन किया गया है। निदेशालय के अधिदेश और दायरे का विस्तार किया गया है और अनुसंधान कार्यक्रमों को अच्छी गुणवत्ता के साथ लंबी अवधि के लिए खुम्ब के भंडारण को बढ़ाने का लक्ष्य रखा गया है। घटती भूमि और पानी जैसे प्राकृतिक संसाधनों की कमी को ध्यान में रखते हुए खुम्ब की खेती किसानों के लिए एक लाभकारी विकल्प है।

अन्य खेतों और बागवानी फसलों की तुलना में, खुम्ब की खेती में पानी की न्यूनतम मात्रा के साथ ऊर्ध्वाधर स्थान का उपयोग होता है। देश में उपलब्ध कृषि अवशेषों का उपयोग अपशिष्ट से धन उत्पन्न करने के लिए किया जा सकता है। लगातार कृषि आय और रोजगार के अवसर होने के कारण खुम्ब की खेती से किसानों की आजीविका मजबूत होती है। खुम्ब के पोषण और औषधीय गुणों के महत्व को ध्यान में रखते हुए, भारतीय परिषद के तत्वावधान में सोलन (हिमाचल प्रदेश) में 1983 में राष्ट्रीय खुम्ब अनुसंधान और प्रशिक्षण केंद्र (NCMRT) की स्थापना के साथ भारत में एक व्यवस्थित शोध शुरू किया गया था। 25 वर्षों के बाद, खुम्ब में उल्लेखनीय अनुसंधान उपलब्धियों के साथ, इसे 2008 में खुम्ब अनुसंधान निदेशालय (डीएमआर/खु.अनु.नि.) के

under the aegis of Indian Council of Agricultural Research (ICAR). After 25 years, with remarkable research achievements in mushroom, it was upgraded to Directorate of Mushroom Research (DMR) in 2008. ICAR-DMR, Solan is the only Institute working exclusively on mushroom research and development in the country. Because of the collaborative efforts of the Scientists of ICAR-DMR, Solan and growers, the mushroom production has reached 3,15,000 tonnes in the country. The Directorate has continuously engaged in developing region specific and low cost technologies suitable to the farmers. The developed technologies are further validated through All India Co-ordinated Research Project (AICRP) on mushroom, which was also initiated in 1983 with its headquarters at Solan.

Location

ICAR-Directorate of Mushroom Research (DMR) is located in Solan city of Himachal Pradesh, between Chandigarh and Shimla National Highway, endeared as the gateway of the state. The city is famous for its cultural splendor, excellent scenic and picnic spots, numerous temples and seasonal cash vegetable crops. Apart being industrialized, the city is widely polular for mushroom cultivation and bearing the tag of "Mushroom City of India" which was named by the Hon'ble Chief Minister of Himachal Pradesh on 10th September, 1997 during the Indian Mushroom Conference organized jointly by the Directorate and Mushroom Society of India keeping in view the contribution towards research, development and popularization of mushroom.

Infrastructure

ICAR-DMR, Solan has 12 environmentally controlled mushroom cultivation rooms and a poly house alongwith indoor bunkers and bulk chambers. The Directorate has five well equipped laboratories for biotechnology, germplasm conservation, spawn production, plant protection and postharvest technology with modern and and latest equipments. The transfer of technology

रूप में अपग्रेड किया गया। भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन देश में विशेष रूप से खुम्ब अनुसंधान और विकास पर काम करने वाला एकमात्र संस्थान है। भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन के वैज्ञानिकों और उत्पादकों के सहयोगात्मक प्रयासों से देश में खुम्ब का उत्पादन 3,15,000 टन तक पहुंच गया है। निदेशालय किसानों के लिए उपयुक्त क्षेत्र विशिष्ट और कम लागत वाली तकनीकों को विकसित करने में लगातार लगा हुआ है। खुम्ब पर विकसित तकनीकों को अखिल भारतीय समन्वित अनुसंधान परियोजना (एआईसीआरपी) के माध्यम से और अधिक मान्य किया गया है, जिसे 1983 में सोलन में अपने मुख्यालय के साथ शुरू किया गया था।

स्थान

मा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय (डीएमआर) हिमाचल प्रदेश के सोलन शहर में चंडीगढ़ और शिमला राष्ट्रीय राजमार्ग के बीच स्थित है, जिसे राज्य के प्रवेश द्वार के रूप में जाना जाता है। यह शहर अपने सांस्कृतिक वैभव, उत्कृष्ट दर्शनीय और पिकनिक स्थलों, कई मंदिरों और मौसमी नकदी सब्जियों की फसलों के लिए प्रसिद्ध है। औद्योगीकृत होने के अलावा, शहर खुम्ब की खेती के लिए व्यापक रूप से लोकप्रिय है और "भारत के खुम्ब शहर" का टैग धारण करता है, जिसे हिमाचल प्रदेश के माननीय मुख्यमंत्री द्वारा 10 सितंबर, 1997 को निदेशालय और खुम्ब सोसायटी ऑफ इंडिया खुम्ब के अनुसंधान, विकास और लोकप्रियता में योगदान को ध्यान में रखते हुए संयुक्त रूप से आयोजित भारतीय खुम्ब सम्मेलन के दौरान नामित किया गया था।

आधारभूत संरचना

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन में 12 पर्यावरण नियंत्रित खुम्ब की खेती के कमरे और एक पॉलीहाउस के साथ—साथ इनडोर बंकर और बल्क चैम्बर हैं। निदेशालय के पास आधुनिक और नवीनतम उपकरणों के साथ जैव प्रौद्योगिकी, जननद्रव्य संरक्षण, स्पॉन उत्पादन, पौध संरक्षण और

(ToT) section has well sophisticated training unit with a total capacity of more than 250 trainees at a time. Further, the Directorate has a specialized library having collections related to mushroom science supporting research and consultancy in the relevant areas. The library has accessioned 2185 books and 2500 back volumes of journals and it is the only referral library for mushroom literature in the country.

Personnel and Finance

ICAR-DMR, Solan has asanctioned strength of 18 scientists + one Director, 12 technical, 14 administrative and 5 skilled supporting staff. The staff position as on 31.12.2023 was 10 Scientists, 11 technical, 13 administrative and 4 skilled supporting staff. The annual budget of the Directorate for the year 2023-24 was Rs.1276.98 lakhs which will be fully utilized. The Directorate earned Rs.104.41 lakhs as revenue during the year by the sale of literature, mushroom cultures, spawn, fresh mushrooms, value added products, consultancy, training and other services.

Vision

Mushroom research and development for economic growth, ecological sustainability and nutritional security.

Mission

R&D to undertake basic research, conserve mushroom diversity, develop technologies/ varieties to enhance mushroom quality and productivity, utilize agro-wastes/spent musroom substrates and promote secondary agriculture for generating employment, ameliorating poverty and ensuring nutritional security.

कटाई उपरांत प्रौद्योगिकी के लिए पांच अच्छी तरह से सुसज्जित प्रयोगशालाएँ हैं। प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग में एक समय में 250 से अधिक प्रशिक्षुओं की कुल क्षमता के साथ अच्छी तरह से परिष्कृत प्रशिक्षण इकाई है। इसके अलावा, निदेशालय के पास एक विशेष पुस्तकालय है जिसमें प्रासंगिक क्षेत्रों में अनुसंधान और परामर्श का समर्थन करने वाले खुम्ब विज्ञान से संबंधित संग्रह हैं। पुस्तकालय में 2185 पुस्तकें और 2500 पत्रिकाओं के पिछले संस्करणों का परिग्रहण है और यह देश में खुम्ब साहित्य के लिए एकमात्र सम्प्रेषण पुस्तकालय है।

कार्मिक और वित्त

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन में 18 वैज्ञानिकों. एक निदेशक, 12 तकनीकी, 14 प्रशासनिक और 5 कुशल सहायक कर्मचारियों की स्वीकृत संख्या है। 31.12.2023 को स्टाफ में 10 वैज्ञानिक, 11 तकनीकी, 13 प्रशासनिक और 4 कुशल सहायक कर्मचारी थे। वर्ष 2023—24 के लिए निदेशालय का वार्षिक बजट रु. 1276.98 लाख जो पूरी तरह से उपयोग किया जाएगा। वर्ष के दौरान निदेशालय को साहित्य, खुम्ब कल्चर, स्पान, ताजा खुम्ब, मूल्य वर्धित उत्पादों, परामर्श, प्रशिक्षण और अन्य सेवाओं की बिक्री से 114.50 लाख रुपये का राजस्व प्राप्त हुआ।

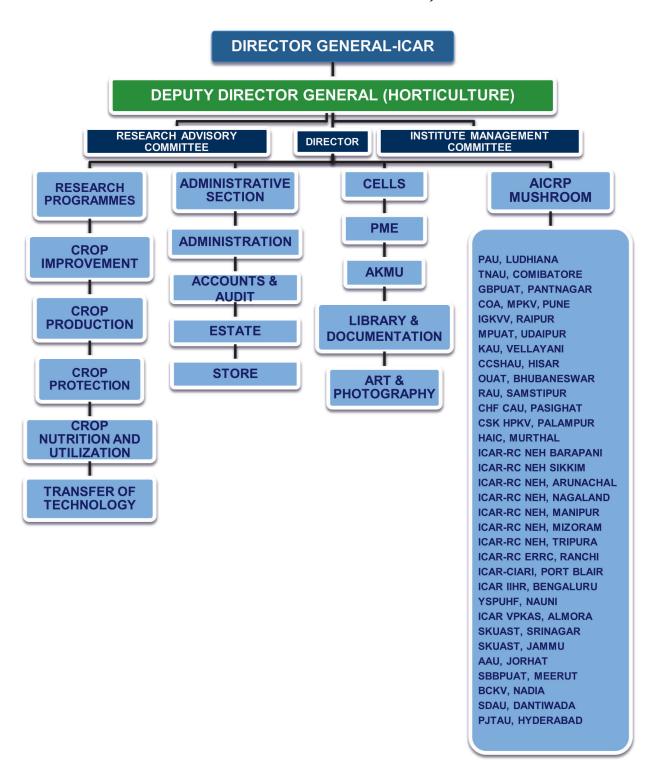
दृष्टिकोण

आर्थिक विकास, पारिस्थितिक स्थिरता और पोषण सुरक्षा के लिए खुम्ब अनुसंधान और विकास।

उद्देश्य

बुनियादी अनुसंधान करने, खुम्ब की विविधता को संरक्षित करने, खुम्ब की गुणवत्ता और उत्पादकता बढ़ाने के लिए प्रौद्योगिकियों/किरमों का विकास करने, कृषि—कचरे/खर्च किए गए खुम्ब सबस्ट्रेट्स का उपयोग करने और रोजगार पैदा करने, गरीबी में सुधार करने और पोषण सुरक्षा सुनिश्चित करने के लिए माध्यमिक कृषि को बढ़ावा देने के लिए अनुसंधान एवं विकास करना।

Mandate


- Strategic and applied research on collection, conservation, utilization and production of edible and medicinal mushroom.
- 2. Transfer of technology and capacity building of stakeholders for spawn production.
- Co-ordination of network research for validation and evaluation of specific technologies through AICRP on mushroom to enhance productivity.

अध्यादेश

- खाद्य और औषधीय खुम्ब के संग्रह, संरक्षण, उपयोग और उत्पादन पर रणनीतिक और अनुप्रयुक्त अनुसंधान।
- 2. स्पॉन उत्पादन के लिए प्रौद्योगिकी का हस्तांतरण और हितधारकों की क्षमता निर्माण।
- उत्पादकता बढ़ाने के लिए खुम्ब पर अखिल भारतीय समन्वित अनुसन्धान परियोजना के माध्यम से विशिष्ट प्रौद्योगिकियों के सत्यापन और मूल्यांकन के लिए नेटवर्क अनुसंधान का समन्वयन।

ORGANOGRAM OF ICAR-DMR, SOLAN

RESEARCH ACHIEVEMENTS

अनुसंधान उपलब्धियां

2.1. MUSHROOM GENETIC RESOURCES

Fungal forays have been undertaken in the areas falling in Himachal Pradesh India during 2023. As a result of these trips a total of 210 collections have been made. Out of these 200 were identified up to genus level and approximately 100 specimens up to species level. Among these specimens some of interesting specimens namely Cantharellus cibarius, Helvella atra, Lactarius rubidus, Lactifluus volemus, Lentinus cladopus, Lycoperdom perlatum, Russula delica, Sarcoscypha coccinea, Volvariella volvacea etc were there.

Culturing of 6 specimens namely *Lentinus* cladopus, *Lentinus* squarrosulus, *Laetiporus* sulphureus, *Clitocybe* sp., *Pleurotus* ostreatus, *Volvariella bombycina* etc. have been done. All the specimens have been deposited in herbarium of ICAR- Directorate of Mushroom Research, Chambaghat Solan H.P.

Macroscopic and Microscopic investigations of 9 specimens are given below:

1. Cantharellus cibarius Fr.

Morphological features: Fruiting bodies are egg yellow, with a convex to funnel shaped cap covered with appressed scales and decurrent yellowish, interveined, folded, reduced lamellae attached to a solid stipe. It is choice edible mycorrhizal mushroom.

Microscopic features: Basidiospores 6-8.8 \times 3.5-5 μm, ellipsoid, hyaline, inamyloid. Basidia 16-43 \times 7-10 μm, clavate, tetrasporic, sterigmata up to 3.5 μm long. Pleurocystidia and cheilocystida present, 41-70 \times 17-23 μm, variable in shapes, numerous, subglobose, pyriform, to lageniform. Clamp connection absent (Fig.2.1.1).

2.1. मशरूम अनुवांशिक संसाधन

2023 के दौरान हिमाचल प्रदेश, भारत में आने वाले क्षेत्रों में कवक अन्वेषण प्रयास किए गए हैं। इन यात्राओं के परिणामस्वरूप कुल 210 संग्रह किए गए हैं। इनमें से 200 को जीनस स्तर तक और लगभग 100 नमूनों को प्रजाति स्तर तक पहचाना गया। इन नमूनों में कैंथरेलस सिबेरियस, हेलवेल्ला अत्रा, लैक्टेरियस रुबिडस, लैक्टिपलूस वोलेमस, लेंटिनस क्लैडोपस, लाइकोपेरडोम पेरलाटम, रसूला डेलिका, सरकोसिफा कोकिनिया, वोल्वेरीला वोल्वेसिया आदि कुछ दिलचस्प नमूने थे।

लेंटिनस क्लैडोपस, लेंटिनस स्क्वैरोसुलस, लेटिपोरस सल्पयूरियस, क्लिटोसाइबे स्पीशीज, प्लुरोटस ओस्ट्रीटस, वोल्वेरीला बॉम्बाइसीना आदि 6 नमूनों का संवर्धन किया गया है। सभी नमूनों को भा.कृ.अनु.प. —खुम्ब अनुसंधान निदेशालय, चंबाघाट सोलन, हि.प्र. के हर्बेरियम में जमा कर दिया गया है।

9 नमूनों की स्थूल और सूक्ष्म जांच नीचे दी गई है:

1. कैंथरेलस सिबेरियस फर।

रूपात्मक विशेषताएं: फलने वाले फल अंडे के पीले रंग के होते हैं, एक उत्तल से कीप के आकार की टोपी होती है जो दबे हुए तराजू से ढकी होती है और पीले रंग की होती है, एक ठोस डंठल से जुड़ी हुई, मुड़ी हुई, छोटी लामेल्ला होती है। यह पसंदीदा खाद्य माइकोरिजल मशरूम है।

सूक्ष्मदर्शी विशेषताएं: बेसिडियोस्पोर्स 6-8.8×3.5-5μm, दीर्घवृत्ताकार, हाइलिन, इनामाइलॉइड । बेसिडिया 16-43×7-10 माइक्रोमीटर, क्लैवेट, टेट्रास्पोरिक, स्टेरिगमाटा 3.5 माइक्रोमीटर तक लंबा । प्लुरोसिस्टिडिया और चेइलोसिस्टिडा मौजूद, 41-70×17-23μm, आकार में परिवर्तनशील, असंख्य, सबग्लोबोज, पाइरीफॉर्म, लेजेनिफॉर्म तक । क्लैंप कनेक्शन अनुपस्थित (चित्र.2. 1.1)।

Habitat & Distribution: Growing solitary to scattered on pine needles near pine tree communities in coniferous forest, Solan

पर्यावास और वितरणः सोलन के शंक्धारी जंगल में चीड़ के पेड़ समुदायों के पास चीड़ की पत्तियों पर अकेले उगना।

Fruiting bodies of Cantharellus cibarius

Basidiospores

Fig. 2.1.1. Cantharellus cibarius चित्र 2.1.1. कैंथरेलस सिबेरियस

Notaris

Morphological features: Fruiting bodies are 2-5 cm across, more or less ball like or spherical or potato like structure, hard, brown to black or purplish black, interior surface dark brown, brittle attached to short stipe.

Microscopic features: Eight ascospores present in each cylindrical ascus, ascospores ellipsoidal to fusiform, 1-18 x 6-9 µm, dark black (Fig. 2.1.2).

Habitat & Distribution: Growing solitary to scattered on Quercus tree in mixed pine coniferous forest, Naina Tikkar Sirmaur, H.P.

Dadinia concentrica (Bolton) Cesati & de 2. दादिनिया कंसेंट्रिका (बोल्टन) सेसाटी और डी नोटारिस

रूपात्मक विशेषताएं: फलने वाले फल 2-5 सेमी चौड़े, कम या ज्यादा गेंद जैसी या गोलाकार या आलू जैसी संरचना वाले, कठोर, भूरे से काले या बैंगनी काले, आंतरिक सतह गहरे भूरे रंग के, छोटे डंठल से जुड़े हुए भंगुर होते हैं।

सूक्ष्मदर्शी विशेषताएं: प्रत्येक बेलनाकार एस्कस में आंठ एस्कोस्पोर मौजूद होते हैं, एस्कोस्पोर्स दीर्घवृत्ताकार से फ्यूसीफॉर्म, 1—18 X 6—9 माइक्रोमीटर, गहरा काला (चित्र 2.1.2)।

पर्यावास और वितरणः मिश्रित देवदार के शंकुधारी वन में बांज के पेड पर एकान्त से लेकर बिखरे हुए तक उगना, नैना टिक्कर सिरमौर (हि.प्र.)।

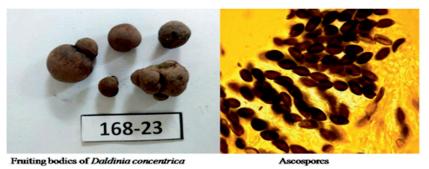


Fig. 2.1.2. Dadinia concentrica चित्र 2.1.2. दादिनिया कंसेंट्रिका

3. Helvella atra

Morphological features: Fruiting bodies up to 6 cm in height, irregularly lobed, saddle shaped, bilobed, black, naked, grey to dark greyish black, 1-2 grooves, glabrous.

Microscopic features: Ascospores 15–18 \times 9.5–12 μ m, hyaline, elongated, smooth, monoguttulate, inamyloid. Asci 145–198 \times 12–14.5 μ m, long cylindrical, with 8 ascospores. Paraphysis 130–155 \times 4–8 μ m (Fig. 2.1.3).

Habitat & Distribution: Growing solitary to scattered on woody debris among coniferous forest, Solan H.P.

3. हेल्वेला अत्रा

रूपात्मक विशेषताएं: फलने वाले फल ऊंचाई में 6 सेमी तक, अनियमित लोब वाले, काठी के आकार के, दो पाल वाले, काले, नग्न, भूरे से गहरे भूरे काले, 1—2 खांचे, चिकने।

सूक्ष्म विशेषताएंः एस्कोस्पोर्स 15—18×9.5—12μm, पारदर्शी, लम्बा, चिकना, मोनोगुटुलेट, इनामाइलॉइड। एएससीआई 145—198×12—14.5 माइक्रोमीटर, लंबा बेलनाकार, 8 एस्कॉस्पोर के साथ। पैराफिसिस 130-155×4—8μm (चित्र 2.1.3)।

पर्यावास और वितरणः शंकुधारी जंगल के बीच लकड़ी के मलबे पर बिखरे हुए अकेले बढ़ते हुए, सोलन, हि.प्र.।

Fig. 2.1.3. Helvella atra

चित्र 2.1.3. हेल्वेला अत्रा

4. Lactifluus volemus (Fr.) Kuntze

Morphological features: Fruiting bodies up to 8 cm in height, velvety brownish orange with a shallow vase shaped cap, with a depressed centre, decurrent lamellae yellowish, stipe paler, solid cylindrical that exudes milky white latex on cutting. This is choice edible mushrooms.

Microscopic features: Basidiospores 7.8-10 x 8-9 μ m, ovoid to globose, amyloid, ornamented cyanophilous. Basidia 38-61 x 8-14 μ , clavate tetrasporic. Clamp connections absent (Fig. 2.1.4).

Habitat & Distribution: Growing solitary, scattered or in caespitose manner on soil in mixed forest in subtropical to temperate region, Chail, Solan (H.P.).

4. लैक्टिफ्लुस वोलेमस (फर.) कुंत्जे

रूपात्मक विशेषताएं: ऊंचाई में 8 सेमी तक फलने वाले फल, एक उथली फूलदान के आकार की टोपी के साथ मखमली भूरा नारंगी, एक धसे हुए केंद्र के साथ, अधोमुखी लामेल्ला पीला, डंठल पीला, ठोस बेलनाकार जिसे काटने पर दूधिया सफेद लेटेक्स निकलता है। यह पसंदीदा खाद्य मशरूम है।

सूक्ष्म विशेषताएं: बेसिडियोस्पोर्स 7.8—10X8—9μm, अंडाकार से गोलाकार, अमाइलॉइड, अलंकृत सायनोफिलस। बेसिडिया 38—61X8—14μm,क्लैवेट टेट्रास्पोरिक। क्लैंप कनेक्शन अनुपस्थित (चित्र 2.1.4)।

आवास और वितरणः उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र, चैल, सोलन (हि.प्र.) में मिश्रित वनों में मिट्टी पर एकान्त, बिखरे हुए या कैस्पिटोज तरीके से उगना।

Fruiting bodies of Lactifluus volemus

Basidiospores

Fig. 2.1.4. Lactifluus volemus चित्र 2.1.4. लैक्टिपलुस वोलेमस

5. Lactarius rubidus (Hesler & Smith) Methven

Morphological features: Fruiting bodies up to 10 cm in height, reddish brown to orange brown in colour, convex to vase shaped cap with wrinkled surface. Lamellae sub-decurent, crowded pale orange with brownish stains, stipe concolorous cylindrical. It is choice edible mycorrhizal mushroom.

Microscopic features: Basidiospores 6-7.5 x 5.5-7.5 μ m, globose, ornamented, reticulation, hyaline, amyloid, cyanophilous. Basidia 36-67 x 7-15 μ m clavate tetrasporic. Clamp connections present throughout (Fig. 2.1.5).

Habitat & Distribution: Growing solitary to scattered on soil among coniferous forest, Solan (H.P.).

5. लैक्टैरियस रूबिडस (हेस्लर और स्मिथ) मेथवेन

रूपात्मक विशेषताएं: 10 सेमी ऊंचाई तक फलने वाले फल, लाल भूरे से नारंगी भूरे रंग, झुर्रीदार सतह के साथ उत्तल से फूलदान के आकार की टोपी। लामेल्ला उप—सजावटी, भूरे धब्बों के साथ भीड़दार पीला नारंगी, डंठल समवर्ती बेलनाकार। यह पसंदीदा खाद्य माइकोरिजल मशरूम है।

सूक्ष्मदर्शी विशेषताएं: बेसिडियोस्पोर्स 6—7.5x5. 5—7.5μm, गोलाकार, अलंकृत, रेटिक्यूलेशन, हाइलिन, एमाइलॉइड, सायनोफिलस। बेसिडिया 36—67x7—15μm क्लैवेट टेट्रास्पोरिक। क्लैंप कनेक्शन हर जगह मौजूद हैं (चित्र 2.1.5)।

आवास और वितरणः शंकुधारी वन, सोलन (हि.प्र.) के बीच मिट्टी पर एकान्त से लेकर बिखरे हुए तक उगना।

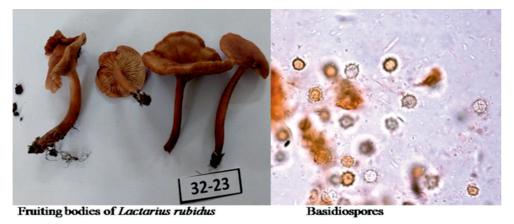


Fig. 2.1.5. Lactarius rubidus

चित्र 2.1.5. लैक्टैरियस रूबिडस

6. Lentinus cladopus Lêv

Morphological features: Fruiting bodies up to 9 cm in height, white colored, with a convex silky cap having slightly depressed centre, and subdecurrent creamish gills attached to off white stipe.

Microscopic features: Basidiospores $6.5-8~x~3.5-4.5~\mu m$, cylindrical, hyaline, inamyloid, cyanophilous. Basidia $14-18~x~3-3.5~\mu m$, clavate tetrasporic. Clamp connections present throughout (Fig. 2.1.6).

Habitat & Distribution: Growing solitary, scattered or in caespitose gregarious manner on wooden logs and soil in Mandi (H.P.) and mixed to coniferous forest, Shilli Road, Solan (H.P.).

6. लेंटिनस क्लैडोपस लेव

रूपात्मक विशेषताएं: फलने वाले फल ऊंचाई में 9 सेमी तक, सफेद रंग, एक उत्तल रेशमी टोपी के साथ थोड़ा उदास केंद्र, और उप—डीकरंट क्रीमिश गिल्स ऑफ व्हाइट स्टाइप से जुड़े होते हैं।

सूक्ष्मदर्शी विशेषताएं: बेसिडियोस्पोर्स 6.5–8x3. 5–4.5µm, बेलनाकार, हाइलिन, इनैमाइलॉइड, सायनोफिलस। बेसिडिया 14–18x3–3.5µm, क्लैवेट टेट्रास्पोरिक। क्लैंप कनेक्शन हर जगह मौजूद हैं (चित्र 2.1.6)।

पर्यावास एवं वितरणः मंडी (हिमाचल प्रदेश) में लकड़ी के लड़ों और मिट्टी पर अकेले, बिखरे हुए या सामूहिक रूप से उगना और शंकुधारी जंगल, शिल्ली रोड, सोलन (हि.प्र.) में मिश्रित होना।

Fruiting bodies of Lentinus cladopus

Basidiospores

Fig. 2.1.6 Lentinus cladopus चित्र 2.1.6 लेंटिनस क्लैडोपस

7. Russula delica Fr.

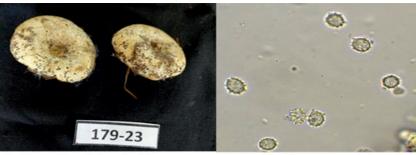
Morphological features: Initially fruiting bodies are partially buried in soil, creamy white tinged with brownish spots on cap, creamish decurrent gills attached to a whitish stout stipe.

Microscopic features: Basidiospores 8.5-12 x 8-11 μ m, amyloid, subglobose, ornamented, thick walled. Basidia 25.5-43 x 9-15 μ m, clavate, tetrasporic, sterigmata up to 6 μ m long. Pleurocystidia and cheilocystidia 30 – 85 x 7-9.5 μ m, cylindrical to clavate with apices. Clamp

7. रसूला डेलिका फर.

रूपात्मक विशेषताएं: प्रारंभ में फलने वाले फल आंशिक रूप से मिट्टी में दबे हुए होते हैं, टोपी पर भूरे रंग के धब्बों के साथ मलाईदार सफेद रंग, मलाईदार डिकंरट गिल्स एक सफेद मोटे डंठल से जुड़े होते हैं।

सूक्ष्मदर्शी विशेषताएं: बेसिडियोस्पोर्स 8.5—12x8—11μm, अमाइलॉइड, सबग्लोबोज, अलंकृत, मोटी दीवार वाले। बेसिडिया 25.5—43 x9—15 μm, क्लैवेट, टेट्रास्पोरिक, स्टेरिग्माटा 6 माइक्रोमीटर तक लंबा। प्लुरोसिस्टिडिया और चेइलोसिस्टिडिया 30—85x7—9.5μm, शीर्षों के साथ गृदग्दी करने के लिए



connections absent. It is edible mycorrhizal mushrooms (Fig. 2.1.7).

Habitat & Distribution: Growing solitary, scattered or in caespitose manner on soil in mixed forest in tropical to subtropical region at Naina Tikkar, Sirmaur (H.P.)

बेलनाकार। क्लैंप कनेक्शन अनुपस्थित। यह खाने योग्य माइकोरिज़ल मशरूम है (चित्र 2.1.7)।

पर्यावास और वितरणः नैना टिक्कर, सिरमौर (हि.प्र.) में उष्णकटिबंधीय से उपोष्णकटिबंधीय क्षेत्र में मिश्रित जंगल में मिट्टी पर एकान्त, बिखरा हुआ या कैस्पिटोज तरीके से उगना।

Fruiting bodies of Russula delica

Basidiospores

Fig. 2.1.7. Russula delica चित्र 2.1.7. रसूला डेलिका

8. Sarcoscypha coccinea (Scop.) Lambotte

Morphological features: Fruiting bodies are scarlet red to orange colored, cup to disc shaped, smooth or hairy with rudimentary stipe.

Microscopic features: Ascospores $23-34.5 \times 10-14.5 \mu m$, ellipsoid, inamyloid, cyanophilous. Asci 8 spored. Paraphysis filiform with orangish red contents. Clamp connections absent throughout (Fig. 2.1.8).

Habitat & Distribution: Growing solitary, scattered or in caespitose gregarious manner on hardwood sticks or buried wood at Naina Tikkar, Sirmaur (H.P.).

8. सरकोसिफा कोकिनिया (स्कोप.) लैंबोटे

रूपात्मक विशेषताएं: फलने वाले फल लाल से नारंगी रंग के, कप से लेकर डिस्क के आकार के, चिकने या अल्पविकसित डंठल वाले बालों वाले होते हैं।

सूक्ष्म विशेषताएं: एस्कोस्पोर्स 23—34.5x10—14. 5µm, दीर्घवृत्ताकार, इनैमाइलॉइड, सायनोफिलस। एएससीआई 8 बीजाणु। नारंगी लाल सामग्री के साथ पैराफिसिस फिलीफ़ॉर्म। क्लैंप कनेक्शन संपूर्ण रूप से अनुपस्थित हैं (चित्र 2.1.8)।

पर्यावास और वितरणः नैना टिक्कर, सिरमौर (हि.प्र.) में दृढ़ लकड़ी के डंडों या दबी हुई लकड़ियों पर एकान्त, बिखरे हुए या सामूहिक रूप से उगना।

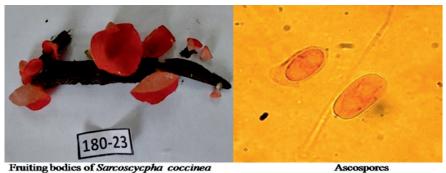


Fig. 2.1.8. Sarcoscypha coccinea चित्र 2.1.8. सरकोसिफा कोकिनिया

9. Volvariella bombycina (Schaeff.) Singer

Morphological features: Fruiting bodies up to 15 cm long, creamish to yellowish colored with a campanulate cap covered with fibrillose scales and free pinkish to brown gills attached to a whitish volvate stipe. It is generally regarded as edible.

Microscopic features: Basidiospores 7–8.5×3.5–5 μ m, ellipsoid, inamyloid, hyaline. Basidia 21–38×7–10 μ m, clavate, tetrasporic, sterigmata up to 3.5 μ m long. Pleurocystidia and cheilocystida present 30–70×15–25 μ m, variable in shapes, abundant, subglobose, pyriform, to lageniform. Clamp connection absent.

Habitat & Distribution: Growing solitary, on popular tree found at Chambaghat, Solan (H.P.).

9.वोल्वेरिएला बोम्बाइसीना (शेफ्.) सिंगर

रूपात्मक विशेषताएं: फलने वाले फल 15 सेमी तक लंबे, मलाईदार से पीले रंग के होते हैं, जो फाइब्रिलोज स्केल से ढके कैम्पैनुलेट कैप के साथ होते हैं और एक सफेद वॉलवेट स्टाइप से जुड़े गुलाबी से भूरे रंग के मुक्त गलफड़े होते हैं। इसे आम तौर पर खाने योग्य माना जाता है।

सूक्ष्मदर्शी विशेषताएं: बेसिडियोस्पोर्स 7-8.5× 3.5-5μm, दीर्घवृत्ताकार, इनामाइलॉइड, हाइलिन। बेसिडिया 21-38×7-10 μm, क्लैवेट, टेट्रास्पोरिक, स्टेरिग्माटा 3.5μm तक लंबा। प्लुरोसिस्टिडिया और चेइलोसिस्टिडा 30-70×15-25μm, आकार में परिवर्तनशील, प्रचुर मात्रा में, सबग्लोबोज, पाइरीफॉर्म, लैजेनिफॉर्म तक मौजूद हैं। क्लैंप कनेक्शन अनुपस्थित।

पर्यावास और वितरणः चम्बाघाट, सोलन (हि.प्र.) में पाए जाने वाले लोकप्रिय पेड़ पर एकान्त में उगना।

Fig. 2.1.9. Volvariella bombycina चित्र 2.1.9. वोल्वेरिएला बोम्बाइसीना

2.2. CROP IMPROVEMENT 2.2 फसल सुधार

Genetic improvement of button mushroom

(i) Diversity analysis in 180 strains of Agaricus resource programme

A total of 180 strains of button mushroom procured from *Agaricus* resource programme, USA were subjected for evaluation of their molecular and morphological diversity. DNA from all the strains was isolated and ITS amplifications were performed (Fig. 2.2.1 and Fig. 2.2.2).

बटन मशरूम का अनुवांशिक सुधार

(i) एगेरिकस संसाधन कार्यक्रम के 180 उपमेदों में विविधता विश्लेषण

एगेरिकस संसाधन कार्यक्रम, संयुक्त राज्य अमेरिका से प्राप्त बटन मशरूम की कुल 180 किरमों को उनकी आणविक और रूपात्मक विविधता के मूल्यांकन के लिए रखा गया था। सभी उपभेदों से डीएनए को अलग किया गया और इसका प्रवर्धन किया गया (चित्र 2.2.1 और चित्र 2.2.2)।

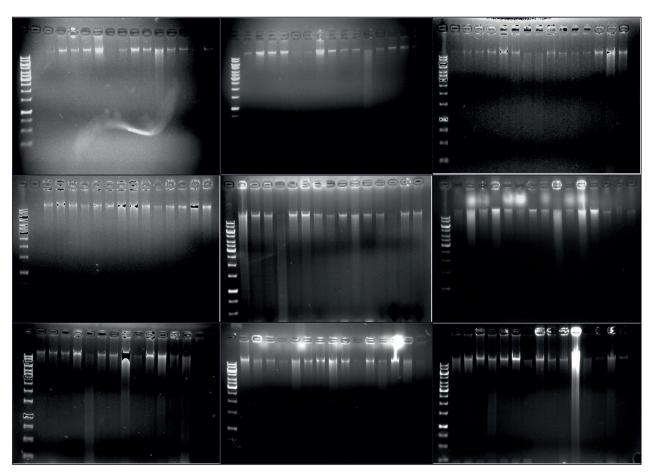


Fig. 2.2.1. Purified DNA of button mushroom strains चित्र 2.2.1. बटन मशरूम उपभेदों का शुद्ध डीएनए

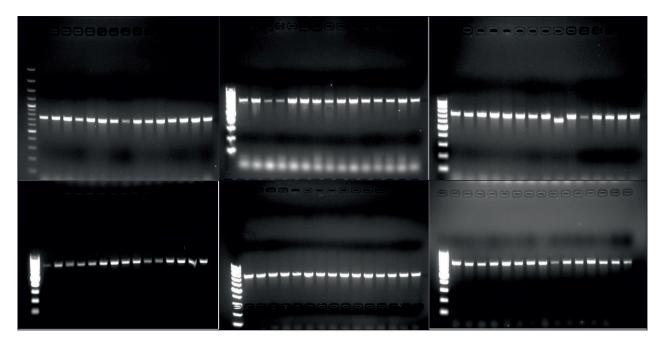


Fig.2.2.2. ITS amplification of button mushroom strains चित्र.2.2.2. बटन मशरूम उपभेदों का आय टी एस प्रवर्धन

33 SSR, 7 ISSR, 34 IRAP and 14 ReMAP primers were tested singly and in combination of IRAP and ReMAP primers for polymorphism survey in all the genotypes (Fig. 2.2.3).

सभी जीनोटाइप में बहुरूपता सर्वेक्षण के लिए 33 एसएसआर, 7 आईएसएसआर, 34 आईआरएपी और 14 रीमैप प्राइमरों का अकेले और आईआरएपी और रीमैप प्राइमरों के संयोजन में परीक्षण किया गया (चित्र 2.2.3)।

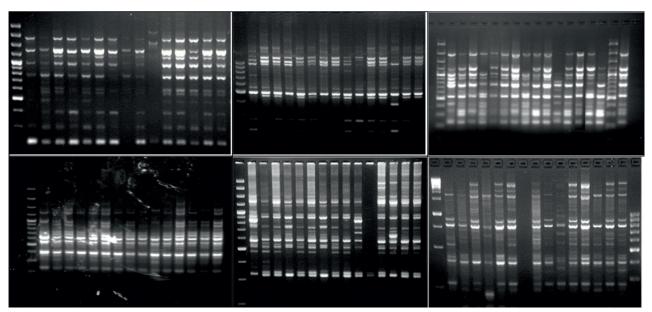


Fig. 2.2.3. Gel profiles generated using different markers चित्र 2.2.3. विभिन्न मार्करों का उपयोग करके जेल प्रोफाइल तैयार की गई

Morphological characters such as colour, cap dia, cap height, stipe width, stipe length, gill size, etc of all the strains were studied to assess the quality of the fruit bodies and diversity analysis (Table 2.1). All the quality parameters were taken as an average of 25 fruit bodies. Phylogenetic tree of 30 button mushroom strains drawn using the morphological data and the data matrix was prepared as quantitative dataset using Winclada version 1.00.08 (copyright K Nixon 1999-2002). Maximum parsimony analysis was done using TNT programme for phylogenetic analysis using 1000 bootstrap comparisons (Fig. 2.2.4).

फलों के फल की गुणवत्ता और विविधता विश्लेषण (तालिका 2.1) का आकलन करने के लिए सभी उपभेदों के रंग, कैप व्यास, कैप ऊंचाई, स्टाइप चौड़ाई, स्टाइप लंबाई, गिल आकार आदि जैसे रूपात्मक लक्षणों का अध्ययन किया गया। सभी गुणवत्ता मापदंडों को 25 फल निकायों के औसत के रूप में लिया गया। रूपात्मक डेटा और डेटा मैट्रिक्स का उपयोग करके तैयार किए गए 30 बटन मशरूम उपभेदों के फ़ाइलोजेनेटिक रचना को विन्क्लाडा संस्करण 1.00.08 (कॉपीराइट के निक्सन 1999—2002) का उपयोग करके मात्रात्मक डेटासेट के रूप में तैयार किया गया। 1000 बूटस्ट्रैप तुलनाओं (चित्र 2.2.4) का उपयोग करके फ़ाइलोजेनेटिक विश्लेषण के लिए टीएनटी प्रोग्राम का उपयोग करके अधिकतम पारसीमोनी विश्लेषण किया गया।

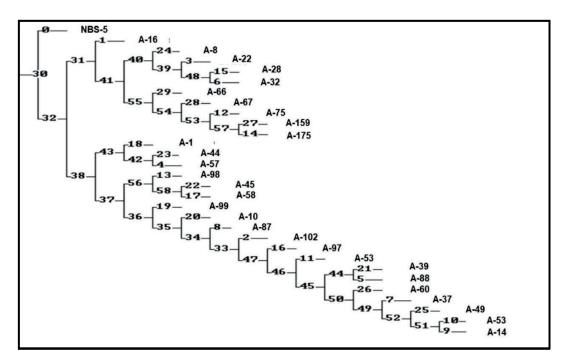


Fig. 2.2.4. Phylogenetic tree generated using quality characters of 30 button mushroom strains चित्र 2.2.4. 30 बटन मशरूम उपभेदों के गुणवत्ता लक्षणों का उपयोग करके फ़ाइलोजेनेटिक रचना तैयार किया गया

Table. 2.1. Quality parameters of fruiting bodies of different strains of Agaricus bisporus तालिका 2.1. एगेरिकस बाईस्पोरस के विभिन्न उपभेदों के फलन निकायों के गुणवत्ता पैरामीटर

Strain	cap dia (cm)	cap height (cm)	stipe width (cm)	stipe length (cm)	gill size(cm)
A-1	3.5	1.2	2	2	0.1
A-2	3.2	0.6	2	1.5	0.3
A-4	4	0.8	2.2	1.2	0.4
A-8	3	0.8	2.1	1.6	0.2
A-9	5	1	2.2	2	0.3
A-10	3.3	0.6	1.7	2.5	0.2
A-11	3.1	0.5	2	1.2	0.2
A-13	2.2	0.6	1	1.5	0.1
A-14	3	0.6	2.5	1.5	0.2
A-16	3	0.9	2.5	1.5	0.3
A-18	4	0.7	3	3	0.2
A-19	4	1	2.3	2.3	0.2
A-20	4.3	0.8	4	1.4	0.2
A-21	3	0.8	1.5	2	0.1
A-22	3.4	0.8	2	1.4	0.3
A-23	3.5	1	3	1.5	0.3
A-24	4	1.1	2	1.8	0.4
A-25	3	1	1.5	2	0.1
A-26	2.6	0.8	2	1.6	0.2
A-28	3	0.7	1	1.8	0.2
A-30	3	0.9	3	1	0.2
A-31	4.2	0.9	2.5	1.5	0.4
A-32	3	0.6	1.3	1.4	0.1
A-35	4	1	2	1.5	0.4
A-36	4	0.8	2	1.5	0.2
A-37	3.5	1	1.5	2	0.1
A-42	3	0.7	1	1.6	0.1
A-44	4	1	2	2	0.1
A-45	4	1	1.3	2	0.2
A-46	4.4	1.2	1.9	2.5	0.2
A-47	3	0.8	2.5	1.1	0.2
A-50	3.4	0.6	2	1.5	0.1

(ii) Evaluation of Selected ARP strain of button mushroom

A total 15 germplasm were selected after preliminary evaluation for yield and quality of fruit body against NBS-5 and A-63 control (released strains by ICAR-DMR, Solan). All the strains were proved to be high yielding and selected for next stage trials. Each strain was evaluated on 300 kg compost. Out of 15 germplasm evaluated, 6 strains were selected for AICRP and commercial level trials (Fig. 2.2.5). Morphological characters such as colour, cap dia, cap height, stipe width, stipe length, gill size, etc of all the strains were studied to assess the quality of the fruit bodies. All the quality parameters were taken as an average of 25 fruit bodies (Table 2.2).

(ii) बटन मशरूम के चयनित एआरपी स्ट्रेन का मूल्यांकन

एनबीएस—5और ए—63 नियंत्रण (आईसीएआर—डीएमआर, सोलन द्वारा जारी उपभेद) के खिलाफ फलन की उपज और गुणवत्ता के प्रारंभिक मूल्यांकन के बाद कुल 15 जननद्रव्य का चयन किया गया था। सभी उपभेद उच्च उपज देने वाले साबित हुए और अगले चरण के परीक्षणों के लिए चुने गए। प्रत्येक प्रभेद का मूल्यांकन 300 किलोग्राम खाद पर किया गया। मूल्यांकन किए गए 15 जननद्रव्य में से 6 उपभेदों को एआईसीआरपी और वाणिज्यिक स्तर के परीक्षणों के लिए चुना गया (चित्र 2.2.5)। फलों के फलन की गुणवत्ता का आकलन करने के लिए सभी उपभेदों के रंग, कैप व्यास, कैप ऊंचाई, स्टाइप चौड़ाई, स्टाइप लंबाई, गिल आकार आदि जैसे रूपात्मक गुणों का अध्ययन किया गया। सभी गुणवत्ता मापदंडों को 25 फल निकायों के औसत के रूप में लिया गया (तालिका 2.2)।

Table. 2.2. Some high yielder strains received under *Agaricus* resource programme against controls strain NBS-5

तालिका 2.2. नियंत्रण स्ट्रेन एनबीएस-5 के विरुद्ध एगेरिकस संसाधन कार्यक्रम के तहत कुछ उच्च उपज देने वाले स्ट्रेन प्राप्त हुए ।

Button mushroom strains	Colour	BE(%)
X-1	White	15.62
X-2	White	13.50
A-13	White	15.35
A-146	White	16.42
A-147	White	12.56
A-154	White	15.17
A-156	White	18.85
A-176	White	19.31
A-177	White	18.47
A-178	White	15.17
A-179	White	17.26
A-180	White	19.18
A-121	White	19.98
A-121F	White	16.39
A-63	White	19.78
NBS-5	White	16.12

Fig. 2.2.5. Selected ARP strains in fruiting चित्र 2.2.5. फलन में चयनित एआरपी उपमेद

(iii) Evaluation of *Agaricus bisporus* strains released by ICAR-DMR, Solan

A total of 07 *Agaricus bisporus* strains released by ICAR-DMR, Solan along with three exotic strains and three collections from AICRP centres were evaluated for yield and quality so that better strain amongst the release strains can be selected and also future breeding lines can be identified (Fig. 2.2.6). Results showed that DMR-773 and DMR-1084 performed best amongst all the strains evaluated (Table 2.3).

(iii) आईसीएआर—डीएमआर, सोलन द्वारा जारी एगेरिकस बाईस्पोरस उपभेदों का मूल्यांकन

आईसीएआर—डीएमआर, सोलन द्वारा जारी कुल 07 एगेरिकस बाईस्पोरस उपभेदों के साथ—साथ तीन विदेशी उपभेदों और एआईसीआरपी केंद्रों से तीन संग्रहों का उपज और गुणवत्ता के लिए मूल्यांकन किया गया ताकि जारी उपभेदों के बीच बेहतर स्ट्रेन का चयन किया जा सके और भविष्य की प्रजनन लाइनों की भी पहचान की जा सके। (चित्र 2.2.6)। परिणामों से पता चला कि DMR—773 और DMR—1084 ने मूल्यांकन किए गए सभी उपभेदों के बीच सबसे अच्छा प्रदर्शन किया (तालिका 2.3)।

Table. 2.3. Evaluation of *Agaricus bisporus* strains released by ICAR-DMR, Solan तालिका 2.3. आईसीएआर—डीएमआर, सोलन द्वारा जारी *एगेरिकस बाईस्पोरस* उपमेदों का मूल्यांकन

Button mushroom strains	Colour	BE(%)
U3-58	White	11.30
U3-54	White	9.43
NBS-1	White	8.13
NBS-3	White	7.06
NBS-5	White	10.11
LE-1	White	11.84
LE-4	White	8.63
LE-6	White	5.72
DMR-773	White	14.71
DMR 1084	White	15.25
PAU	White	13.93
Pusa-1	Brown	14.07
Pusa-2	Brown	13.00

Fig. 2.2.6. Released strains of ICAR-DMR, Solan in fruiting

चित्र 2.2.6. फलन में आईसीएआर-डीएमआर, सोलन की जारी उपभेद

(iv) Advance varietal trial 2 of All India coordinated Research project on Mushroom (AVTB-22-201 to AVTB-22-206) and release of variety

A total of 10 selected strains of button mushroom were evaluated under AICRP trials for three consecutive years 2020-21, 2021-22 and 2022-23. Under AVT-2 trials only six strains were taken in the year 2022-23 (Fig. 2.2.7). Highest average yield was obtained in strain A-63 in all the years and was recommended for release for commercial cultivation (Table 2.4).

(iv) मशरूम पर अखिल भारतीय समन्वित अनुसंधान परियोजना (AVTB-22-201 से AVTB-22-206) का उन्नत किस्म परीक्षण 2 और किस्म जारी करना

लगातार तीन वर्षों 2020—21, 2021—22 और 2022—23 के लिए एआईसीआरपी परीक्षणों के तहत बटन मशरूम की कुल 10 चयनित उपभेदों का मूल्यांकन किया गया। वर्ष 2022—23 में AVT—2 परीक्षणों के तहत केवल छह स्ट्रेन लिए गए (चित्र 2.2.7)। सभी वर्षों में स्ट्रेन A—63 में सबसे अधिक औसत उपज प्राप्त की गई और इसे व्यावसायिक खेती के लिए जारी करने की सिफारिश की गई (सारणी 2.4)।

Table. 2.4. AICRP trials of button mushroom (*Agaricus bisporus*) तालिका 2.4. बटन मशरूम (*एगेरिकस बाईस्पोरस*) का एआईसीआरपी परीक्षण

A. bisporus strain	IVT Code	Yield	AVT-1 code	Yield	AVT-2 Code	Yield	Av. yield	% increase over control
NBS1-11	IVTB-20-1	15.6						
NBS1-156	IVTB-20-2	15.3						
NBS1-170	IVTB-20-3	15.8						
NBS5-56	IVTB-20-4	21.91	AVTB-21-104	18.93	AVTB-22-103	18.66	19.83	10.17
NBS5-200	IVTB-20-5	21.19	AVTB-21-105	19.87	AVTB-22-102	18.74	19.93	10.71
NBS5-709	IVTB-20-6	15.03						
NBS-5 (Control)	IVTB-20-7	16.68	AVTB-21-106	18.24	AVTB-22-101	19.09	18.00	
NBS5- 69xU3-2	IVTB-20-8	14.3	AVTB-21-103	18.85	AVTB-22-104	19.54	17.56	
NBS5- 69XU3-10	IVTB-20-9	15.22	AVTB-21-102	19.26	AVTB-22-105	19.42	17.97	
A-63	IVTB-20-10	22.76	AVTB-21-101	19.89	AVTB-22-106	18.93	20.53	14.01

Fig. 2.2.7. AVT-2 Trial of selected button mushroom strains चित्र 2.2.7. चयनित बटन मशरूम उपभेदों का AVT-2 परीक्षण

(v) Breeding for disease resistance in button mushroom

A total of 15 SSR markers were developed associated with disease resistance gene. DNA from a total of 180 strains of button mushroom were isolated and checked for its integrity. ITS is amplified for all the strains for confirmation of purity of DNA. The primers developed are tabulated in Table 2.5. RNA isolation protocol in mushroom has been standardized and total RNA from a total of 5 strains proved to be wet bubble resistant has been isolated and Real Time PCR analysis has been done for up-regulation/down-regulation of disease resistance gene diseased conditions (Fig.2.2.8).

(v) बटन मशरूम में रोग प्रतिरोधक क्षमता के लिए प्रजनन

रोग प्रतिरोधक जीन से जुड़े कुल 15 एसएसआर मार्कर विकसित किए गए। बटन मशरूम की कुल 180 उपभेदों से डीएनए को अलग किया गया और इसकी अखंडता की जांच की गई। डीएनए की शुद्धता की पुष्टि के लिए इसके सभी उपभेदों के लिए इसका प्रवर्धन किया जाता है। विकसित प्राइमरों को तालिका 2.5 में सारणीबद्ध किया गया है। मशरूम में आरएनए अलगाव प्रोटोकॉल को मानकीकृत किया गया है और गीला बुलबुला प्रतिरोधी साबित हुए। 5 उपभेदों से कुल आरएनए को अलग किया गया है और रोग प्रतिरोधी जीन रोगग्रस्त स्थितियों के अप—रेगुलेशन / डाउन—रेगुलेशन के लिए रियल टाइम पीसीआर विश्लेषण किया गया है (चित्र. 2.2.8).

Table. 2.5. List of primers associated with disease resistant genes तालिका 2.5. रोग प्रतिरोधी जीन से जुड़े प्राइमरों की सूची

Name of primer	SSR motif	Forward primer	Reverse primer
AbSSR05	(GATGAG)6	CTCTGGGATATGGACGAGGA	CCTCTTCACCTTGACCCTCA
AbSSR08	(TGG)8	GTAATGCTCCCGCTGTTGAT	TCCGCTGTTCTTCCAACTCT
AbSSR10	(CCA)8	GAAGAATCACGGGTGAAGGA	GAGGGCGATGTGACAGTTTT
AbSSR14	(TACC)6	GGCAATCGGAAAGAACAAAA	GCAGAGAACCATCCTCAACG
AbSSR15	(TA)6	GACTGCCTGATTGACGGATT	TCCGACTCCGACATCCTATC
AbSSR17	(CA)6	GGACGAACTTATGCCGTGTT	GGCACAGCCTGAGAGAGAAG
AbSSR18	(GA)7	CTCGAGTCGACGAAGGAAAC	TCCTCGGTTTCGACTGTACC
AbSSR28	(TC)12	TGTCTGGTTTTGCTCACGTC	TCAGCACACTTAATCGCACA
AbSSR47	(CA)8	CATCGGAATCTGAGCTGTCA	TGTGTCAAAAGTGGGTCCAA
AbSSR52	(CAT)6	TGGCTCTTTACAGCCTTGGT	TGCAGATGTGGTAGGAGTTTTG
AbSSR75	(CAA)7	CGTCCAACATCAACGTCAAC	GTGTACATCCCCTCGTCGTC
AbSSR85	(CGT)5	GACTGTTGACGTTTCGGGTT	CAACGATGACCCGTTTTCTT
AbSSR87	(CCT)6	CAGTCGCACTCGAAATCGTA	TTGTTGAGTGAGGCATCGAG
AbSSR89	(CAT)7	GATAGCTCCTGGTCACCGTC	CTGGCTTCAAGAAGCGTACC
AbSSR111	(GAG)12	TGTCGATTGCGTCTTCTTTG	CGCCTCGTTTCTCTACTTCG
AbSSR112	(CAC)5	TCACCCTCACTCAAACTCCC	TCTCATCCGGTTCAACAACA
AbSSR159	(GAA)6	CGACCCATCATCAACTTCCT	AACGAGGAAAGGTCGATTT

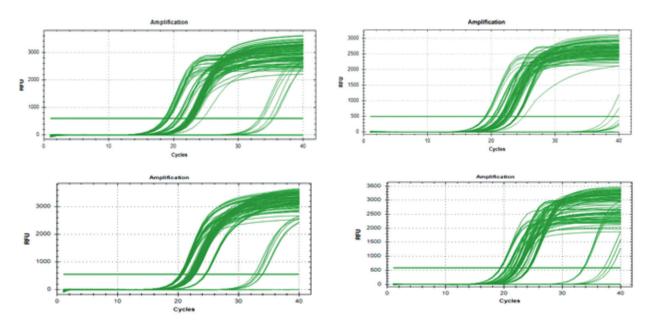


Fig. 2.2.8. Real time PCR profile of 5 disease resistant strains under diseased conditions चित्र 2.2.8. रोगग्रस्त परिस्थितियों में 5 रोग प्रतिरोधी उपभेदों की वास्तविक समय पीसीआर प्रोफाइल

Genetic improvement of Oyster mushroom

Development and evaluation of the hybrids from the pre breeding lines of oyster mushroom

Out of 36 crosses, eight hybrids were developed using SSIs of the DMRP-26, DMRP-363 and DRMP-136. Out of these crosses, eight hybrids were developed and evaluated (Fig. 2.2.9). Preliminary screening of these hybrids revealed maximum yield in one hybrid (53% B.E).

ऑयस्टर मशरूम का अनुवांशिक सुधार

ऑयस्टर मशरूम की पूर्व प्रजनन वंशावली से संकरों का विकास और मूल्यांकन

36 क्रॉस में से, आठ संकर डीएमआरपी—26, डीएमआरपी—363 और डीआरएमपी—136 के एसएसआई का उपयोग करके विकसित किए गए। इन संकरणों में से आठ संकरों का विकास और मूल्यांकन किया गया (चित्र 2.2.9)। इन संकरों की प्रारंभिक जांच से एक संकर में अधिकतम उपज (53% बी.ई.) का पता चला।

Fig. 2.2.9. *Pleurotus hybrids* चित्र 2.2.9. *प्लुरोटस हाइब्रिड*

Genetic improvement of Flammulina species

Screening and Genetic variability studies of different strains of *Flammulina*

All the strains revealed high level of diversity in *Flammulina*. The variations were observed in terms of days of first harvest, stipe length and pileus diameter. The biological efficiency ranged from 8.3-78% in the different strains of the *Flammulina*. Days to pin head formation, days to first flush, stipe length, dry weight, and biological efficiency exhibited high heritability. Molecular diversity analysis using ten SRAP categorized these strains in different clusters and corroboarated with findings of morphological diversity analysis (Fig.2.2.10).

फ्लेमुलिना प्रजाति का अनुवांशिक सुधार

फ़्लैमुलिना के विभिन्न उपभेदों की स्क्रीनिंग और अनुवांशिक परिवर्तनशीलता अध्ययन

सभी उपभेदों से पलेमुलिना में उच्च स्तर की विविधता का पता चला। पहली फसल के दिनों, डंटल की लंबाई और पाइलस व्यास के संदर्भ में भिन्नताएँ देखी गईं। फ़्लेमुलिना के विभिन्न उपभेदों में जैविक दक्षता 8.3—78% तक थी। पिन हेड गठन के दिन, पहली बार पलश करने के दिन, स्टाइप की लंबाई, शुष्क वजन और जैविक दक्षता ने उच्च अनुवांशिकता प्रदर्शित की। दस एसआरएपी का उपयोग करके आणविक विविधता विश्लेषण ने इन उपभेदों को विभिन्न समूहों में वर्गीकृत किया और रूपात्मक विविधता विश्लेषण के निष्कर्षों के साथ पृष्टि की (चित्र.2.2.10)।

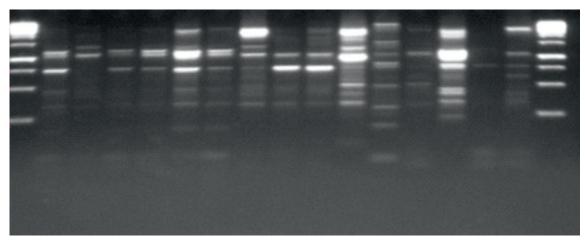


Fig.2.2.10. Molecular Diversity analysis of SRAP Markers चित्र.2.2.10. एसआरएपी मार्करों का आणविक विविधता विश्लेषण

Development & evaluation of the *Flammulina* hybrids

Single spore isolates (SSIs) were isolated from the *Flammulina* strains and a total of 45 crosses were made. Out of these crosses, 24 hybrids were selected based on the presence of clamp connection and further evaluated through cultivation trial. The results of the evaluation trial indicated eight high yielding hybrid strains (B.E. ranged from 44.2-66.5%) as compared with the control strain (DMRO-253) (Fig.2.2.11).

पलेमुलिना संकर का विकास एवं मूल्यांकन

एकल बीजाणु आइसोलेट्स (एसएसआई) को फ्लेमुलिना उपभेदों से अलग किया गया और कुल 45 क्रॉस बनाए गए। इन क्रॉसों में से, क्लैंप कनेक्शन की उपस्थिति के आधार पर 24 संकरों का चयन किया गया और खेती परीक्षण के माध्यम से आगे का मूल्यांकन किया गया। मूल्यांकन परीक्षण के परिणामों ने नियंत्रण स्ट्रेन (डीएमआरओ—253) (चित्र 2.2.11) की तुलना में आठ उच्च उपज देने वाले हाइब्रिड स्ट्रेन (बी.ई. 44.2—66.5% तक) का संकेत दिया।

Fig. 2.2.11. Evaluation of the Flammulina hybrids चित्र 2.2.11. पलेमुलिना संकर का मूल्यांकन

Genetic improvement of Paddy straw mushroom

Mating type characterization of different SSIs of *Volvariella volvacea*

Mating type characterization was performed in different SSIs of paddy straw mushroom strains DMRO-1072 and DMRO-464. The mating type analysis revealed the variations between the SSIs of the same strains. Beside this, variations were observed in SSIs of the different strains (Fig.2.2.12). Further, the SCAR based-genetic diversity analysis of the different SSIs of the paddy straw mushroom categorized these SSIs into four clusters (Fig.2.2.13).

पराली मशरूम का अनुवांशिक सुधार

वोल्वेरीला वोल्वेसिया के विभिन्न एसएसआई के संभोग प्रकार का लक्षण वर्णन

पराली मशरूम उपभेदों डीएमआरओ—1072 और डीएमआरओ—464 के विभिन्न एसएसआई में संभोग प्रकार का लक्षण वर्णन किया गया था। संभोग प्रकार के विश्लेषण से समान उपभेदों के एसएसआई के बीच भिन्नता का पता चला। इसके अलावा, विभिन्न उपभेदों के एसएसआई में भिन्नताएं देखी गईं (चित्र.2.2.12)। इसके अलावा, पराली मशरूम के विभिन्न एसएसआई के एससीएआर आधारित अनुवांशिक विविधता विश्लेषण ने इन एसएसआई को चार समूहों में वर्गीकृत किया (चित्र.2.2.13)।

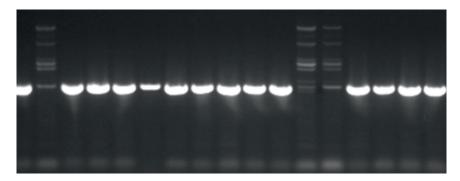


Fig. 2.2.12. Mating type characterization of the different SSIs of paddy straw mushroom चित्र 2.2.12. पराली मशरूम के विभिन्न एसएसआई का संभोग प्रकार का लक्षण वर्णन

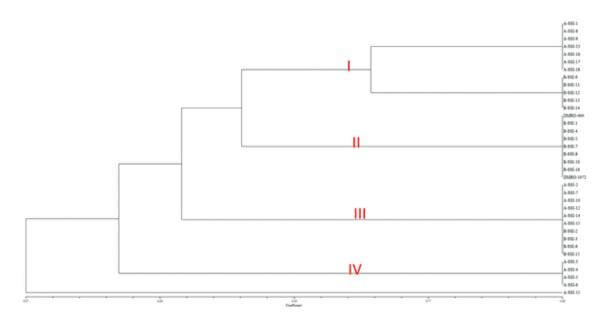


Fig.2.2.13. SCAR marker analysis of different SSIs

चित्र.2.2.13. विभिन्न एसएसआई का एससीएआर मार्कर विश्लेषण

Development and evaluation of the hybrids in paddy straw mushroom

Based on the mating type characterization, 53 different crosses were made and eleven hybrids were developed. The evaluation of these hybrids revealed maximum yield (14% B.E.) in one hybrid-VH5 as compared with other hybrids (Fig. 2.2.14).

पराली मशरूम में संकरों का विकास और मूल्यांकन

संभोग प्रकार के लक्षण वर्णन के आधार पर, 53 अलग—अलग क्रॉस बनाए गए और ग्यारह संकर विकसित किए गए। इन संकरों के मूल्यांकन से अन्य संकरों की तुलना में एक संकर—वीएच5 में अधिकतम उपज (14% बी.ई.) का पता चला (चित्र 2.2.14)।

Fig.2.2.14. Hybrid evaluation in the paddy straw mushroom चित्र.2.2.14. पराली मशरूम में संकर मूल्यांकन

Genetic improvement of Milky mushroom

Morpho-molecular characterization of 33 strains of the milky mushroom

The Principal Component Analysis biplot showed total variation of 66.87 in PC1 and PC2 biplots (Fig. 2.2.15). Morphological cluster analysis resulted in three major clusters with second one as the largest cluster. Moreover, genetic diversity analysis of these 33 strains was performed using ten sequence-related amplified polymorphism (SRAP) markers/combinations. The Unweighted Pair-group Method with Arithmetic Averages (UPGMA) based phylogenetic analysis categorized 33 strains along with control into three clusters. Cluster I possesses maximum number of strains (Fig 2.2.16 and Fig. 2.2.17).

दूधिया मशरूम का अनुवांशिक सुधार

दूधिया मशरूम की 33 उपभेदों का रूपात्मक—आण्विक लक्षण वर्णन

प्रिंसिपल कंपोनेंट एनालिसिस बाइप्लॉट ने PC1 और PC2 बाइप्लॉट में 66.87 की कुल भिन्नता दिखाई (चित्र 2.2.15)। रूपात्मक क्लस्टर विश्लेषण के परिणामस्वरूप तीन प्रमुख क्लस्टर बने, जिनमें से दूसरा सबसे बड़ा क्लस्टर था। इसके अलावा, इन 33 उपभेदों का अनुवांशिक विविधता विश्लेषण दस अनुक्रम—संबंधित प्रवर्धित बहुरूपता (एसआरएपी) मार्करों / संयोजनों का उपयोग करके किया गया। अंकगणितीय औसत (यूपीजीएमए) आधारित फ़ाइलोजेनेटिक विश्लेषण के साथ अन—वेटेड पेयर—ग्रुप विधि ने नियंत्रण के साथ 33 उपभेदों को तीन समूहों में वर्गीकृत किया। क्लस्टर I में उपभेदों की अधिकतम संख्या है (चित्र 2.2.16 और चित्र 2.2.17)।

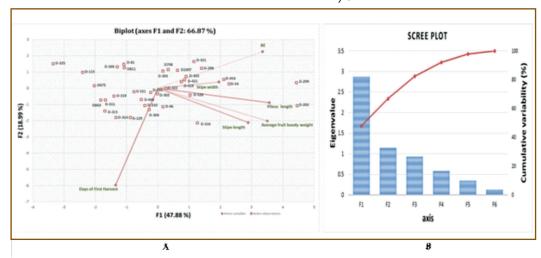


Fig. 2.2.15. A. PCA biplot showing the relation of strain of C. indica with different morphological parameters; and B. Scree plot of showing total variability captured by each Principal component. D: DMRO; F1:PC1 and F2:PC2

चित्र.2.2.15. ए. पीसीए बाइप्लॉट विभिन्न रूपात्मक मापदंडों के साथ सी. इंडिका के तनाव के संबंध को दर्शाता है; और बी. प्रत्येक प्रमुख घटक द्वारा कैण्चर की गई कुल परिवर्तनशीलता दिखाने का स्क्री प्लॉट डी: डीएमआरओ; F1:PC1 और F2:PC2

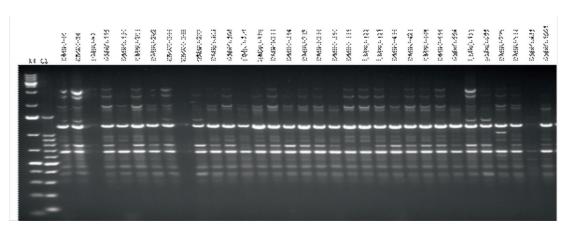


Fig. 2.2.16. Representative SRAP marker analysis in 33 strains of milky mushroom चित्र 2.2.16. दूधिया मशरूम की 33 उपभेदों में प्रतिनिधि एसआरएपी मार्कर विश्लेषण

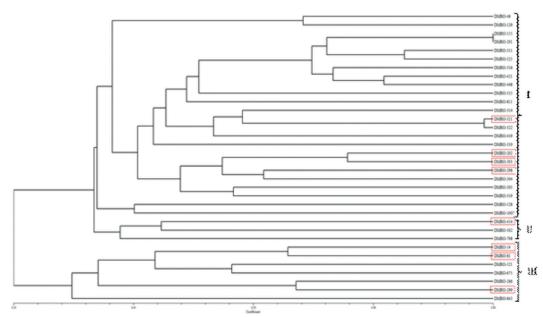


Fig. 2.2.17. UPGMA based cluster analysis of the thirty three strains of the milky mushroom चित्र 2.2.17. दृधिया मशरूम की तैंतीस किस्मों का यूपीजीएमए आधारित क्लस्टर विश्लेषण

Proximate analysis of the eight high yielding strains of milky mushroom

Out of eight high yielding strains highest crude fat content was observed in DMRO-321 and DMRO-302 (control) strain (5.84 to 5.85%) as compared with other stains while lowest crude fat content was found in DMRO-298 (3.22%). Maximum crude fibre content was observed in DMRO-454 (5.90%), while minimum recorded

दूधिया मशरूम की आठ अधिक उपज देने वाली किस्मों का निकटतम विश्लेषण

आठ अधिक उपज देने वाले स्ट्रेन में से DMRO-321 और DMRO-302 (नियंत्रण) स्ट्रेन में अन्य स्टेनों की तुलना में सबसे अधिक क्रूड फैट की मात्रा (5.84 से 5.85%) देखी गई, जबिक DMRO-298 (3.22%) में सबसे कम क्रूड फैट की मात्रा पाई गई। कच्चे फाइबर की अधिकतम मात्रा DMRO-454

in DMRO-202 (3.10%). Significantly high ash content was observed in DMRO-81 strains and DMRO-299 (10.10 to 10.20 g/100g), while lowest in DMRO-454 (6.1 g/100g). Protein content estimation revealed considerable variation among the tested strains, ranging from 7.40% to 12.44%. Significantly high protein content was recorded in DMRO-202 (12.44%) followed by DMRO-299 (9.93%). Maximum carbohydrate content was observed in DMRO-298 (79.52 g/100g) followed by DMRO-303 (78.28 g/100g). In all the strains, high carbohydrate content (72.33-79.52 g/100g) was observed as compared with DMRO-302, control strain (68.6 g/100g).

Genetic improvement of Macrocybe

Cultivation trial and molecular identification of the *Macrocybe*

The five strains of the *Macrocybe* were evaluated and resulted into one high yielding strain as compared with other strains. Further, all these strains were subjected to ITS-based molecular identification and confirmed as *Macrocybe gigantea* (Fig.2.2.18).

(5.90%) में देखी गई, जबिक न्यूनतम DMRO-202 (3.10%) में दर्ज की गई। डीएमआरओ–81 स्ट्रेन और डीएमआरओ-299 (10.10 से 10.20 ग्राम / 100 ग्राम) में उल्लेखनीय रूप से उच्च राख सामग्री देखी गई, जबिक डीएमआरओ–454 (6.1 ग्राम/100 ग्राम) में सबसे कम राख सामग्री देखी गई। प्रोटीन सामग्री के अनुमान से परीक्षण किए गए उपभेदों के बीच काफी भिन्नता का पता चला, जो 7.40% से 12.44% तक था। DMRO-202 (12.44%) में महत्वपूर्ण रूप से उच्च प्रोटीन सामग्री दर्ज की गई, इसके बाद DMRO-299 (9.93%) में दर्ज की गई। DMRO-298 (79.52 g/100g) में अधिकतम कार्बोहाइड्रेट सामग्री देखी गई, इसके बाद DMRO–303 (78.28 g/100g) का स्थान रहा। डीएमआरओ–302, नियंत्रण स्ट्रेन (68.6 ग्राम/100 ग्राम) की तुलना में सभी उपभेदों में उच्च कार्बोहाइड्रेट सामग्री (72.33-79.52 ग्राम/100 ग्राम) देखी गई।

मैक्रोसाइबे का अनुवांशिक सुधार

मैक्रोसाइबे का संवर्धन परीक्षण और आणविक पहचान

मैक्रोसाइबे के पांच उपभेदों का मूल्यांकन किया गया और परिणामस्वरूप अन्य उपभेदों की तुलना में एक उच्च उपज देने वाला उपभेद निकला। इसके अलावा, इन सभी उपभेदों को आईटीएस—आधारित आणविक पहचान के अधीन किया गया और मैक्रोसाइबे गिगेंटिया (चित्र.2.2.18) के रूप में पुष्टि की गई।

Fig. 2.2.18. Evaluation of the different Macrocybe gigantea strains चित्र 2.2.18. विभिन्न मैक्रोसाइबे गिगेंटिया उपभेदों का मृल्यांकन

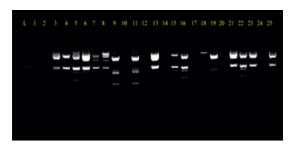
Genetic diversity using SSR markers and confirmation of species in Genus *Trichoderma* (Green mould)

Thirty nine isolates of green mould (Trichoderma spp) were collected from 8 states namely Himachal Pradesh, Punjab, Jammu & Kashmir, Haryana, Uttar Pradesh, Karnataka, Andhra Pradesh and Bihar and, their cultures were purified using standard procedure. DNA was extracted from the samples and 12 SSR markers (Table 2.6) were tested using PCR technique in the all the test isolates for the genetic diversity. Out of 12 markers, 6 were selected for further diversity analysis. Gel images (Fig. 2.2.19) of all the markers were studied for the presence and absence of the markers and the obtained data were further analyzed using NTSYSpc software. UPGMA based cluster analysis (Fig.2.2.20) of 39 isolates of Trichoderma spp, divided the Trichoderma population into different groups based on the genetic difference. Based on highest resolving power, SSR 17 (5.48) was identified as best SSR markers for diversity analysis in *Tricoderma* population followed by SSR 11 (4.71). Further, the representative sample for each group will be further characterized and identified using their morpho-molecular characteristics.

एसएसआर मार्करों का उपयोग करके अनुवांशिक विविधता और जीनस ट्राइकोडर्मा (हरा साँचा) में प्रजातियों की पृष्टि

8 राज्यों अर्थात हिमाचल प्रदेश, पंजाब, जम्मू और कश्मीर, हरियाणा, उत्तर प्रदेश, कर्नाटक, आंध्र प्रदेश और बिहार से हरे फफूंद (ट्राइकोडर्मा स्पीशीज) के 39 आइसोलेटस एकत्र किए गए और, उनके कल्चरस को मानक प्रक्रिया का उपयोग करके शुद्ध किया गया। नमुनों से डीएनए निकाला गया और अनुवांशिक विविधता के लिए सभी परीक्षण आइसोलेट्स में पीसीआर तकनीक का उपयोग करके 12 एसएसआर मार्कर (तालिका 2.6) का परीक्षण किया गया। 12 मार्करों में से 6 को आगे विविधता विश्लेषण के लिए चुना गया। मार्करों की उपस्थिति और अनुपस्थिति के लिए सभी मार्करों की जेल छवियों (चित्र 2.2.19) का अध्ययन किया गया और प्राप्त डेटा का एनटीएसवाईएसपीसी सॉफ्टवेयर का उपयोग करके आगे विश्लेषण किया गया। *ट्राइकोडर्मा* स्पीशीज के 39 आइसोलेट्स के यूपीजीएमए आधारित क्लस्टर विश्लेषण (चित्र.2.2.20) ने *ट्राइकोडर्मा* आबादी को अनुवांशिक अंतर के आधार पर विभिन्न समुहों में विभाजित किया। उच्चतम विभेदन शक्ति के आधार पर, एसएसआर 17 (5.48) को *ट्राइकोडर्मा* आबादी में विविधता विश्लेषण के लिए सर्वश्रेष्ठ एसएसआर मार्कर के रूप में पहचाना गया, इसके बाद एसएसआर 11(4. 71) को स्थान दिया गया। इसके अलावा, प्रत्येक समृह के प्रतिनिधि नम्ने को उनकी रूपात्मक-आणविक विशेषताओं का उपयोग करके आगे चित्रित और पहचाना जाएगा।

Table 2.6. Details of selected SSRs for diversity analysis in Genus Trichoderma (Green mould) तालिका 2.6. जीनस ट्राइकोर्डमा (ग्रीन मोल्ड) में विविधता विश्लेषण के लिए चयनित एसएसआर का विवरण


S. No.	Primers
1.	9F: GAAACAACACCGAAATACAC
2.	9R: CAAGTCAGATGAAGTTTG
3.	10F: CAAGCTGACGCCTATGAAGA
4.	10R: CTTTCACTCACTCAACTCTC
5.	11F: CATGGTGGAATAGTGATGGC
6.	11R: CTCCATACACCACTCATTCAC
7.	12F: CCATGCATACGTGACTGC

S. No.	Primers
8.	12R: GTTGACTGTTGGTGTAAGTG
9.	13F: GGGAATTTGTGGAGGGAAG
10.	13R: CCTCAGAATGTCCCTGTC
11.	14F: CCGTAAGAATAGGTGTC
12.	14R: GGAAAATAGGGTGGAAAG
13.	15F: GAACTCAGTTTCTCATTG
14.	15R: GAACATATCCAATTATCATC

S. No.	Primers
15.	16F: CCACGTATGTGACTGTATG
16.	16R: GAAAGAGAGGCTGAAACTTG
17.	17F: GGTAGGTGAGATAGTTG
18.	17R: GGAGCAAGAAGAAGCAG
19.	18F: GGAATTTATCACACTATCTC

S. No.	Primers
20.	18R: GACTCCCAACTTGTATG
21.	19F: GTGTGTACCTAAAGCCTTG
22.	19R: GTAAGTTGATCAAACGCCC
23.	20F: CACGACTATCCCACTTG
24.	20R: CTTACTTTCTTAGTGCTATTAC

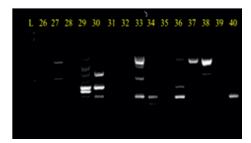


Fig. 2.2.19. Representative picture of the SSR profiling of different Trichoderma spp strain (SSR 17) चित्र 2.2.19. विभिन्न ट्राइकोडर्मा स्पीशीज स्ट्रेन (एसएसआर 17) की एसएसआर प्रोफाइलिंग की प्रतिनिधि तस्वीर

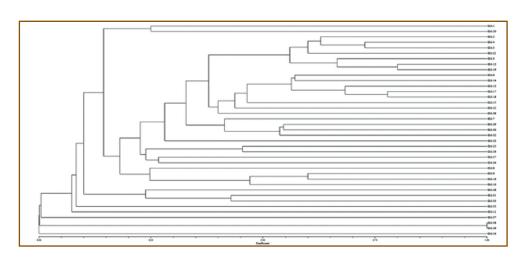


Fig.2.2.20. UPGMA based cluster analysis of 39 isolates of Trichoderma spp using SSR markers चित्र.2.2.20. एसएसआर मार्करों का उपयोग करके ट्राइकोडमी स्पीशीज के 39 आइसोलेट्स का यूपीजीएमए आधारित क्लस्टर विश्लेषण

Management of Mycogone perniciosa using nanoparticles

Nine bacterial strains viz., *Bacillus subtilis* strain B1, *B.velezensis* strain B4, *B. subtilis* strain B5, *Paenibacillus polymyxa* Strain B6, *B. tropicus* strain B10, *Alcaligenes faecalis* strain B11,

नैनोकणों का उपयोग करके *माइकोगोन* पर्निसीओसा का प्रबंधन

नौ जीवाणु उपभेद अर्थात, बैसिलस सबटिलिस स्ट्रेन बी1, बी.वेलेज़ेंसिस स्ट्रेन बी4, बी. सबटिलिस स्ट्रेन बी5, पैनीबैसिलस पॉलीमीक्सा स्ट्रेन बी6, बी. ट्रोपिकस स्ट्रेन बी10, अल्कालिजेन्स फ़ेकेलिस स्ट्रेन बी11,

B. cereus strain B12, Acinetobacter johnsonii strain B15/B and Pseudomonas sp. B16/P were evaluated in-vitro for their antagonistic effect on the growth of Mycogone perniciosa using dual culture technique. Data presented in table 2.7 & Fig. 2.2.21 showed that highest mycelial growth inhibition was obtained with Pseudomonas sp. B16/P (75.06%) followed by Acinetobacter johnsonii (70.41%) and B. subtilis strain B1 (73.11%).

बी. सेरेस स्ट्रेन बी12, एसिनेटोबैक्टर जॉन्सोनि स्ट्रेन बी15/बी और स्यूडोमोनास स्पीशीज को दोहरी कल्चर तकनीक का उपयोग करके माइकोगोन पर्निसीओसा के विकास पर उनके विरोधी प्रभाव के लिए बी16/पी का इन—विट्रो मूल्यांकन किया गया। तालिका 2.7 और चित्र 2.2.21 में प्रस्तुत आंकड़ों से पता चला है कि स्यूडोमोनास स्पीशीज के साथ उच्चतम मायसेलियल विकास अवरोध प्राप्त किया गया था। बी16/पी (75.06%) के बाद एसिनेटोबैक्टर जॉन्सोनि (70.41%) और बी. सबटिलिस स्ट्रेन बी1 (73.11%) हैं।

Table 2.7. In vitro screening of bacterial isolates against Mycogone perniciosa तालिका 2.7. माइकोगोन पर्निसीओसा के विरुद्ध बैक्टीरियल आइसोलेट्स की इन-विट्रो स्क्रीनिंग

S.No.	Bacterial isolate	Radial mycelial growth (mm)	Per cent inhibition	Interaction
1	Bacillus subtilis strain B1	18.33	73.11	A
2	<i>B.velezensis</i> strain B4	57.33	15.90	N
3	B. subtilis strain B5	65.00	4.65	N
4	Paenibacillus polymyxa Strain B6	61.66	9.53	N
5	B. tropicus strain B10	65.66	3.67	N
6	Alcaligenes faecalis strain B11	64.86	4.84	N
7	B. cereus strain B12	63.60	6.70	N
8	Acinetobacter johnsonii strain B15/B	20.16	70.41	A
9	Pseudomonas sp. B16/P	17.00	75.06	A
10	Control	68.16		

A= Antagonistic, N= Neutralistic

Fig. 2.2.21. Growth inhibition by Pseudomonas sp. B16/P चित्र 2.2.21. स्यूडोमोनास स्पीशीज बी 16/पी द्वारा विकास अवरोध

Based on the *in-vitro* results of bacterial isolates, they were used to synthesize ZnO nanoparticles along with *Hericium* spp. Nanoparticles were evaluated against *Mycogone perniciosa* at five test concentration viz., 50ppm, 100ppm, 200ppm, 500ppm and 1000ppm. Data presented in table 2.8 indicated that with increase in the concentrations of the nanoparticles resulted in increased percent growth inhibition. Highest growth inhibition was recorded at 1000ppm concentration with NP-*Pseudomonas* sp. B16/P (80.22%) followed by NP-*H. erinaceus* -2 (79.49%)

बैक्टीरियल आइसोलेट्स के इन—विट्रो परिणामों के आधार पर, उनका उपयोग हेरिशियम स्पीशीज के साथ ZnO नैनोकणों को संश्लेषित करने के लिए किया गया था। माइकोगोन पर्निसीओसा के विरुद्ध नैनोकणों का मूल्यांकन पांच परीक्षण सांद्रता अर्थात 50 पीपीएम, 100 पीपीएम, 200 पीपीएम, 500 पीपीएम और 1000 पीपीएम पर किया गया। तालिका 2.8 में प्रस्तुत आंकड़ों से संकेत मिलता है कि नैनोकणों की सांद्रता में वृद्धि के परिणामस्वरूप विकास अवरोध में वृद्धि हुई है। एनपी—स्यूडोमोनास स्पीशीज बी16/पी (80.22%) के साथ 1000 पीपीएम सांद्रता पर उच्चतम विकास अवरोध दर्ज किया गया था जिसके बाद एनपी—एच. एरीनेसियस—2 (79.49%) है।

Table 2.8. In vitro evaluation of nanoparticles (NP) synthesized from microbes against Mycogone perniciosa तालिका 2.8. माइकोगोन पर्निसीओसा के विरुद्ध रोगाणुओं से संश्लेषित नैनोकणों (एनपी) का इन-विट्रो मूल्यांकन

Treatment	Percent growth inhibition				
	50ppm	100ppm	200ppm	500ppm	1000ppm
NP-Hericium erinaceus-1	14.88	29.23	44.62	61.54	73.39
NP- H. erinaceus -2	16.92	37.43	57.43	67.69	79.49
NP- H. coralloides -3	14.35	35.38	56.92	66.15	78.46
NP-Bacillus subtilis B1	10.25	30.55	54.88	66.42	74.55
NP-B. velezensis B4	5.66	12.33	30.35	45.88	55.44
NP-B. subtilis B5	2.75	8.55	20.66	28.75	38.55
NP-Paenibacillus polymyxa B6	2.25	13.75	17.33	26.75	30.75
NP-B. tropicus B10	3.66	16.75	29.55	34.66	43.22
NP-Alcaligenes faecalis B11	4.33	22.33	38.75	48.55	50.66
NP-B. cereus B12	1.75	10.66	16.75	20.82	28.57
NP-Acinetobacter johnsonii B15/B	13.55	34.66	58.55	72.55	77.82
NP-Pseudomonas sp. B16/P	15.22	38.33	63.92	76.35	80.22

Table 2.9. Mushroom house evaluation of evaluation of nanoparticles (NP) synthesized from microbes against *Mycogone perniciosa*

तालिका 2.9. माइकोगोन पर्निसीओसा के विरुद्ध रोगाणुओं से संश्लेषित नैनोकणों (एनपी) के मूल्यांकन का मशरूम हाउस मूल्यांकन

Treatment	Disease intensity (%)	Control (%)	Yield (in Kg per 100 Kg Compost)
NP-Hericium erinaceus-1	78.66	21.20	3.55
NP- H. erinaceus -2	63.25	36.83	4.25
NP- H. coralloides -3	49.55	50.74	5.33
NP-Bacillus subtilis B1	38.55	60.93	6.25
NP-B. velezensis B4	70.25	28.80	4.66
NP-B. subtilis B5	80.66	18.24	2.74
NP-Paenibacillus polymyxa B6	90.22	8.55	1.65
NP-B. tropicus B10	76.66	22.30	3.26
NP-Alcaligenes faecalis B11	65.75	33.36	4.25
NP-B. cereus B12	78.20	20.74	2.2
NP-Acinetobacter johnsonii B15/B	30.88	68.70	7.51
NP-Pseudomonas sp. B16/P	25.66	73.99	8.39
Control	98.66	0	

It is apparent from the data presented in table 2.9 & Fig 2.2.22 that disease intensity varied from 25.66 percent in NP-*Pseudomonas* sp. B16/P to 98.66 percent in control. Highest disease control was obtained with NP-*Pseudomonas* sp. B16/P (73.99%) followed by NP-*Acinetobacter johnsonii* B15/B (68.70%) with corresponding crop yield 8.39 and 7.51 percent respectively. Lowest disease control was obtained with NP-*Paenibacillus polymyxa* B6 (8.55%).

तालिका 2.9 और चित्र 2.2.22 में प्रस्तुत आंकड़ों से यह स्पष्ट है कि एनपी—स्यूडोमोनास स्पीशीज बी16/पी में रोग की तीव्रता नियंत्रण (25.66 प्रतिशत) के मुकाबले 98.66 प्रतिशत है। एनपी—स्यूडोमोनास स्पीशीज बी16/पी में उच्चतम रोग नियंत्रण (73.99%) प्राप्त किया गया जिसके बाद एनपी—एसिनेटोबैक्टर जॉन्सोनि बी15/बी (68.70%) का स्थान आता है, जिनकी फसल उपज क्रमशः 8.39 और 7.51 प्रतिशत है। एनपी—पेनिबैसिलस पॉलीमीक्सा बी6 (8.55%) से सबसे कम रोग नियंत्रण प्राप्त किया गया।

Fig. 2.2.22. Mushroom trial on the management of M. perniciosa using ZnO nanoparticles and Disease intensity under control treatment

चित्र 2.2.22. नियंत्रण उपचार के तहत ZnO नैनोकणों और रोग की तीव्रता का उपयोग करके एम.
पर्निसीओसा के प्रबंधन पर मशरूम परीक्षण

Screening for potential bacterial strains/ consortia for degradation cellulose rich material and higher crop yield

Bacterial isolates collected from Phase-II compost and casing were purified and multiplied on nutrient broth for DNA extraction. Amplification of genomic DNA was carried out using specific oligonucleotide primer sequences 27F (5'AGAGTTTGATCCTGGCTCAG3') and 1492R (5'GGTTACCTTGTTACGACTT3'). These specific primers used to find out their taxonomic affiliation to bacterial species. The PCR amplification was carried with a total of 35 cycles. Each cycle consisted of: Denaturation: 1 minute denaturation at 95° C; Annealing: 1 minute annealing at 55° C and Extension: 1.5 minute extension at 72°C. All the PCR samples were given 5 minutes pre-amplification at 95°C and 10 minutes post-amplification at 72°C. eluted samples were further sent for 16S rDNA sequencing. Amplification of bacterial 16S rDNA in 13 isolates was carried out. Based on NCBI blast results all the samples were identified upto species level (Table 2.10).

क्षरण सेल्युलोज समृद्ध सामग्री और उच्च फसल उपज के लिए संभावित जीवाणु उपभेदों / कंसोर्टिया की जांच

चरण— II खाद और आवरण से एकत्र किए गए बैक्टीरियल आइसोलेट्स को डीएनए निष्कर्षण के लिए पोषक तत्व शोरबा पर शुद्ध और गुणा किया गया। जीनोमिक डीएनए का प्रवर्धन विशिष्ट ऑलिगोन्युक्लियोटाइड प्राइमर अनुक्रम 27F (5'AGAGTTTGATCCTGGCTCAG3') और 1492R (5'GGTTACCTTGTTACGACTT3') का उपयोग करके किया गया था। इन विशिष्ट प्राइमरों का उपयोग जीवाण प्रजातियों के साथ उनकी वर्गीकरण संबंधी संबद्धता का पता लगाने के लिए किया जाता था। पीसीआर प्रवर्धन कुल 35 चक्रों के साथ किया गया। प्रत्येक चक्र में शामिल हैं: विकृतीकरण: 95°C पर 1 मिनट का विकृतीकरणय एनीलिंगः 55 डिग्री सेल्सियस पर 1 मिनट की एनीलिंग और एक्सटेंशनः 72 डिग्री सेल्सियस पर 1.5 मिनट का विस्तार। सभी पीसीआर नमुनों को 95°C पर 5 मिनट पूर्व-प्रवर्धन और 72°C पर 10 मिनट बाद प्रवर्धन दिया गया। उत्सर्जित नमुनों को 16S rDNA अनुक्रमण के लिए आगे भेजा गया। 13 आइसोलेट्स में बैक्टीरिया 16S rDNA का प्रवर्धन किया गया। एनसीबीआई ब्लास्ट परिणामों के आधार पर सभी नमुनों की पहचान प्रजातियों के स्तर तक की गई (तालिका 2.10)।

Table 2.10. Diversity of bacterial strain isolated from compost and casing soil तालिका 2.10. खाद और आवरण मिट्टी से अलग किए गए जीवाणु उपभेदों की विविधता

S. No.	Bacterial species	Source		NCBI Acc. No.
		Compost	Casing soil	
1	Bacillus subtilis strain B1	✓	X	OQ875247
3	Bacillus subtilis strain B3	✓	X	OQ947078
3	Bacillus velezensis strain B4	√	X	OQ875214
4	Bacillus subtilis strain B5	✓	X	OQ947101
5	Paenibacillus polymyxa Strain B6	✓	X	OQ875249
6	Bacillus sp. strain B7	✓	X	OQ947099
7	Bacillus cereus strain B8	✓	X	OQ875248
8	Bacillus tropicus strain B10	✓	X	OQ947094
9	Alcaligenes faecalis strain B11	X	√	OQ875244
10	Bacillus cereus strain B12	✓	X	OQ875238
11	Bacillus subtilis strain B13	✓	X	OQ875751
12	Acinetobacter johnsonii strain B15/B	✓	X	OQ875732
13	Pseudomonas sp. B16/P	X	✓	OQ875752

In order to shorten the composting period of button mushroom, six microbial consortia [MC-1 to MC-6] were prepared and inoculated in wet wheat straw. Inculcated containers were incubated at 30°C for 15 days. Water treatment was kept as control. Straw degradation was monitored on the CO₂ release after 15 days of incubation. Higher CO₂ release is considered as an indicator of microbial degradation of cellulosic material. Under present investigations, highest CO, release of 174666.67 ppm was recorded in MC-3 as compared to control exhibiting CO, release of 43166.66ppm (Fig. 2.2.23). Additionally, apparent colour change was noticed in straw treated with MC -3 and no common contaminant was observed in straw. Highest crop yield was obtained with MC-3 (14.33 kg/100kg substrate) followed by MC-2 (14.08 kg/100kg substrate) as compared to control (10.37 kg/100kg substrate). Besides this MC-1 and 5 were also found superior over control. However, MC-4 & 6 were found inferior over control in respect of crop yield. Based on the results, MC-3 a combination of six Bacillus spp, Paenibacillus polymyxa, Alcaligenes faecalis, Paenibacillus polymyxa, Acinetobacter johnsonii and Pseudomonas sp may be recommended for fast degradation of wheat straw substrate and quality crop production

बटन मशरूम की खाद बनाने की अवधि को कम करने के लिए, छह माइक्रोबियल कंसोर्टिया [एमसी-1 से एमसी-6, तैयार किए गए और उन्हें गीले गेहूं के भूसे में डाला गया। अंतर्निर्मित कंटेनरों को 15 दिनों के लिए 30°C पर इनक्युबेट किया गया। जल उपचार को नियंत्रण के रूप में रखा गया। ऊष्मायन के 15 दिनों के बाद CO, रिलीज पर पुआल के क्षरण की निगरानी की गई। उच्च CO, उत्सर्जन को सेल्युलोसिक सामग्री के माइक्रोबियल क्षरण का संकेतक माना जाता है। वर्तमान जांच के तहत, एमसी—3 में 43166.66 पीपीएम के CO रिलीज को प्रदर्शित करने वाले नियंत्रण की तुलना में 174666.67 पीपीएम का उच्चतम CO2 रिलीज दर्ज किया गया था (चित्र 2.2.23)। इसके अतिरिक्त, एमसी–3 से उपचारित भूसे में स्पष्ट रंग परिवर्तन देखा गया और भूसे में कोई सामान्य संदूषक नहीं देखा गया। नियंत्रण (10.37 किग्रा / 100 किग्रा सब्सट्रेट) की तुलना में एमसी—3 (14.33 किग्रा / 100 किग्रा सब्सट्रेट) के साथ एमसी—2 (14.08 किग्रा / 100 किग्रा सब्सट्रेट) के साथ सबसे अधिक फसल उपज प्राप्त हुई। इसके अलावा एमसी–1 और 5 को भी नियंत्रण में बेहतर पाया गया। हालाँकि, एमसी–4 और 6 को फसल की उपज के संबंध में नियंत्रण में घटिया पाया गया। परिणामों के आधार पर, गेहूं के भूसे के सब्सट्रेट के तेजी से क्षरण और गृणवत्तापूर्ण फसल उत्पादन के लिए छह बैसिलस स्पीशीज, पैनीबैसिलस पॉलीमीक्सा, अल्कालिजेन्स फेकेलिस, पैनीबैसिलस पॉलीमीक्सा. एसिनेटोबैक्टर जॉन्सोनी और स्यूडोमोनास स्पीशीज के संयोजन एमसी-3 की सिफारिश की जा सकती है।

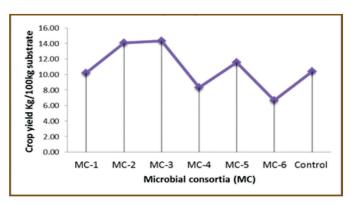


Fig. 2.2.23. Effect of inoculation of wheat straw substrate with microbial consortia (MC) on the yield of button mushroom

चित्र 2.2.23. बटन मशरूम की उपज पर माइक्रोबियल कंसोर्टिया (एमसी) के साथ गेहूं के भूसे सब्सट्रेट के टीकाकरण का प्रभाव

Screening different mushroom fungi for growth on different agro-wastes

Different micro-organisms show variable growth on various agricultural substrates depending on the nutrient composition of the substrate being utilized. Various strains of mushroom fungi belonging to genus Pleurotus, Lentinula edodes, Volvariella sp., Ganoderma sp, Schizophyllum commune, Grifolia frondosa, Hericium erinaceus, Calocybe indica and Trametes sp. were tested for their growth on substrate like wheat straw, paddy straw and saw dust for finding the best combination of substrate and fungi. The screening was carried out at temperatures ranging from 22-35°C depending on the strain being used for the purpose. Most of the tested strains showed complete colonization of plate in 8-12 days, whereas as some of the strains took more than month for complete colonization of plate. The Pleurotus sp. was grown on wheat straw, rice straw and combination of wheat straw and rice straw in the petridishes over a period of 10 days. It was found that *Pleurotus* sp. showed fast growth in the wheat straw in the beginning, but after 10 days good growth covering the whole petriplate was ovserved in all the treatment. Preliminary experiments were conducted on development of packaging material using wheat and rice straw as substrate using trays and beakers as moulds. The developded packaging material are shown in Fig.2.2.24

विभिन्न कृषि अपशिष्टों पर वृद्धि के लिए विभिन्न मशरूम कवक की जांच करना

उपयोग किए जा रहे सब्सट्रेट की पोषक संरचना के आधार पर विभिन्न सुक्ष्म जीव विभिन्न कृषि सब्सट्रेटस पर परिवर्तनशील वृद्धि दिखाते हैं। मशरूम कवक के विभिन्न उपभेद जो जीनस *प्लुरोटस, लेंटिनुला एडोड्स,* वोल्वेरीला स्पीशीज, गैनोडर्मा स्पीशीज, साईजोफिलम कम्यून, ग्रिफोलिया फ्रोंडोसा, हेरिशियम एरिनेसिअस, कैलोसाइबे इंडिका और ट्रैमेटेस स्पीशीज से संबंधित हैं। सब्सट्रेट और कवक का सबसे अच्छा संयोजन खोजने के लिए गेहूं के भूसे, धान के भूसे और चूरा जैसे सब्सट्रेट पर उनके विकास का परीक्षण किया गया। इस उद्देश्य के लिए उपयोग किए जा रहे स्ट्रेस के आधार पर स्क्रीनिंग 22-35 डिग्री सेल्सियस के तापमान पर की गई थी। परीक्षण किए गए अधिकांश उपभेदों ने 8-12 दिनों में प्लेट का पूर्ण उपनिवेशण दिखाया, जबिक कुछ उपभेदों ने प्लेट के पूर्ण उपनिवेशण में एक महीने से अधिक का समय लिया। प्लुरोटस स्पीशीज 10 दिनों की अवधि में पेट्रीडिश में गेहं के भूसे, चावल के भूसे और गेहूं के भूसे और चावल के भूसे के संयोजन पर उगाया गया था। यह पाया गया कि प्लुरोटस स्पीशीज शुरुआत में गेहूं के भूसे में तेजी से वृद्धि देखी गई, लेकिन 10 दिनों के बाद पूरे उपचार में पूरे पेट्रिप्लेट को कवर करते हुए अच्छी वृद्धि देखी गई। ट्रे और बीकर को साँचे के रूप में उपयोग करके सब्सट्रेट के रूप में गेहुं और चावल के भूसे का उपयोग करके पैकेजिंग सामग्री के विकास पर प्रारंभिक प्रयोग किए गए। विकसित पैकेजिंग सामग्री चित्र 2.2.24 में दिखाई गई है।

Fig. 2.2.24. Some prototype developed using crop residue and mycelium चित्र 2.2.24. कुछ प्रोटोटाइप फसल अवशेषों और माइसेलियम का उपयोग करके विकसित किए गए

2.3 CROP PRODUCTION

2.3 फसल उत्पादन

Refinement of cultivation technologies in Button Mushroom (Agaricus bisporus)

Identification of standard casing soil for button mushroom cultivation

All the raw materials being used for preparation of casing soil in India were analysed for the parameters such as pH, EC (ms/cm), BD (g/cm3), PD(g/cm3), Porosity (%), Nitrogen (%), Carbon (%) and C:N ratio. Different combinations were prepared so as to achieve the physicochemical parameters of the combination near to the standard casing soil mixture. The casing soil mixture ingredients used in the experiment are listed in table 2.11. All the combinations of casing soil were leached properly to get an EC of <700 s/dm. Each treatment had five replications and each replication had 5 bags of compost (Fig. 2.3.1).

बटन मशरूम (एगेरिकस बाईस्पोरस) में खेती प्रौद्योगिकियों का शोधन

बटन मशरूम की खेती के लिए मानक आवरण मिट्टी की पहचान

भारत में आवरण मिट्टी की तैयारी के लिए उपयोग किए जा रहे सभी कच्चे माल का पीएच, ईसी (एमएस/ सेमी), बीडी (ग्र/सेमी³), पीडी(ग्र/सेमी³), सरंध्रता (%), नाइट्रोजन (%), कार्बन (%) और C:N अनुपात जैसे मापदंडों के लिए विश्लेषण किया गया। मानक आवरण मिट्टी मिश्रण के निकट संयोजन के भौतिक—रासायनिक मापदंडों को प्राप्त करने के लिए विभिन्न संयोजन तैयार किए गए थे। प्रयोग में प्रयुक्त आवरण मिट्टी मिश्रण सामग्री तालिका 2.11 में सूचीबद्ध हैं। <700 s/dm का ईसी प्राप्त करने के लिए आवरण मिट्टी के सभी संयोजनों को ठीक से लीच किया गया। प्रत्येक उपचार में पाँच प्रतिकृतियाँ थीं और प्रत्येक प्रतिकृति में खाद के 5 बैग थे (चित्र 2.3.1)।

Table. 2.11. Casing soil formulations used for experiment and yield तालिका 2.11. प्रयोग और उपज के लिए उपयोग की जाने वाली आवरण मुदा संरचनाएँ

(kg/100kg compost)	Combinations used	Yield (kg/100kg compost)
T1	Coir pith + Lime (90+10)	13.23
T2	Coir pith + FYM (80+20)	11.03
T3	Coir pith + FYM (50+50)	13.95
T4	Coir pith + FYM (20+80)	11.91
T5	Coir pith + FYM (10+90)	11.48
T6	Coir pith + Soil (80+20)	11.21
T7	Coir pith + Soil (70+30)	13.41
T8	Coir pith + Soil (50+50)	10.64
Т9	Coir pith + SMS (80+20)	9.19
T10	Coir pith + SMS (70+30)	11.12
T11	Coir pith + SMS (60+40)	10.21
T12	FYM + BRH (90+10)	8.76
T13	FYM + BRH (80+20)	9.77

(kg/100kg compost)	Combinations used	Yield (kg/100kg compost)
T14	FYM + Soil (70+30)	8.96
T15	FYM + Soil (50+50)	10.06
T16	FYM + Soil (60+40)	8.33
T17	FYM + SMS (80+20)	6.90
T18	FYM + SMS (50+50)	6.96
T19	PSD + Coir pith (50+50)	5.61
T20	PSD + Coir pith (60+40)	6.35
T21	PSD + FYM (50+50)	5.37
T22	PSD + FYM (60+40)	3.74
T23	PSD + SMS (60+40)	4.04
T24	PSD + SMS (50+50)	10.28
T25	Control	10.06
	C.D.(5%)	0.68

Fig. 2.3.1. Yield performance in different casing soil formulations चित्र 2.3.1. विभिन्न आवरण मृदा निर्माणों में उपज प्रदर्शन

Effect of substrate amended with activated charcoal on the yield of Ganoderma lucidum

DMRO-806 strain of *Ganoderma* mushroom was used in the experiment (Table 2.12 and Table 2.13).

गैनोडर्मा ल्यूसिडम की उपज पर सक्रिय चारकोल के साथ संशोधित सब्सट्टेट का प्रभाव

प्रयोग में *गैनोडर्मा* मशरूम के DMRO—806 स्ट्रेन का उपयोग किया गया (तालिका 2.12 और तालिका 2.13)।

Table 2.12. Proportions of wheat bran used in saw dust substrate तालिका 2.12. चूरा सब्सट्रेट में प्रयुक्त गेहूं की भूसी का अनुपात

S.No.	Treatment	Replication
1.	5% Wheat Bran	5
2.	10% Wheat Bran	5
3.	15% Wheat Bran	5
4.	20% Wheat Bran	5
5.	25% Wheat Bran	5
6.	30% Wheat Bran	5
Control	-	5

Table 2.13. Proportions of wheat bran amended with activated charcoal used in saw dust substrate

तालिका 2.13. चूरा सब्सट्रेट में प्रयुक्त सक्रिय चारकोल के साथ गेहूं की भूसी के अनुपात में संशोधन किया गया

S. No.	Treatment	Replication
1.	5% Wheat Bran + 150mg of activated charcoal	5
2.	10% Wheat Bran + 150mg of activated charcoal	5
3.	15% Wheat Bran + 150mg of activated charcoal	5
4.	20% Wheat Bran+ 150mg of activated charcoal	5
5.	25% Wheat Bran + 150mg of activated charcoal	5
6.	30% Wheat Bran+ 150mg of activated charcoal	5
Control	-	5

Out of the different treatments, highest fruit body weight and BE (%) was recorded in 30% wheat bran and 25% wheat bran+ 150mg of activated charcoal (Table 2.14 and Table 2.15).

विभिन्न उपचारों में से, उच्चतम फलन का वजन और बीई (%) 30% गेहूं की भूसी और 25% गेहूं की भूसी+150 मिलीग्राम सक्रिय चारकोल (तालिका 2.14 और तालिका 2.15) में दर्ज किया गया।

Table 2.14. Effect of wheat bran proportions on the fruit body weight and BE in *Ganoderma lucidum*

तालिका 2.14. गेनोडर्मा ल्यूसिडम में फल के शरीर के वजन और बीई पर गेहूं की भूसी के अनुपात का प्रभाव

	बाइ पर गहू का नूसा क अनुपात का प्रनाव											
S.No.	Treatment	Replications	Weight of fruit bodies (gm) 1 st flesh	Weight of fruit bodies (gm) 2 nd flesh	Total (gm)	BE (%)						
1.	5% Wheat	1/1	27	5	170	4.72						
	Bran	1/2	22	5								
		1/3	12	14								
		1/4	25	10								
		1/5	21	4								
		1/6	23	2								
2.	10% Wheat	2/1	33	-	189	5.25						
	Bran	2/2	29	3								
		2/3	23	8								
		2/4	20	5								
		2/5	30	-								
		2/6	28	10								
3.	15% Wheat	3/1	24	6	203	5.63						
	Bran	3/2	32	-								
		3/3	34	-								
		3/4	36	-								
		3/5	34	-								
		3/6	32	5								
4.	20% Wheat	4/1	38	-	198	5.5						
	Bran	4/2	25	10								
		4/3	30	-								
		4/4	38	-								
		4/5	36	-								
		4/6	21	-								
5.	25% Wheat	5/1	40	7	254	7.05						
	Bran	5/2	30	4								
		5/3	48	-								
		5/4	45	6								
		5/5	30	-								
		5/6	44	-								
6.	30% Wheat	6/1	44	8	291	8.08						
	Bran	6/2	55	-								
		6/3	49	5								
		6/4	41	12								
		6/5	28	6								
		6/6	37	6								

Table 2.15. Effect of wheat bran + activated charcoal on the fruit body weight and BE in *Ganoderma lucidum*

तालिका 2.15. फलन के वजन पर गेहूं की भूसी+सक्रिय चारकोल का प्रभाव और गैनोडर्मा ल्यूसिडम में बीई

S.No.	Treatment	Replications	Weight of fruit bodies (gm) 1st flesh	Weight of fruit bodies (gm) 2 nd flesh	Total (gm)	BE (%)
1.	5% Wheat	7/1	32	-	163	4.52
	Bran +	7/2	18	-		
	150mg of	7/3	9	5		
	activated	7/4	23	4		
	charcoal	7/5	31	12		
		7/6	24	5		
2.	10% Wheat	8/1	22	5	189	5.25
	Bran +	8/2	29	8		
	150mg of	8/3	33	4		
	activated	8/4	29	5		
	charcoal	8/5	18	7		
		8/6	27	2		
3.	15% Wheat	9/1	42	-	152	4.61
	Bran +	9/2	26	4		
	150mg of	9/3	28	-		
	activated	9/4	20	-		
	charcoal	9/5	13	5		
		9/6	23	5		
4.	20% Wheat	10/1	36	-	181	5.02
	Bran +	10/2	15	3		
	150mg of	10/3	15	-		
	activated	10/4	39	-		
	charcoal	10/5	32	5		
_		10/6	34	2		
5.	25% Wheat	11/1	24	-	190	5.28
	Bran +	11/2	36	5		
	150mg of	11/3	37	3		
	activated	11/4	33	-		
	charcoal	11/5	23	3		
	200/ 7/7	11/6	20	4		4.00
6.	30% Wheat	12/1	14	4	147	4.08
	Bran +	12/2	23	-		
	150mg of	12/3	22	2		
	activated	12/4	10	-		
	charcoal	12/5	26	-		
		12/6	44	-		

Green mold infection was recorded in bags after 2^{nd} flesh whereas no insect/flies infestation was observed during the crop.

दूसरे फ्लश के बाद थैलियों में हरे फफूंद का संक्रमण दर्ज किया गया जबकि फसल के दौरान कोई कीट/मक्खी का संक्रमण नहीं देखा गया।

2.4 CROP PROTECTION 2.4 फसल सुरक्षा

Studies on seasonal abundance of mushroom मशरूम मिखयों की मौसमी बहुतायत पर अध्ययन flies

Validation trials on IPM in Mushrooms

Following practices in mushroom cultivation have found to be effective in controlling major disease (wet bubble) and mushroom flies:

Composting on cemented floor, maintenance of proper moisture in compost and proper pasteurization i.e. 59°C for 6 hours with ample aeration, proper pasteurization of casing at 65°C with 65% moisture, treatment of empty room with 2% formalin, application of malathion on walls @ 0.01% after 7 day of casing. Application of deltamethrin @ 0.01% on walls after first flush, application of dichlorvos @ 0.01% on walls after second flush, spray 150 ppm bleaching powder for controlling bacterial diseases, use of light trap for monitoring and controlling fungal gnats, cook out (Chemical/ steam), drenching with 2% formalin before disposing off the bags or Maintaining 70°C temperature inside rooms for 8-10 hours

Susceptibility of different strains of button mushroom against mushroom flies

An experiment was laid out to assess the susceptibility of different button mushroom strains viz. U3, 465, 121 and NBS-5 against mushroom flies (Table 2.16).

मशरूम में आईपीएम पर सत्यापन परीक्षण

मशरूम की खेती में निम्नलिखित प्रथाएँ प्रमुख बीमारी (गीला बुलबुला) और मशरूम मक्खियों को नियंत्रित करने में प्रभावी पाई गई हैं:

सीमेंटेड फर्श पर खाद बनाना, खाद में उचित नमी बनाए रखना और पर्याप्त वातन के साथ 6 घंटे के लिए 59°C पर उचित पाश्चराइजेशन, 65% नमी के साथ 65°C पर आवरण का उचित पास्च्रीकरण, 2% फॉर्मेलिन के साथ खाली कमरे का उपचार, दीवारों पर आवरण के बाद 0.01% की दर से मेलाथियान का अनुप्रयोग, पहली पलश के बाद दीवारों पर 0.01% की दर से डेल्टामेथ्रिन का प्रयोग, दूसरी फ्लश के बाद दीवारों पर 0.01% की दर से डाइक्लोरवोस का प्रयोग, जीवाणु रोगों को नियंत्रित करने के लिए 150 पीपीएम ब्लीचिंग पाउडर का छिड़काव, फंगल की निगरानी और नियंत्रण के लिए प्रकाश जाल का उपयोग मच्छरों को बाहर निकालें (रासायनिक / भाप), बैगों को निपटाने से पहले 2% फॉर्मेलिन से भिगोएँ या कमरे के अंदर 8-10 घंटों के लिए 70°C तापमान बनाए रखें।

मशरूम मिखयों के विरुद्ध बटन मशरूम की विभिन्न किस्मों की संवेदनशीलता

विभिन्न बटन मशरूम उपभेदों की संवेदनशीलता का आकलन करने के लिए एक प्रयोग किया गया था। मशरूम मक्खियों के विरुद्ध यू३, ४६५, १२१ और एनबीएस-5 (तालिका 2.16)।

Table 2.16. Susceptibility of different strains of button mushroom against flies तालिका 2.16. मिक्खयों के प्रति बटन मशरूम की विभिन्न किस्मों की संवेदनशीलता

Date of harvest	U3	465	121	NBS 5	Total
26.6.23	1.383	0.583	0.843	0.224	3.033
27.6.23	3.736	1.543	1.728	0.698	7.705
28.6.23	9.65	3.201	3.358	1.958	18.167
29.6.23	16.218	7.752	6.428	4.366	34.764
30.6.23	11.052	13.086	11.333	8.344	43.815
1.7.23	10.343	12.211	15.805	13.189	51.548
2.7.23	1.756	2.604	4.84	2.525	11.725
3.7.23	3.123	4.753	6.887	3.276	18.039
4.7.23	0.724	1.173	1.452	0.738	4.087
6.7.23	1.9	2.436	2.932	0.894	8.162
7.7.23	4.392	3.524	3.234	0.616	11.766
8.7.23	3.856	3.296	2.024	0.906	10.082
9.7.23	4.896	4.496	4.727	2.164	16.283
10.7.23	1.97	2.952	2.7	1.482	9.104
11.7.23	1.846	3.445	4.616	2.226	12.133
12.7.23	2.08	4.559	3.978	2.985	13.602
13.7.23	1.728	3.392	2.764	3.266	11.15
14.7.23	0.954	2.43	2.493	1.278	7.155
15.7.23	0.473	2.353	2.181	0.085	5.092
17.7.23	2.084	2.696	2.162	1.756	8.698
18.7.23	2.516	2.107	2.85	0.826	8.299
19.7.23	2.143	2.68	2.712	1.572	9.107
20.7.23	1.466	3.056	2.286	1.22	8.028
21.7.23	0.882	3.724	2.796	1.709	9.111
22.7.23	1.751	3.087	2.783	2.005	9.626
24.7.23	1.427	2.509	2.379	2.857	9.172
25.7.23	0.8	1.154	1.344	1.124	4.422
26.7.23	0.229	1.687	0.732	0.436	3.084
28.7.23	1.21	2.913	2.003	1.055	7.181
29.7.23	0.888	1.367	1.237	0.445	3.937
30.7.23	0.681	0.917	0.738	0.38	2.716
31.7.23	1.434	2.296	2.164	0.695	6.589
1.8.23	0.846	3.178	2.445	1.111	7.58
2.8.23	0.22	1.135	1.626	0.369	3.35
	100.657	114.295	114.58	68.78	398.312

Maximum yield (9.33%) was recorded in U3 followed by 465 (9.25%). However U3 found to be slightly susceptible to mushroom flies as compared to other strains.

अधिकतम उपज (9.33%) यू3 में दर्ज की गई और उसके बाद 465 (9.25%) में पाई गई। हालाँकि अन्य उपभेदों की तुलना में यू3 को मशरूम मक्खियों के प्रति थोड़ा संवेदनशील पाया गया।

2.5 POSTHARVEST TECHNOLOGY 2.5 कटाई उपरांत प्रौद्योगिकी

Development of meat analogues from मशरूम से मीट विकल्प का विकास mushrooms

The work on the development and analysis of meat analogues using mushroom mycelium and fruit bodies has been initiated. After screening the fast growing strains of mushrooms, suitable media will be identified and the mycelium will be grown on it. After getting a suitable thickness, the mycelium will be harvested and the same will be developed into meat analogues along with the bio-chemical analysis. Apart from mycelium, the fruit bodies of button, oyster, milky, shiitake, Hericium and king oyster mushrooms have been utilized for the development of meat analogues after marinating with spices followed by air frying. On the sensory evaluation of the initial trials the meat analogues prepared from button, oyster, king oyster and shiitake were found better compared to milky and Hericium mushroom fruit bodies. The cultures of oyster (Pleurotus djamor) were grown on different sizes of soya chunks, however, the required thickness of the mycelium was not found as the substrate (soya chunks) became mashy after mycelial growth (Fig. 2.5.1).

मशरूम मायसेलियम और फल निकायों का उपयोग करके मीट विकल्प के विकास और विश्लेषण पर काम शुरू किया गया है। मशरूम की तेजी से बढ़ने वाली किरमों की स्क्रीनिंग के बाद, उपयुक्त मीडिया की पहचान की जाएगी और उस पर माइसेलियम उगाया जाएगा। उपयुक्त मोटाई मिलने के बाद, माइसेलियम की कटाई की जाएगी और उसे जैव-रासायनिक विश्लेषण के साथ मीट विकल्प में विकसित किया जाएगा। मायसेलियम के अलावा, बटन, ऑयस्टर, मिल्की, शिटाके, हेरिशियम और किंग ऑयस्टर मशरूम के फल निकायों का उपयोग मसालों के साथ मैरीनेट करने और फिर एयर फ्राइअर में तलने के बाद मीट विकल्प के विकास के लिए किया गया है। प्रारंभिक परीक्षणों के संवेदी मुल्यांकन पर बटन, ऑयस्टर, किंग ऑयस्टर और शिटाके मशरूम से तैयार किए गए मीट विकल्प को दूधिया और हेरिशियम मशरूम की तुलना में बेहतर पाया गया। ऑयस्टर मशरूम (प्लूरोटस डीजेमोर) के कल्चर को सोया चंक्स के विभिन्न आकारों पर उगाया गया था, हालांकि, माइसेलियम की आवश्यक मोटाई नहीं पाई गई क्योंकि सब्सट्रेट (सोया चंक्स) माइसेलियल विकास के बाद नरम हो गया था (चित्र 2.5.1) |

Fig. 2.5.1. Development of meat analogues from the fruit body of different mushrooms

चित्र 2.5.1. विभिन्न मशरूमों के फल निकाय से मीट विकल्पों का विकास

Effect of medicinal plants based substrates on the bio-chemical properties of mushrooms

To study the effect of substrates on the bioactive compounds of different mushrooms. (Hericium Hericium erinaceus). oyster (Pleurotus ostreatus) and king oyster (Pleurotus eryngii) mushrooms were grown on ginger straw, turmeric straw along with control (wheat straw). There was a significant increase in the total polysaccharides, total phenols, flavonoids and antioxidant activities in the mushrooms grown on ginger and turmeric straw as compared to control (wheat straw) (Fig. 2.5.2, Fig. 2.5.3, Fig. 2.5.4 and Fig. 2.5.5).

मशरूम के जैव-रासायनिक गुणों पर औषधीय पौधों पर आधारित सबस्ट्रेट्स का प्रभाव

विभिन्न मशरूमों के जैव-सक्रिय यौगिकों पर सब्सट्रेट्स के प्रभाव का अध्ययन करने के लिए, हेरिशियम (हेरिशियम एरिनेसस), ऑयस्टर (प्लुरोटस ओस्ट्रीटस) और किंग ऑयस्टर (प्लुरोटस एरिंजि) मशरूम को अदरक के भूसे, हल्दी के भूसे के साथ-साथ नियंत्रण (गेहूं के भूसे) पर उगाया गया था। नियंत्रण (गेहूं के भूसे) की तुलना में अदरक और हल्दी के भूसे पर उगाए गए मशरूम में कुल पॉलीसेकेराइड, कुल फिनोल, पलेवोनोइड और एंटीऑक्सीडेंट गतिविधियों में उल्लेखनीय वृद्धि हुई (चित्र 2.5.2, चित्र 2.5.3, चित्र 2.5.4 और चित्र 2.5.5)।

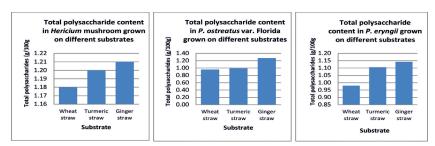


Fig. 2.5.2. Effect of substrates on the total polysaccharides in different mushrooms चित्र 2.5.2 विभिन्न मशरूमों में कुल पॉलीसेकेराइड पर सब्सट्रेट्स का प्रभाव

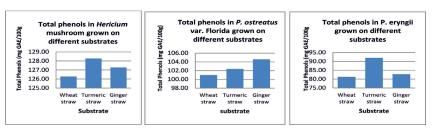


Fig. 2.5.3. Effect of substrates on the total phenols in different mushrooms चित्र 2.5.3 विभिन्न मशरूमों में कुल फिनोल पर सब्सट्रेट्स का प्रभाव

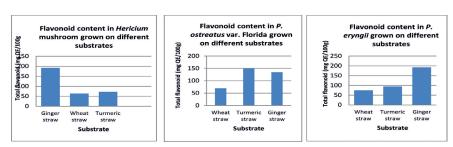
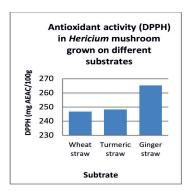
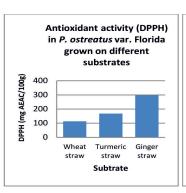




Fig. 2.5.4. Effect of substrates on the flavonoids in different mushrooms चित्र 2.5.4 विभिन्न मशरूमों में फ्लेवोनोइड्स पर सब्सट्रेट्स का प्रभाव

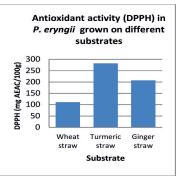


Fig. 2.5.5. Effect of substrates on the antioxidant activity in different mushrooms चित्र 2.5.5 विभिन्न मशरूमों में एंटीऑक्सीडेंट गतिविधि पर सब्सट्रेट्स का प्रभाव

Process optimization, sensory and nutritional evaluation of mushrooms and millets based Pasta

Various formulations of mushroom millets pasta utilizing three types of mushroom powders; button mushroom (0-15%), oyster mushroom (0-15%) and shiitake mushroom powder (0-15%) combined with sorghum millet semolina were prepared (Table 2.17) and were subjected to sensory and cooking quality analysis to standardize the formulation of mushroom millets pasta (Fig. 2.5.6.).

मशरूम और मिलेट आधारित पास्ता की प्रक्रिया अनुकूलन, संवेदी और पोषण संबंधी मूल्यांकन

तीन प्रकार के मशरूम पाउडर का उपयोग करके मशरूम मिलेट पास्ता के विभिन्न फॉर्मूलेशनय बटन मशरूम (0–15%), ऑयस्टर मशरूम (0–15%) और शिटाके मशरूम पाउडर (0–15%) को ज्वार सूजी के साथ मिलाकर तैयार किया गया (तालिका 2.17) और मशरूम मिलेट पास्ता का निर्माण का मानकीकृत करने के लिए संवेदी एवं पाक गुणवत्ता का विश्लेषण किया गया। (चित्र 2.5.6.)।

Table 2.17. Preparation of mushroom pasta and vermicelli formulations using cold extrusion process* तालिका 2.17.कोल्ड एक्सट्रूज्न प्रक्रिया का उपयोग करके मशरूम पास्ता और सेंवई फॉर्मूलेशन तैयार करना चित्र 2.5.6 मशरूम मिलेट पास्ता का निर्माण

Mushroom powder %	Sorghum (Jowar) semolina (g)	Wheat semolina (g)	Mushroom powder(g)	Water (ml)
0	900	600	0	540
5	855	570	75	540
10	810	540	150	560
15	765	510	225	560

Fig. 2.5.6. Formulations of mushroom millet pasta चित्र 2.2.6. मशरूप मिलेट पास्ता का निर्माण

Sensory evaluation revealed varying preferences among the mushroom-supplemented pasta types, indicating differences in taste, texture, and overall acceptability. Based on sensory properties and cooking quality tests it was found that oyster and button mushroom powder can be incorporated upto a level of 15 % while shiitake mushroom powder due to its strong flavor can only be supplemented upto 10% into the millet to develop nutritious and tasty mushroom millet pasta products (Fig 2.5.7 to Fig. 2.5.9).

संवेदी मूल्यांकन से मशरूम—पूरक मिलेट पास्ता प्रकारों के बीच अलग—अलग प्राथमिकताएं सामने आईं, जो स्वाद, बनावट और समग्र स्वीकार्यता में अंतर का संकेत देती हैं। संवेदी गुणों और पाक गुणवत्ता परीक्षणों के आधार पर यह पाया गया कि ऑयस्टर और बटन मशरूम पाउडर को 15% के स्तर तक शामिल किया जा सकता है, जबिक शिटाके मशरूम पाउडर को इसके तेज स्वाद के कारण पौष्टिक और स्वादिष्ट मशरूम मिलेट पास्ता उत्पाद बनाने के लिए मिलेट में केवल 10: तक ही शामिल किया जा सकता है। (चित्र 2.5.7 से चित्र 2.5.9)।

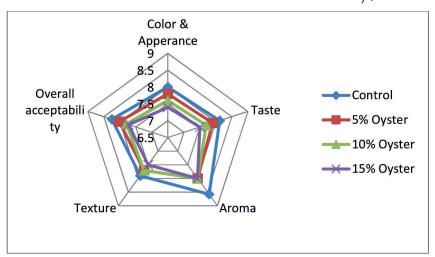


Fig. 2.5.7. Sensory evaluation of Oyster mushroom supplemented millet pasta चित्र 2.5.7 ऑयस्टर मशरूम पूरक मिलेट पास्ता का संवेदी मूल्यांकन

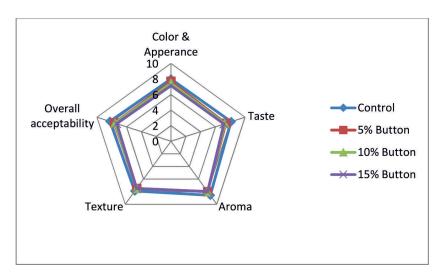


Fig. 2.5.8. Sensory evaluation of Button mushroom supplemented millet pasta चित्र 2.5.8 बटन मशरूम पूरक मिलेट पास्ता का संवेदी मूल्यांकन

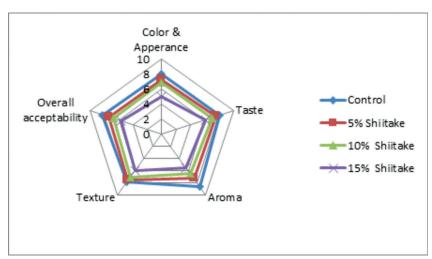


Fig. 2.5.9. Sensory evaluation of Shiitake mushroom supplemented millet pasta

चित्र 2.5.9 शिटाके मशरूम पूरक मिलेट पास्ता का संवेदी मूल्यांकन

Oyster mushroom supplementation correlated with elevated protein, fibre, vitamin D, and antioxidantactivity(DPPH). Fat content exhibited a slight decrease (Table 2.18). Button mushroom supplementation led to enhanced protein, fibre, Vitamin D, and substantial improvement in antioxidant activity (DPPH) with diminishing fat content (Table 2.19). Shiitake mushroom supplementation mirrored the trends observed in oyster and button, showing increased protein, fibre, Vitamin D, and improved antioxidant activity (DPPH) while exhibiting a decline in fat content (Table 2.20). The results demonstrated that supplementation of millet pasta with oyster, button, and shiitake mushrooms significantly augments its nutritional profile, particularly in protein, fibre, vitamin D content, and antioxidant activity.

ऑयस्टर मशरूम अनुपूर्ण उन्नत प्रोटीन, फाइबर, विटामिन डी और एंटीऑक्सीडेंट गतिविधि (डीपीपीएच) से संबंधित पाया गया। वसा की मात्रा में थोड़ी कमी देखी गई (तालिका 2.18)। बटन मशरूम अनुपूर्ण से प्रोटीन, फाइबर, विटामिन डी में वृद्धि हुई और वसा की मात्रा कम होने के साथ एंटीऑक्सीडेंट गतिविधि (डीपीपीएच) में पर्याप्त सुधार हुआ (तालिका 2.19)। शिटाके मशरूम अनुपूर्ण ने ऑयस्टर और बटन में देखे गए रुझानों को प्रतिबिंबित किया, जिसमें प्रोटीन, फाइबर, विटामिन डी और बेहतर एंटीऑक्सीडेंट गतिविधि (डीपीपीएच) में वृद्धि देखी गई, जबिक वसा में गिरावट देखी गई (तालिका 2.20)। परिणामों से पता चला कि ऑयस्टर, बटन और शिटाके मशरूम के साथ मिलेट पास्ता के पुरक से इसके पोषण गुणों में काफी वृद्धि होती है, विशेष रूप से प्रोटीन, फाइबर, विटामिन डी सामग्री और एंटीऑक्सीडेंट गतिविधि में।

Table 2.18. Effect of oyster mushroom supplementation on nutritional profile of millet pasta तालिका 2.18 मिलेट पास्ता के पोषण प्रोफाइल पर ऑयस्टर मशरूम अनुपूर्ण का प्रभाव

Mushroom powder (%)	Protein (g/100g)	Ash (g/100g)	Fat (g/100g)	Fibre (g/100g)	Carbohydrate (g/100g)	Energy (Kcal/100g)	Vitamin D (IU/100g)	DPPH (mg AEAC/100g)
0	10.49	1.48	4.02	3.84	84.01	414.19	0.00	175.39
5	10.82	1.47	3.95	5.38	83.77	413.88	1537	212.92
10	11.14	1.46	3.88	6.91	83.52	413.57	3765	239.28
15	11.47	1.45	3.81	8.45	83.28	413.26	5373	257.37

Table 2.19. Effect of button mushroom supplementation on nutritional profile of millet pasta तालिका 2.19 मिलेट पास्ता के पोषण प्रोफाइल पर बटन मशरूम अनुपूर्ण का प्रभाव

Mushroom powder (%)	Protein (g/100g)	Ash (g/100g)	Fat (g/100g)	Fibre (g/100g)	Carbohydrate (g/100g)	Energy (Kcal/100g)	Vitamin D (IU/100g)	DPPH (mg AEAC/100g)
0	10.49	1.48	4.02	3.84	84.01	414.19	0	175.39
5	11.61	1.72	4.01	5.04	82.66	413.17	1937	192.02
10	12.74	1.96	4.00	6.23	81.30	412.15	4258	199.29
15	13.86	2.21	3.99	7.43	79.94	411.12	6373	207.33

Table 2.20. Effect of shiitake mushroom supplementation on nutritional profile of millet pasta तालिका 2.20 मिलेट पास्ता के पोषण प्रोफाइल पर शिटाके मशरूम अनुपूर्ण का प्रभाव

Mushroom powder (%)	Protein (g/100g)	Ash (g/100g)	Fat (g/100g)	Fibre (g/100g)	Carbohydrate (g/100g)	Energy (Kcal/100g)	Vitamin D (IU/100g)	DPPH (mg AEAC/100g)
0	10.49	1.48	4.02	3.84	84.01	414.19	0	175.39
5	10.80	1.69	4.02	4.43	83.49	413.34	1183	239.66
10	11.11	1.90	4.02	5.03	82.96	412.48	2362	251.78
15	11.43	2.12	4.02	5.62	82.44	411.62	4101	263.06

Process optimization, sensory and nutritional evaluation of mushrooms and millets based Vermicelli

Four formulations of mushroom millet vermicelli were prepared with different levels of oyster mushroom powder supplementation (0-15%) into sorghum semolina and were subjected to sensory and cooking quality analysis to optimize the best formulation of mushroom millet vermicelli (Fig. 2.5.10). Based on sensory and cooking quality analysis results it was found that oyster mushroom powder can be incorporated upto a level of 15 % into sorghum to develop mushroom millet vermicelli (Fig. 2.5.11).

मशरूम और मिलेट आधारित सेंवई की प्रक्रिया अनुकूलन, संवेदी और पोषण संबंधी मूल्यांकन

मशरूम मिलेट सेंवई के चार फॉर्मूलेशन ज्वार सूजी में ऑयस्टर मशरूम पाउडर सप्लीमेंटेशन (0–15%) के विभिन्न स्तरों के साथ तैयार किए गए और मशरूम मिलेट सेंवई के सर्वोत्तम फॉर्मूलेशन को अनुकूलित करने के लिए इनकी संवेदी और पाक गुणवत्ता का विश्लेषण किया गया (चित्र 2.5.10) । संवेदी और पाक गुणवत्ता विश्लेषण परिणामों के आधार पर यह पाया गया कि मशरूम मिलेट सेंवई विकसित करने के लिए ऑयस्टर मशरूम पाउडर को ज्वार में 15% के स्तर तक शामिल किया जा सकता है (चित्र 2.5.11)।

Fig. 2.5.10. Formulations of mushroom millet vermicelli चित्र 2.5.10. मशरूम मिलेट सेंवई का निर्माण

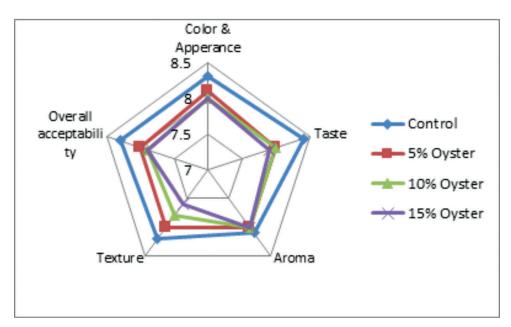


Fig. 2.5.11. Sensory evaluation of oyster mushroom supplemented millet vermicelli

चित्र 2.5.11. ऑयस्टर मशरूम पूरक मिलेट सेंवई का संवेदी मूल्यांकन

Oyster mushroom supplementation significantly enhances the nutritional profile of millet vermicelli, providing increased protein, fibre, Vitamin D, and antioxidant capacity (Table 2.21). The heightened nutritional composition signifies the viability of millet vermicelli as a source of nutrient fortification through mushroom supplementation.

ऑयस्टर मशरूम अनुपूर्ण मिलेट सेंवई की पोषण प्रोफ़ाइल को महत्वपूर्ण रूप से बढ़ाता है, जिससे प्रोटीन, फाइबर, विटामिन डी और एंटीऑक्सीडेंट क्षमता में वृद्धि होती है (तालिका 2.21)। बढ़ी हुई पोषण संरचना मशरूम अनुपूर्ण के माध्यम से पोषक तत्व सुदृढ़ीकरण के स्रोत के रूप में मिलेट सेंवई की व्यवहार्यता को दर्शाती है।

Table 2.21. Effect of Oyster mushroom supplementation on nutritional profile of millet vermicelli तालिका 2.21 मिलेट सेंवई की पोषण प्रोफाइल पर ऑयस्टर मशरूम अनुपूरण का प्रभाव

Mushroom powder (%)	Protein (g/100g)	Ash (g/100g)	Fat (g/100g)	Fibre (g/100g)	Carbohydrate (g/100g)	Energy (Kcal/100g)	Vitamin D (IU/100g)	DPPH (mg AEAC/100g)
Control	11.93	1.27	3.29	2.99	72.51	414.19	0.00	175.39
50	12.27	1.30	3.29	4.29	72.14	413.88	1537.00	212.92
100	12.87	1.39	3.28	5.91	71.46	413.57	3765.00	239.28
150	13.35	1.42	3.28	7.27	70.95	413.26	5373.00	257.37

Process optimization, sensory and nutritional evaluation mushroom millets composite flour

A composite flour formulation, optimized for maximum nutritional benefits, was developed using the D-optimal mixture design methodology. The primary goal of this study was

मशरूम मिलेट मिश्रित आटा की प्रक्रिया अनुकूलन, संवेदी और पोषण संबंधी मृल्यांकन

अधिकतम पोषण लाभ के लिए अनुकूलित एक मिश्रित आटा फॉर्मूलेशन, डी—आप्टमल मिश्रण डिजाइन पद्धित का उपयोग करके विकसित किया गया था। इस अध्ययन का प्राथमिक लक्ष्य आटा फॉर्मूलेशन में प्रोटीन,

to enhance the protein, minerals, fibre, vitamin D, antioxidants, and sensory acceptability in the target flour formulation. The ingredient proportions in the composite flour—comprising wheat flour (WF), mixed millets flour (MF), and mushroom powder (MP)—were determined based on preliminary experiments, with the ranges set at 60-85%, 10-30%, and 5-15%, experimental runs respectively. Fourteen with varying mixture compositions (CF1 to CF14) were designed, as detailed in Table 2.22. Subsequent to the formulation, each of the 14 flour compositions underwent thorough quality analysis, encompassing proximate composition, crude fibre content, vitamin D levels, antioxidant activity, color parameters (L, a, and b values), and sensory properties.

खनिज, फाइबर, विटामिन डी, एंटीऑक्सिडेंट और संवेदी स्वीकार्यता को बढ़ाना था। मिश्रित आटे में घटक अनुपात — जिसमें गेहूं का आटा (WF), मिश्रित मिलेट आटा (MF), और मशरूम पाउडर (MP) शामिल हैं — प्रारंभिक प्रयोगों के आधार पर निर्धारित किए गए थे, जिनकी सीमा क्रमशः 60—85%, 10—30%, और 5—15% निर्धारित की गई थी। अलग—अलग मिश्रण रचनाओं (CF1 से CF14) के साथ चौदह प्रयोगात्मक फॉर्म्यूलेशन बनाए गए, जैसा कि तालिका 2.22 में विस्तृत है। 14 आटे के फॉर्म्यूलेशन में से प्रत्येक का गहन गुणवत्ता विश्लेषण किया गया, जिसमें पोषण संरचना जैसे कि फाइबर, विटामिन डी स्तर, एंटीऑक्सीडेंट गतिविधि, रंग पैरामीटर (एल, ए, और बी मान), और संवेदी गुण शामिल थे।

Table 2.22. Mixture composition in the composite flour formulated with wheat flour, millets flour and mushroom powder in a D-optimal mixture design

तालिका 2.22 डी-आप्टमल मिश्रण डिजाइन द्वारा तैयार गेहूं के आटे, मिलेट के आटे और मशरूम पाउडर युक्त मिश्रित आटे की मिश्रण संरचना

Formulation	Wheat Flour X1(%)	Millets Flour X2(%)	Mushroom powder X3(%)
CF1	72.16	19.24	8.61
CF2	65.00	30.00	5.00
CF 3	66.11	22.53	11.36
CF 4	80.07	10.05	9.88
CF 5	85.00	10.00	5.00
CF 6	75.00	10.00	15.00
CF 7	60.01	25.00	15.00
CF 8	60.01	25.00	15.00
CF 9	85.00	10.00	5.00
CF 10	75.00	10.00	15.00
CF 11	70.18	24.82	5.00
CF 12	60.00	30.00	10.00
CF 13	78.98	16.02	5.00
CF 14	69.41	15.59	15.00

The addition of mushroom powder (MP) significantly increased protein content, attributed to mushrooms being a rich protein source. Incorporating mixed millets flour (MF) and MP raised fat content, while ash content increased proportionally with MP and MF. Carbohydrate content decreased due to MP, which has low carbohydrates. Crude fibre content rose with MP and MF. Vitamin D2 content linearly increased with MP proportion, and high MP formulations showed elevated antioxidant activity (Table 2.23). Wheat flour (WF) imparted light color (high L values), while a values increased with MF. Yellowness (b values) increased with MP and MF. Sensory scores improved with higher WF proportions (Table 2.24). Overall, the study demonstrates how judicious formulation enhances nutritional content and sensory appeal in composite flour (Fig. 2.5.12).

मशरूम पाउंडर (MP) मिलाने से प्रोटीन की मात्रा काफी बढ़ गई, जिसका कारण मशक्तम का एक समृद्ध प्रोटीन स्रोत होना है। मिश्रित मिलेट आटा (MF) और MP को शामिल करने से वसा की मात्रा बढ गई, जबकि राख की मात्रा MP और MF के साथ आनुपातिक रूप से बढ़ गई। MP के कारण कार्बोहाइड्रेट की मात्रा कम हो गई, क्युंकि मशरूम में कार्बोहाइड्रेट कम होता है। MP और MF के साथ फाइबर की मात्रा बढी। विटामिन डी2 की मात्रा MP अनुपात के साथ रैखिक रूप से बढ़ी, और अधिक MP वाले फॉर्मूलेशन में बढ़ी हुई एंटीऑक्सीडेंट गतिविधि पाई गई (तालिका 2.23)। गेहूं के आटे (WF) ने हल्का रंग (उच्च 'L' मान) प्रदान किया, जबकि MF के साथ 'a' मान बढ़ गया। MP और MF के साथ पीलापन ('b' मान) बढा। उच्च WF अनुपात के साथ संवेदी स्कोर में सुधार हुआ (तालिका 2.24)। कुल मिलाकर, अध्ययन दर्शाता है कि कैसे विवेकपूर्ण फॉर्मूलेशन मिश्रित आटे में पोषण सामग्री और संवेदी अपील को बढाता है (चित्र 2.5.12)।

Table 2.23. Nutritional and antioxidant properties mushroom and millets supplemented composite flour formulations

तालिका 2.23 मशरूम और मिलेट मिश्रित आटा फॉर्मूलेशन के पोषण और एंटीऑक्सीडेंट गुण

Formulation	Protein (g/100g)	Fat (g/100g)	Ash (g/100g)	Carbohydrate (g/100g)	Crude Fibre (g/100g)	Vitamin D (IU/100g)	Antioxidant activity (mgAEAC/100g)
CF1	12.46± 0.11	1.83± 0.02	1.87±0.27	77.27± 0.15	1.64± 0.05	4303.01± 11.98	55.65 ± 1.06
CF2	11.55 ± 0.11	1.91± 0.01	2.18± 0.11	77.79± 0.20	1.85± 0.07	2316.38± 6.54	81.15± 0.45
CF3	13.07± 0.10	1.92± 0.01	2.25± 0.17	76.13± 0.06	2.19 ± 0.05	5678.53± 10.05	84.23± 2.63
CF4	12.83± 0.06	1.72± 0.02	2.06± 0.13	76.86± 0.12	1.55± 0.05	4941.31± 7.26	63.53± 1.22
CF5	11.76± 0.10	1.62± 0.02	1.71 ±0.27	78.28± 0.22	1.42 ±0.02	2548.39± 4.25	73.48± 2.87
CF6	14.05± 0.13	1.79± 0.01	2.35± 0.22	75.72± 0.14	2.02± 0.09	6948.03± 8.93	84.50± 0.98
CF7	13.72± 0.13	2.05 ± 0.10	2.47± 0.10	75.09 ± 0.18	2.50 ±0.40	7584.65 ± 10.27	88.35± 3.56
CF8	13.99± 0.10	1.85± 0.06	2.64 ±0.20	75.32± 0.10	2.46± 0.16	7047.87± 2.46	88.26± 2.50
CF9	11.91± 0.13	1.51 ± 0.06	1.87± 0.25	78.44 ± 0.15	1.50± 0.23	2274.11 ± 6.11	68.37± 2.13
CF10	14.26± 0.17	1.69± 0.02	2.20± 0.12	75.59± 0.24	1.83± 0.14	7398.56± 8.26	90.76 ± 2.46
CF11	11.65± 0.10	1.84± 0.02	2.01± 0.12	77.96± 0.39	1.53± 0.15	2984.59± 4.25	80.65± 0.87
CF12	12.67± 0.12	2.03± 0.02	2.32± 0.11	76.78± 0.15	2.30 ± 0.02	4739.28± 9.78	73.03± 3.55
CF13	12.14± 0.12	1.72± 0.04	1.87± 0.17	77.71± 0.15	1.58± 0.02	2746.42± 6.66	75.63± 1.65
CF14	14.31 ± 0.07	1.88± 0.04	2.45± 0.24	75.09 ± 0.26	2.43± 0.23	7198.05± 3.83	89.25± 1.93

Table 2.24. Color and sensory properties of mushroom and millets supplemented composite flour formulations

तालिका 2.24 मशरूम और मिलेट मिश्रित आटा फॉर्मूलेशन के रंग और संवेदी गुण

Formulation		Color values	;			Sensory scor	es	
No.	L value	a value	b value	Color & Appearance	Taste	Aroma	Texture	Overall acceptability
CF1	65.60 ± 0.39	3.31 ± 0.18	8.05 ± 1.73	7.4 ± 1.00	7.3 ± 1.30	7.4 ± 0.55	7.4 ± 1.22	7.3 ± 0.58
CF2	55.54 ± 1.27	5.38 ± 0.46	7.88 ± 0.71	7.1 ± 0.89	7.1 ± 1.34	7.6 ± 0.55	7.0 ± 1.48	7.0 ± 1.24
CF3	62.96 ± 0.26	3.82 ± 0.29	8.84 ± 0.42	6.2 ± 1.41	7.2 ± 0.47	7.2 ± 0.84	7.2 ± 1.02	6.2 ± 0.48
CF4	67.98 ± 0.44	1.76 ± 0.75	8.89 ± 0.29	7.8 ± 0.71	7.8 ± 1.30	7.6 ± 1.14	7.8 ± 0.84	7.5 ± 1.14
CF5	72.34 ± 1.65	2.5 ± 0.42	7.00 ± 1.38	8.6 ± 0.84	8 ± 0.54	7.2 ± 1.48	8.2 ± 0.39	8.1 ± 0.52
CF6	65.84 ± 0.98	2.91 ± 0.33	9.84 ± 0.93	6.0 ± 0.45	7.5 ± 1.00	7.4 ± 0.55	7.7 ± 0.84	7.3 ± 1.00
CF7	59.94 ± 0.34	4.27 ± 0.09	10.18 ± 0.80	4.6 ± 1.64	6.7 ± 0.92	6.8 ± 1.10	6.5 ± 0.87	5.4 ± 0.85
CF8	60.39 ± 0.86	4.85 ± 0.19	11.64 ± 0.54	4.6 ± 1.67	6.9 ± 1.14	7.0 ± 0.45	6.8 ± 0.55	5.0 ± 1.22
CF9	70.48 ± 1.11	2.24 ± 0.25	7.93 ± 0.93	8.6 ± 0.45	8.1 ± 0.55	7.4 ± 0.89	8.0 ± 0.74	8.0 ± 0.74
CF10	66.33 ± 1.60	3.18 ± 0.31	9.11 ± 0.56	6.9 ± 0.84	7.6 ± 0.55	7.4 ± 1.14	7.5 ± 0.71	7.2 ± 0.84
CF11	57.91 ± 0.40	4.81 ± 1.03	8.25 ± 0.39	7.9 ± 0.45	7.4 ± 0.55	7.4 ± 0.55	7.3 ± 0.45	7.2 ± 0.35
CF12	53.41 ± 0.72	4.94 ± 0.52	9.89 ± 0.89	5.2 ± 1.30	7.0 ± 1.22	7.4 ± 0.55	6.5 ± 1.52	6.2 ± 0.55
CF13	66.56 ± 1.38	3.09 ± 0.48	7.95 ± 0.71	8.6 ± 1.30	7.7 ± 0.45	7.6 ± 0.55	7.6 ± 0.74	7.8 ± 0.45
CF14	64.59 ± 1.20	3.08 ± 0.94	9.43 ± 0.15	6.2 ± 1.58	7.4 ± 0.14	7.2 ± 1.30	7.4 ± 1.52	7.0 ± 1.30

Fig. 2.5.12. Mushroom millet composite flour and flatbread चित्र 2.5.12 मशरूम मिलेट मिश्रित आटा और चपाती

Following numerical optimization, the optimal proportion of wheat flour (WF), mixed millets flour (MF), and mushroom powder (MP) was determined to be 82.3:10.0:7.7 as shown in the overlay plot Fig 2.5.13. The nutritional composition of the optimized flour mixture is

संख्यात्मक अनुकूलन के बाद, गेहूं का आटा (WF), मिश्रित मिलेट आटा (MF) और मशरूम पाउडर (MP) का इष्टतम अनुपात 82.3:10.0:7.7 निर्धारित किया गया था जैसा कि ओवरले प्लॉट चित्र 2.5.13 में दिखाया गया है। अनुकूलित आटा मिश्रण की पोषण संरचना में 12.51% प्रोटीन, 77.5% कार्बोहाइड्रेट, 1.64% वसा,

reported as 12.51% protein, 77.5% carbohydrates, 1.64% fat, 1.90% ash, 1.52% crude fibre, 3812.44 IU/100g vitamin D, and 63.6 mg AEAC/100g antioxidant activity.

1.90% राख, 1.52% फाइबर, 3812.44 IU/100 ग्राम विटामिन डी, और 63.6 मिलीग्राम AEAC/100 ग्राम एंटीऑक्सीडेंट गतिविधि पाई गई।

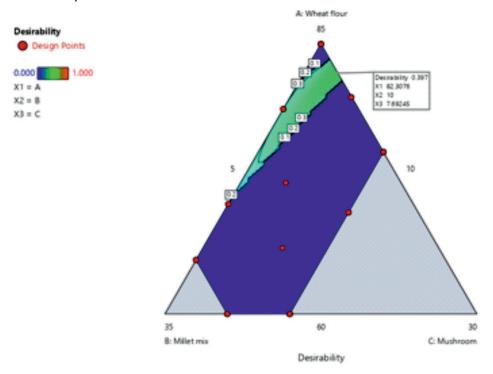


Fig. 2.5.13. Overlay plot of optimized mushroom and millets supplemented composite flour formulation चित्र 2.5.13 अनुकृतित मशरूम और मिलेट मिश्रित आटा फॉर्म्लेशन का ओवरले प्लॉट

Process optimization, sensory, nutritional and nutraceutical analysis of shiitake mushroom supplemented tortilla chips

Five formulations of tortilla chips supplemented with 0%, 2.5%, 5%, 7.5% to 10% of shiitake mushroom powder were prepared. Other ingredients used for preparing these tortilla chips were corn flour, salt, baking soda, vegetable oil, seasoning and instead of frying these tortilla chips were baked at 160 °C for 20 minutes. Sensory evaluation of tortilla chips was done by a group of twenty semi-trained panelists based on color & appearance, taste, aroma, crispness and overall acceptability using nine point hedonic scale. The effect of shiitake mushroom powder supplementation on the sensory quality of baked tortilla chips has been shown in Table 2.25. It was

शिटाके मशरूम पूरक टॉर्टिला चिप्स की प्रक्रिया अनुकूलन, संवेदी, पोषण और न्यूट्रास्युटिकल विश्लेषण

0%, 2.5%, 5%, 7.5% से 10% शिटाके मशरूम पाउडर के साथ पूरक टॉर्टिला चिप्स के पांच फॉर्मूलेशन तैयार किए गए। इन टॉर्टिला चिप्स को तैयार करने के लिए उपयोग की जाने वाली अन्य सामग्रियां मकई का आटा, नमक, बेकिंग सोडा, वनस्पति तेल, मसाला थीं और इन टॉर्टिला चिप्स को तलने के बजाय 160 डिग्री सेल्सियस पर 20 मिनट के लिए बेक किया गया। टॉर्टिला चिप्स का संवेदी मूल्यांकन नौ बिंदु हेडोनिक पैमाने का उपयोग करके रंग—रूप, स्वाद, सुगंध, कुरकुरापन और समग्र स्वीकार्यता के आधार पर बीस अर्ध—प्रशिक्षित पैनलिस्टों के एक समूह द्वारा किया गया। बेक्ड टॉर्टिला चिप्स की संवेदी गुणवत्ता पर शिटाके मशरूम पाउडर अनुपूर्ण का प्रभाव तालिका 2.25 में दिखाया गया है। यह पाया गया कि रंग

found that except color and appearance there was no significant effect of mushroom powder supplementation on other sensory properties of chips. The scores for color and appearance although declined with the incorporation of mushroom powder. This can be attributed to the darker color of tortilla chips supplemented with shiitake mushroom powder. However, the overall acceptability scores of tortilla chips showed good sensory acceptability till 10% supplementation with shiitake mushroom powder.

और रूप को छोड़कर चिप्स के अन्य संवेदी गुणों पर मशरूम पाउडर अनुपूर्ण का कोई महत्वपूर्ण प्रभाव नहीं पड़ा। हालांकि, मशरूम पाउडर के शामिल होने से रंग और दिखावट के अंकों में गिरावट आई। इसका श्रेय शिटाके मशरूम पाउडर के साथ पूरक टॉर्टिला चिप्स के गहरे रंग को दिया जा सकता है। हालाँकि, टॉर्टिला चिप्स के समग्र स्वीकार्यता स्कोर ने शिटाके मशरूम पाउडर के साथ 10% पूरकता तक अच्छी संवेदी स्वीकार्यता दिखाई।

Table 2.25. Effect of Shiitake mushroom powder supplementation on the sensory quality of baked tortilla chips*

तालिका 2.25 बेक्ड टॉर्टिला चिप्स की संवेदी गुणवत्ता पर शिटाके मशरूम पाउडर अनुपूर्ण का प्रभाव

S.No.	% Shiitake powder	Color & Appearance	Taste	Aroma	Crispness	Overall acceptability
1	0	8.00a	7.57	7.14	7.00	7.29
2	2.5	7.43ab	8.00	7.57	7.64	7.71
3	5	6.86b	7.36	7.86	7.71	8.07
4	7.5	5.43c	7.43	7.79	8.07	7.86
5	10	5.00c	7.71	8.14	7.71	7.50
CI	0 (0.05)	0.982	NS	NS	NS	NS

^{*}Means in a column with common superscript are not significantly different at the 0.05 level of probability by Duncan's multiple range test.

Proximate composition of tortilla chips formulations has been presented in Table 2.26. Moisture content of samples showed an increase with incorporation of shiitake mushroom powder. Protein content also showed a significant increase from 9.10 % in control to 14.15% in tortilla chips supplemented with 10% shiitake mushroom powder. Similarly, ash and crude fibre content also improved significantly with incorporation of mushroom powder in the chips formulation. However, carbohydrate content and energy value showed a decline with higher incorporation of mushroom powder in tortilla chips formulation.

टॉर्टिला चिप्स फॉर्मूलेशन की अनुमानित संरचना तालिका 2.26 में प्रस्तुत की गई है। शिटाके मशरूम पाउडर को शामिल करने से नमूनों की नमी की मात्रा में वृद्धि देखी गई। टॉरिटला चिप्स में 10% शिटाके मशरूम पावडर पूरक को प्रोटीन की मात्रा नियंत्रण में 9.10% के मुकाबले 14.15% तक उल्लेखनीय वृद्धि के रूप में पायी गयी। इसी प्रकार चिप्स के निर्माण में मशरूम पाउडर को शामिल करने से राख और फाइबर की मात्रा में भी काफी सुधार हुआ। हालाँकि टॉर्टिला चिप्स फॉर्मूलेशन में मशरूम पाउडर के अधिक समावेश के कारण कार्बोहाइड्रेट सामग्री और ऊर्जा मूल्य में गिरावट देखी गई। 10% तक शिटाके मशरूम पाउडर से समृद्ध टॉर्टिला चिप्स को संवेदी विश्लेषण (चित्र 2.5.14) के माध्यम से

Table 2.26. Effect of Shiitake mushroom powder supplementation on the nutritive value of baked tortilla chips*

तालिका 2.26 बेक्ड टॉर्टिला चिप्स के पोषक मूल्य पर शिटाके मशरूम पाउडर अनुपूर्ण का प्रभाव

S. No.	Shiitake powder (%)	Moisture (g/100g)	Protein (g/100g)	Carbohydrate (g/100g)	Fat (g/100g)	Ash (g/100g)	Crude fibre (g/100g)	Energy value (Kcal/100g)
1	0	2.48 ^b	9.10°	55.29ª	30.56	2.57°	0.98^{d}	532.60
2	2.5	2.99ª	9.62°	53.86ª	30.72	2.81 ^b	1.13 ^c	530.38
3	5	2.96a	12.46 ^b	51.33 ^b	30.40	2.84 ^b	1.21 ^b	528.79
4	7.5	2.99ª	13.58ab	49.15b ^c	31.04	3.23ª	1.29ª	530.31
5	10	2.98a	14.15a	48.85°	30.73	3.30ª	1.33ª	528.50
CD (0.05)		0.034	1.599	2.380	NS	0.211	0.054	NS

^{*}Means in a column with common superscript are not significantly different at the 0.05 level of probability by Duncan's multiple range test.

Tortilla chips enriched with up to 10% shiitake mushroom powder were determined to be well-accepted through sensory analysis (Fig. 2.5.14). These tortilla chips, enhanced with 10% shiitake mushroom powder, exhibited the following nutritional composition: 14.15% protein, 48.85% carbohydrates, 30.73% fat, 3.30% ash, 1.33% crude fibre, and a caloric content of 528.50 Kcal per 100 grams.

अच्छी तरह से स्वीकार किए जाने के लिए निर्धारित किया गया था। 10% शिटाके मशरूम पाउडर के साथ संवर्धित इन टॉर्टिला चिप्स ने निम्नलिखित पोषण संरचना प्रदर्शित की: 14.15% प्रोटीन, 48.85% कार्बोहाइड्रेट, 30.73% वसा, 3.30% राख, 1.33% फाइबर, और 528.50 किलो कैलोरी प्रति 100 ग्राम ऊर्जा।

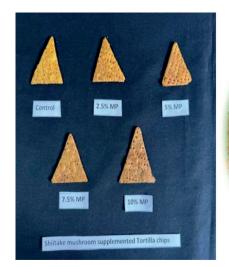


Fig. 2.5.14. Shiitake mushroom supplemented tortilla chips चित्र 2.5.14 शिटाके मशरूम पूरक टॉर्टिला चिप्स

Process optimization, sensory and nutritional analysis of mixed mushroom soup mix using *Hericium* mushroom

Eight formulations of mixed mushroom soup mix using *Hericium* mushroom in various combinations with shiitake mushroom, oyster mushroom, button mushroom were prepared and are shown in Table 2.27.

हेरिशियम मशरूम का उपयोग करके मिश्रित मशरूम सूप मिश्रण की प्रक्रिया अनुकूलन, संवेदी और पोषण संबंधी विश्लेषण

शिटाके मशरूम, ऑयस्टर मशरूम, बटन मशरूम के साथ विभिन्न संयोजनों में हेरिशियम मशरूम का उपयोग करके मिश्रित मशरूम सूप मिश्रण के आठ फॉर्मूलेशन तैयार किए गए और तालिका 2.27 में दिखाए गए हैं।

Table 2.27. Formulations of mixed mushroom soup mix with *Hericium* mushroom तालिका 2.27 *हेरिशियम* मशरूम के साथ मिश्रित मशरूम सूप मिश्रण का निर्माण

S.No.	Formulation	Mushroom used
1	Н	Hericium
2	HS	Hericium +Shiitake
3	НО	Hericium + Oyster
4	НВ	<i>Hericium</i> + Button
5	HSO	<i>Hericium</i> + Shiitake + Oyster
6	HSB	<i>Hericium</i> +Shiitake + Button
7	НОВ	<i>Hericium</i> +Oyster + Button
8	HSOB	<i>Hericium</i> + Shiitake + Oyster +Button

All these soup mix formulations were then subjected to sensory, nutritional and antioxidant analysis. Sensory analysis was done by 16 semi trained panelists using 9 point hedonic scale rating. The results of sensory evaluation are represented in Fig 2.5.15. Mixed mushroom Soup mix containing *Hericium*, Oyster and Button mushrooms (HM+OM+BM) showed highest sensory acceptability scores followed by combination of *Hericium* and oyster mushroom (HM+OM).

फिर इन सभी सूप मिश्रण फॉर्मूलेशन को संवेदी, पोषण और एंटीऑक्सीडेंट विश्लेषण के अधीन किया गया। संवेदी विश्लेषण 16 अर्ध प्रशिक्षित पैनलिस्टों द्वारा 9 पॉइंट हेडोनिक स्केल रेटिंग का उपयोग करके किया गया था। संवेदी मूल्यांकन के परिणाम चित्र 2.5.15 में दर्शाए गए हैं। हेरिशियम, ऑयस्टर और बटन मशरूम (HM + OM+BM) युक्त मिश्रित मशरूम सूप मिश्रण ने उच्चतम संवेदी स्वीकार्यता स्कोर दिखाया, जिसके बाद हेरिशियम और ऑयस्टर मशरूम (HM+OM) का संयोजन रहा।

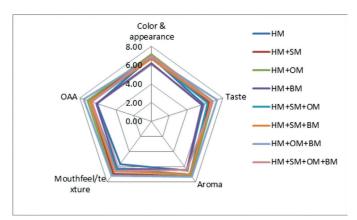


Fig. 2.5.15. Sensory evaluation of mixed mushroom soup mix formulations with Hericium

चित्र 2.5.15 हेरिशियम मशरूम के साथ मिश्रित मशरूम सूप मिश्रण फॉर्मूलेशन का संवेदी मूल्यांकन

Nutritional analysis of these 8 soup mix formulations have been shown in Table 2.28. The developed mixed mushroom soup mix (HM+OM+BM) contained higher protein, ash, antioxidant activity and lower fat and carbohydrate content as compared to other formulations. It was observed that inclusion of *Hericium* mushroom resulted into a substantial increase in the crude fibre content of soup mix.

इन 8 सूप मिश्रण फॉर्मूलेशन का पोषण संबंधी विश्लेषण तालिका 2.28 में दिखाया गया है। विकसित मिश्रित मशरूम सूप मिश्रण (HM+OM+BM) में अन्य फॉर्मूलेशन की तुलना में उच्च प्रोटीन, राख, एंटीऑक्सीडेंट गतिविधि और कम वसा और कार्बोहाइड्रेट शामिल थी। यह देखा गया कि हेरिशियम मशरूम को शामिल करने से सूप मिश्रण में फाइबर की मात्रा में काफी वृद्धि हुई।

Table 2.28. Nutritional evaluation of mixed mushroom soup mix formulations with Hericium तालिका 2.28 होरिशियम मशरूम के साथ मिश्रित मशरूम सूप मिश्रण फॉर्मूलेशन का पोषण मूल्यांकन

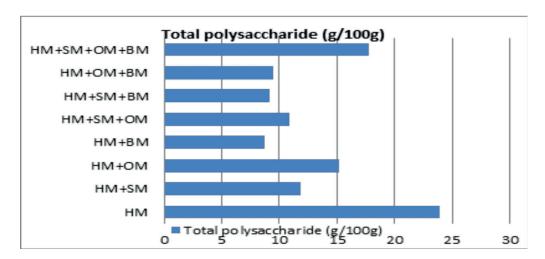
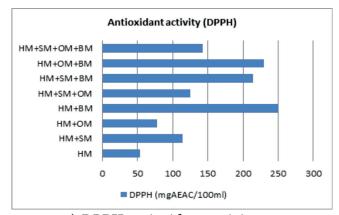
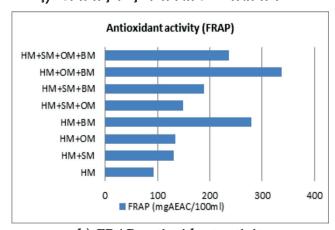
Soup mix Formulation	Moisture (g/100g)	Protein (g/100g)	Ash (g/100g)	Fat (g/100g)	Carbohydrate (g/100g)	Crude fibre (g/100g)
HM	6.20	10.34	10.27	11.73	61.46	1.50
HM+SM	6.20	13.79	10.32	9.85	59.84	1.55
HM+OM	5.40	12.17	9.32	10.41	62.71	1.51
HM+BM	5.60	15.61	10.20	9.44	59.15	0.99
HM+SM+OM	5.60	13.88	11.00	7.55	61.97	0.80
HM+SM+BM	6.20	13.79	10.83	7.97	61.20	0.61
HM+OM+BM	5.60	16.48	13.45	8.02	56.45	0.57
HM+SM+OM+BM	5.40	14.78	9.18	8.04	62.61	0.33

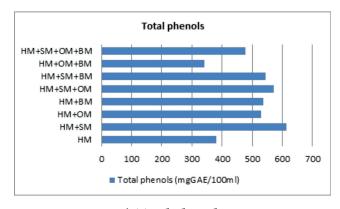
Total polysachharide content which is an important indicator of medicinal properties of mushroom was highest in soup mix prepared from *Hericium* mushroom (HM) followed by formulation containing *Hericium*, shiitake, oyster and button mushroom (HM+SM+OM+BM)

कुल पॉलीसेकेराइड, जो मशरूम के औषधीय गुणों का एक महत्वपूर्ण संकेतक है, हेरिशियम मशरूम (HM) से तैयार सूप मिश्रण में सबसे अधिक थी, इसके बाद हेरिशियम, शिटाके, ऑयस्टर और बटन मशरूम (HM+SM+OM+BM) और हेरिशियम और ऑयस्टर मशरूम (HM+OM) युक्त फॉर्म्लेशन शामिल थे (चित्र

and Hericum and mushroom oyster (HM+OM) (Fig.2.5.16). This implied that Hericium mushroom powder contains highest polysachharide as compared to other dried mushrooms. The antioxidant activities of soup mix formulations including DPPH antioxidant activity, FRAP antioxidant activity, total phenols and total flavonoids contents have been shown in Fig 2.5.17 (a, b & c). The results showed that inclusion of button mushroom into the soup mix formulation resulted into improvement in the antioxidant activities (DPPH & FRAP), whereas incorporation of shiitake mushroom resulted into increase in the total phenols of soup mix. Based on these properties mixed mushroom soup mix using Hericium mushroom was developed (Fig. 2.5.18)

2.5.16)। इसका तात्पर्य यह है कि हेरिशियम मशरूम पाउडर में अन्य सूखे मशरूम की तुलना में सबसे अधिक पॉलीसेकेराइड होता है। डीपीपीएच एंटीऑक्सीडेंट गितविधि, कुल फिनोल और कुल फ्लेवोनोइड सामग्री सिहत सूप मिश्रण फॉर्मूलेशन की एंटीऑक्सीडेंट गितविधियां चित्र 2.5.17 (ए, बी और सी) में दिखाई गई हैं। परिणामों से पता चला कि सूप मिश्रण फॉर्मूलेशन में बटन मशरूम को शामिल करने से एंटीऑक्सीडेंट गितविधियों (डीपीपीएच और एफआरएपी) में सुधार हुआ, जबिक शिटाके मशरूम को शामिल करने से सूप मिश्रण के कुल फिनोल में वृद्धि हुई। इन गुणों के आधार पर हेरिशियम मशरूम का उपयोग करके मिश्रित मशरूम सूप मिश्रण विकसित किया गया (चित्र 2.5.18)


Fig.2.5.16. Total polysaccharide content mixed mushroom soup mix formulations with Hericium चित्र 2.5.16 हेरिशियम मशरूम के साथ मिश्रित मशरूम सूप मिश्रण फॉर्मूलेशन के कुल पॉलीसेकेराइड

a) DPPH antioxidant activity ए) डीपीपीएच एंटीऑक्सीडेंट गतिविधि

b) FRAP antioxidant activity बी) एफआरएपी एंटीऑक्सीडेंट गतिविधि

c) Total phenols सी) कुल फिनोल

Fig.2.5.17. Antioxidant properties of mixed mushroom soup mix formulations with Hericium mushroom a) DPPH antioxidant activity b) FRAP c) Total phenols

चित्र 2.5.17 हेरिशियम मशरूम के साथ मिश्रित मशरूम सूप मिश्रण फॉर्मूलेशन के एंटीऑक्सीडेंट गुण ए) डीपीपीएच एंटीऑक्सीडेंट गतिविधि बी) एफआरएपी सी) कुल फिनोल

Fig. 2.5.18. Mixed mushroom soup mix using Hericium mushroom चित्र 2.5.18 हेरिशियम मशरूम युक्त मिश्रित मशरूम सूप मिश्रण

Process optimization, sensory, nutritional and nutraceutical analysis of flavored *Cordyceps militaris* tea

The impact of various tea preparation methods on the concentrations of bioactive compounds in Cordyceps militaris tea was analysed. Cordyceps militaris fruit bodies were used as the source material for tea preparation. Various tea preparation methods, including 5-minute dipping and boiling for 5, 10, and 15 minutes, were employed. The concentrations of cordycepin and adenosine were determined using appropriate analytical techniques. Additionally, total polysaccharides, DPPH radical scavenging activity, FRAP antioxidant activity, phenols, and flavonoids were quantified and are presented in Table 2.29. Different tea preparation methods significantly influenced the concentrations of bioactive compounds in Cordyceps militaris

स्वादयुक्त कॉर्डिसेप्स मिलिटेरिस चाय की प्रक्रिया अनुकूलन, संवेदी, पोषण और न्यूट्रास्युटिकल विश्लेषण

कॉर्डिसेप्स मिलिटेरिस चाय में बायोएक्टिव यौगिकों की मात्रा पर विभिन्न चाय तैयार करने के तरीकों के प्रभाव का विश्लेषण किया गया। चाय की तैयारी के लिए स्रोत सामग्री के रूप में कॉर्डिसेप्स मिलिटेरिस फल निकायों का उपयोग किया गया था। चाय तैयार करने की विभिन्न विधियाँ अपनाई गईं, जिनमें 5 मिनट तक डुबोना और 5, 10 और 15 मिनट तक उबालना शामिल है। उचित विश्लेषणात्मक तकनीकों का उपयोग करके कॉर्डिसेपिन और एडेनोसिन की मात्रा निर्धारित की गई थी। इसके अतिरिक्त, कुल पॉलीसेकेराइड, डीपीपीएच रेडिकल स्केवेंजिंग गतिविधि, एफआरएपी एंटीऑक्सीडेंट गतिविधि, फिनोल और फ्लेवोनोइड की मात्रा निर्धारित की गई और उन्हें तालिका 2.29 में प्रस्तुत किया गया है। विभिन्न चाय तैयार करने के तरीकों ने कॉर्डिसेप्स मिलिटेरिस चाय में बायोएक्टिव यौगिकों की मात्रा

tea. Boiling for a longer duration generally led to increased cordycepin and adenosine content. Similarly, the concentrations of total polysaccharides, DPPH radical scavenging activity, FRAP antioxidant activity, phenols, and flavonoids increased with longer boiling durations. These findings suggest that prolonged boiling enhances the extraction and release of bioactive compounds and antioxidants from *Cordyceps militaris*, resulting in higher concentrations in the prepared tea. Boiling for 10-15 minutes was recommended to maximize the content of cordycepin, adenosine, total polysaccharides, and antioxidant compounds in the tea (Fig. 2.5.19).

को महत्वपूर्ण रूप से प्रभावित किया। लंबे समय तक उबालने से आम तौर पर कॉर्डिसेपिन और एडेनोसिन की मात्रा बढ़ जाती है। इसी तरह, कुल पॉलीसेकेराइड, डीपीपीएच रेडिकल स्केवेंजिंग गतिविधि, एफआरएपी एंटीऑक्सीडेंट गतिविधि, फिनोल और फ्लेवोनोइड की मात्रा लंबे समय तक उबलने की अवधि के साथ बढ़ गई। इन निष्कर्षों से पता चलता है कि लंबे समय तक उबालने से कॉर्डिसेप्स मिलिटेरिस से बायोएक्टिव यौगिकों और एंटीऑक्सिडेंट के निष्कर्षण और रिलीज में वृद्धि होती है, जिसके परिणामस्वरूप तैयार चाय में इनकी अधिक मात्रा होती है। चाय में कॉर्डिसेपन, एडेनोसिन, कुल पॉलीसेकेराइड और एंटीऑक्सीडेंट यौगिकों की मात्रा को बढ़ाने के लिए 10–15 मिनट तक उबालने की सिफारिश की गई (चित्र 2.5.19)।

Table 2.29. Bioactive compounds in *cordyceps* tea prepared by various methods* तालिका 2.29 विभिन्न तरीकों से तैयार *कॉर्डिसेप्स* चाय में बायोएक्टिव यौगिक

Tea preparation method	Cordycepin (mg/100ml)	Adenosine (mg/100ml)	Total polysaccharide (mg/100ml)	DPPH (mg AEAC/100ml)	FRAP (mg AEAC/100ml)	Phenols (mg GAE/100ml)	Flavonoids (mg QE/100ml)
5 min Dip	0.48 ^d	0.17^{d}	0.550°	2.017°	1.837°	4.903 ^d	3.050°
5 min Boil	0.87°	0.25°	0.940°	3.567 ^b	2.547 ^b	6.837°	7.647 ^b
10 min Boil	1.29 ^b	0.32 ^b	2.083 ^b	4.730 ^a	2.847ª	8.793 ^b	8.870ª
15 min Boil	1.45ª	0.40ª	2.680ª	5.130 ^a	2.877ª	9.557ª	9.200ª
CD (0.05)	0.096	0.030	0.420	0.587	0.187	0.389	0.790

^{*}The content of Cordycepin (9.5mg/g) and Adenosine (1.8 mg/g) in fruit bodies of *Cordyceps militaris* and 1g fruit body was used to prepare 100ml tea

Fig. 2.5.19. Cordyceps militaris tea prepared by different methods चित्र 2.5.19 विभिन्न तरीकों से तैयार की गई कॉर्डिसेप्स मिलिटेरिस चाय

The sensory attributes of *Cordyceps militaris* tea added with lemongrass, tulsi, green tea, and mint and control with no added flavor were analyzed. The evaluation included attributes such as color, aroma, flavor, and overall acceptability (OAA) for each tea variant, aiming to determine the sensory preferences among different flavors. Table 2.30 presents the results of the sensory analysis, indicating scores for color, aroma, flavor, and overall acceptability (OAA) for each flavoured Cordyceps militaris tea variant. Lemongrass and mint flavored Cordycpes teas appeared as more balanced and preferred options, while tulsi and green tea variants lagged behind in certain attributes. The control group's high scores suggest that traditional Cordyceps militaris tea maintains a strong sensory appeal

लेमनग्रास, तुलसी, हरी चाय और पुदीना के साथ मिलाई गई *कॉर्डिसेप्स मिलिटेरिस* चाय की संवेदी विशेषताओं और बिना किसी अतिरिक्त स्वाद के नियंत्रण का विश्लेषण किया गया। मूल्यांकन में प्रत्येक चाय प्रकार के लिए रंग, सुगंध, स्वाद और समग्र स्वीकार्यता (OAA) जैसी विशेषताएं शामिल थीं, जिसका उद्देश्य विभिन्न स्वादों के बीच संवेदी प्राथमिकताओं को निर्धारित करना था। तालिका 2.30 संवेदी विश्लेषण के परिणाम प्रस्तुत करती है, जो प्रत्येक स्वादयुक्त कॉर्डिसेप्स मिलिटेरिस चाय संस्करण के लिए रंग, स्गंध, स्वाद और समग्र स्वीकार्यता (OAA) के लिए स्कोर दर्शाती है। लेमनग्रास और पुदीने के स्वाद वाली कॉर्डिसेप्स चाय अधिक संतुलित और पसंदीदा विकल्प के रूप में सामने आई, जबिक तुलसी और हरी चाय के प्रकार कुछ विशेषताओं में पीछे रह गए। नियंत्रण समृह के उच्च स्कोर से पता चलता है कि पारंपरिक कॉर्डिसेप्स मिलिटेरिस चाय एक मजबूत संवेदी अपील बनाए रखती है।

Table 2.30. Sensory analysis of flavoured Cordyceps tea

तालिका 2.30 स्वादयुक्त कॉर्डिसेप्स चाय का संवेदी विश्लेषण

Flavor	Color	Aroma	Flavor	OAA
Lemon grass	1.438ab	1.500ª	1.375ª	1.625ª
Tulsi	0.250°	0.375 ^{bc}	0.625 ^{bc}	0.313 ^b
Green tea	0.375°	-0.250°	0.250°	0.063 ^b
Mint	0.813 ^{bc}	1.125 ^{ab}	0.500b°	0.875 ^{ab}
Control	1.875ª	0.500 ^{bc}	1.125ab	1.375ª
CD(0.05)	0.804	0.944	0.689	0.846

^{*}Means in a column with common superscript are not significantly different at the 0.05 level of probability by Duncan's multiple range test.

Process optimization, sensory, nutritional and nutraceutical analysis of *Cordyceps militaris* mushroom soup mix

This study explores different formulations of Cordyceps militaris mushroom soup mix, incorporating oyster, button, and shiitake mushrooms, along with other essential ingredients. Table 2.31 shows the different formulations of Cordyceps militaris mushroom soup mix, specifying the quantity of each ingredient used. Table 2.32 presents the sensory analysis results for each soup mix formulation, including color, taste, aroma, mouthfeel, and

कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिश्रण की प्रक्रिया अनुकूलन, संवेदी, पोषण और न्यूट्रास्युटिकल विश्लेषण

यह अध्ययन कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिश्रण के विभिन्न फॉर्मूलेशन की खोज करता है, जिसमें अन्य आवश्यक सामग्रियों के साथ—साथ ऑयस्टर, बटन और शिटाके मशरूम शामिल हैं। तालिका 2.31 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिश्रण के विभिन्न फॉर्मूलेशन को दिखाती है, जिसमें उपयोग किए गए प्रत्येक घटक की मात्रा निर्दिष्ट है। तालिका 2.32 रंग, स्वाद, सुगंध, माउथफील और समग्र स्वीकार्यता (OAA) सहित प्रत्येक सूप मिश्रण फॉर्मूलेशन के लिए संवेदी विश्लेषण परिणाम प्रस्तुत करती है। संवेदी विश्लेषण परिणामों

overall acceptability (OAA). The sensory analysis results revealed varying preferences among formulations, with the formulation combining *Cordyceps militaris* with button mushroom scoring highest in taste and aroma (Fig. 2.5.20).

The nutritional analysis results for each soup mix formulation, including moisture content, protein, ash, fat, carbohydrate, and dietary fibre are presented in Table 2.33. Nutritional analysis indicated that formulations with additional mushroom varieties exhibit increased protein content and dietary fibre. Formulation CB had highest protein, ash, fat and antioxidant activities (DPPH, FRAP & Flavonoid). Formulation CO had highest fibre content and total polysaccharide content. Fig. 2.5.21 illustrates the antioxidant properties and bioactive compounds present in the *Cordyceps militaris* mushroom soup mix, shedding light on its potential health-promoting benefits.

से फॉर्मूलेशनों के बीच अलग—अलग प्राथमिकताओं का पता चला, कॉर्डिसेप्स मिलिटेरिस को बटन मशरूम के साथ मिलाकर तैयार किए गए फॉर्मूलेशन ने स्वाद और सुगंध में उच्चतम स्कोर प्राप्त किया (चित्र 2.5.20)।

नमी की मात्रा, प्रोटीन, राख, वसा, कार्बोहाइड्रेट और फाइबर सहित प्रत्येक सूप मिश्रण फॉर्मूलेशन के लिए पोषण विश्लेषण परिणाम तालिका 2.33 में प्रस्तुत किए गए हैं। पोषण संबंधी विश्लेषण से संकेत मिलता है कि अतिरिक्त मशरूम किरमों के साथ तैयार किए गए फॉर्मूलेशन में प्रोटीन सामग्री और फाइबर में वृद्धि देखी गई है। फॉर्मूलेशन CB में उच्चतम प्रोटीन, राख, वसा और एंटीऑक्सीडेंट गतिविधियां (डीपीपीएच, एफआरएपी और फ्लेवोनोइड) थीं। फॉर्मूलेशन CO में उच्चतम फाइबर और कुल पॉलीसेकेराइड पाया गया। चित्र 2.5.21 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिश्रण में मौजूद एंटीऑक्सीडेंट गुणों और बायोएक्टिव यौगिकों को दर्शाता है, जो इसके संभावित स्वास्थ्य—प्रचार लाभों पर प्रकाश डालता है।

Table 2.31. Different formulations of Cordyceps militaris mushroom soup mix तालिका 2.31. कॉर्डिसेप्स मिलिटेरिस मशरूम सुप मिश्रण के विभिन्न फॉर्म्लेशन

Ingredients	С	СО	CS	СВ
Cordyceps militaris fruit bodies	1 g	0	0	0
Oyster mushroom powder	1 g	4 g	0	0
Button mushroom powder	1 g	0	0	4 g
Shiitake mushroom powder	1 g	0	4 g	0
Other ingredients (Milk powder, salt, sugar, starch, black pepper, garlic powder)	15 g	15 g	15 g	15 g
CD(0.05)	0.804	0.944	0.689	0.846

Table 2.32. Sensory analysis of Cordyceps militaris mushroom soup mix* तालिका 2.32 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिक्स का संवेदी विश्लेषण

Soup mix formulation	Color	Taste	Aroma	Mouth-	OAA -feel
Cordyceps	7.667a	7.167ab	6.778a	7.222	7.167ab
Cordyceps + Oyster	7.667a	7.667ª	6.611ab	7.389	7.889a
Cordyceps + Button	6.778b	8.056ª	7.222a	7.278	7.778ª
Cordyceps + Shiitake	7.000ab	6.611 ^b	5.889⁵	7.222	6.778⁵
CD (0.05)	0.751	1.048	0.794	NS	0.874

^{*}Means in a column with common superscript are not significantly different at the 0.05 level of probability by Duncan's multiple range test.

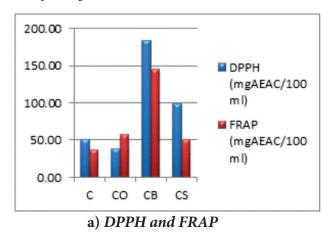
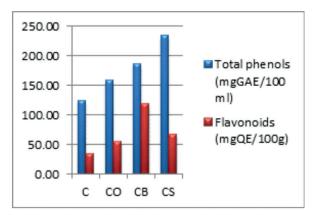


Fig. 2.5.20. Cordyceps militaris mushroom soup mix चित्र 2.5.20 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिक्स


Table 2.33. Nutritional analysis of Cordyceps militaris mushroom soup mix* तालिका 2.33 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिक्स का पोषण संबंधी विश्लेषण'

Soup mix formulation	Moisture (%)	Protein (%)	Ash (%)	Fat (%)	Carbohydrate (%)	Dietary fibre (%)
Cordyceps	2.623ª	9.737°	1.997°	5.367°	80.280ª	80.280ª
Cordyceps + Oyster	2.440⁵	13.287 ^b	2.223 ^b	6.077 ^b	75.970⁵	75.970 ^b
Cordyceps + Button	2.377°	16.907ª	3.340a	6.383ª	70.997 ^d	70.997d
Cordyceps+ Shiitake	2.340°	13.187 ^b	3.263ª	6.400a	74.810°	74.810°
CD (0.05)	0.059	0.630	0.184	0.202	0.723	0.202

^{*}Means in a column with common superscript are not significantly different at the 0.05 level of probability by Duncan's multiple range test.

ए) डीपीपीएच और एफआरएपी

- b) Total phenols and flavonoids
- बी) कुल फिनोल और फ्लेवोनोइड

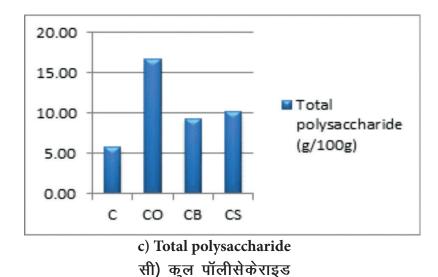


Fig. 2.5.21. Antioxidant properties and bioactive compounds in Cordyceps militaris mushroom soup mix

चित्र 2.5.21 कॉर्डिसेप्स मिलिटेरिस मशरूम सूप मिक्स में एंटीऑक्सीडेंट गुण और बायोएक्टिव यौगिक

हाइब्रिड सौर ड्रायर के सिम्युलेटेड थर्मल प्रदर्शन का सत्यापन

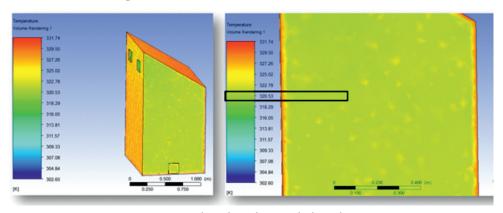


Fig. 2.5.22. Simulated and actual chamber temperature चित्र 2.5.22 सिम्युलेटेड और वास्तविक चैम्बर तापमान

After completing fabrication work of hybrid solar drying chamber which was designed using CFD simulation, its performance in terms of generation of heat was validated. As depicted in Fig. 2.5.22 under 'no load' testing, chamber temperature of 46.58 °C was recorded. Solar simulation of chamber also estimated chamber temperature of 47°C under similar operating

सीएफडी सिमुलेशन का उपयोग करके डिजाइन किए गए हाइब्रिड सौर ड्रायर का निर्माण कार्य पूरा करने के बाद, गर्मी पैदा करने के संदर्भ में इसके प्रदर्शन को मान्य किया गया था। जैसा कि चित्र 2.5.22 में दर्शाया गया है 'नो लोड' परीक्षण के तहत, चैम्बर तापमान 46. 58 डिग्री सेल्सियस दर्ज किया गया था। चैम्बर के सौर सिमुलेशन ने समान परिचालन स्थितियों के तहत चैम्बर तापमान 47°C का अनुमान लगाया (वायू प्रवाह /0.043

conditions (Air flow @0.043 m³/s, Location co-ordinates, Date and Time). Therefore, the thermal performance of developed solar drying chamber was found at par with the simulated performance.

Effectiveness of solar drying chamber and its auxiliary heating system

From Fig. 2.5.23 it was seen that, modified hybrid solar-electric drying chamber was effective in achieving target drying temperatures resulting from solar irradiation during day hours and from backup heating unit during night hours.

m³/s, स्थान निर्देशांक, दिनांक और समय)। इसलिए विकसित सौर ड्रायर का थर्मल प्रदर्शन सिम्युलेटेड प्रदर्शन के बराबर पाया गया।

सौर ड्रायर और इसकी सहायक हीटिंग प्रणाली की प्रभावशीलता

चित्र 2.5.23 से यह देखा गया कि, संशोधित हाइब्रिड सौर-विद्युत ड्रायर दिन के दौरान सौर विकिरण और रात के दौरान बैकअप हीटिंग यूनिट के परिणामस्वरूप लक्ष्य सुखाने वाले तापमान को प्राप्त करने में प्रभावी था।

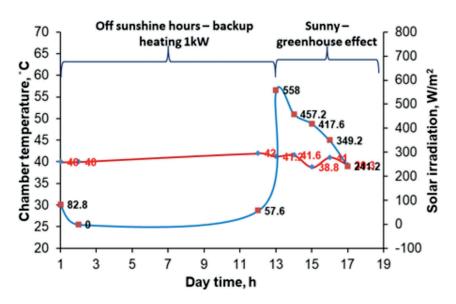


Fig. 2.5.23. Chamber temperature Vs Solar irradiation चित्र 2.5.23 चैम्बर तापमान बनाम सौर विकिरण

Temperature distribution in hybrid solar dryer (HSD)

Uniformity of temperature distribution inside hybrid solar drying chamber was evaluated by means of recording air temperatures at 4 different locations in the chamber. Fig. 2.5.24 shows temperatures profiles in the drying chamber. It was observed that distribution of temperature was uniform in modified HSD.

हाइब्रिड सोलर ड्रायर (HSD) में तापमान वितरण

हाइब्रिड सौर ड्रायर के अंदर तापमान वितरण की एकरूपता का मूल्यांकन कक्ष में 4 अलग—अलग स्थानों पर हवा के तापमान को रिकॉर्ड करके किया गया। चित्र 2.5.24 ड्रायर तापमान प्रोफ़ाइल दिखाता है। यह देखा गया कि संशोधित हाइब्रिड सोलर ड्रायर में तापमान का वितरण एक समान था।

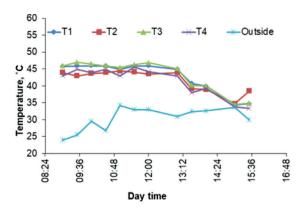


Fig. 2.5.24. Temperature profiles in modified hybrid solar drying chamber चित्र 2.5.24 संशोधित हाइब्रिंड सौर ड्रायर में तापमान प्रोफाइल

Drying characteristics of white button mushroom dried in modified hybrid solar dryer

Appearance wise quality of dried slices of white button mushroom was seen to be better in modified HSD as compared to other drying methods (Fig. 2.5.25).

संशोधित हाइब्रिड सोलर ड्रायर में सुखाए गए सफेद बटन मशरूम की विशेषताएं

सफेद बटन मशरूम के सूखे स्लाइस के रंगरूप के अनुसार गुणवत्ता अन्य सुखाने के तरीकों की तुलना में संशोधित HSD में बेहतर देखी गई (चित्र 2.5.25)।

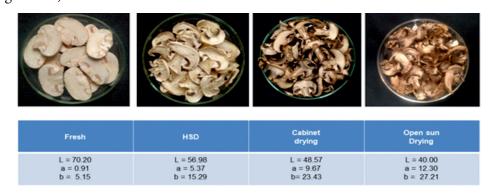
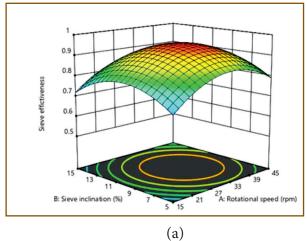


Fig. 2.5. 25 Color and appearance of dried button mushroom slices चित्र 2.5. 25 सुखे बटन मशरूप स्लाइस का रंग रूप

Optimization of rotary sieve performance for preparation of casing soil

Rotary sieve was designed and developed for sieving of decomposed raw FYM for preparation of casing soil required in mushroom cultivation. Performance of this sieve was evaluated by conducting 15 testing trials and optimum operating parameters were determined. As depicted in Fig. 2.5.26 (a) and (b), optimum


केसिंग मिट्टी की तैयारी के लिए रोटरी छलनी के प्रदर्शन का अनुकूलन

मशरूम की खेती के लिए आवश्यक केसिंग मिट्टी की तैयारी के लिए विघटित कच्ची FYM को छानने के लिए रोटरी छलनी को डिजाइन और विकसित किया गया था। इस छलनी के प्रदर्शन का मूल्यांकन 15 परीक्षण करके किया गया और इष्टतम ऑपरेटिंग पैरामीटर निर्धारित किए गए। जैसा कि चित्र 2.5.26 (ए) और (बी) में दर्शाया गया है, अधिकतम छलनी प्रभावशीलता

performance of rotary sieve in terms of maximum sieve effectiveness (0.952) and sieve capacity (61 में रोटरी छलनी का इष्टतम प्रदर्शन 33.2 आरपीएम की crates/h) were found at rotational speed of 33.2 rpm, 9.85% sieve inclination and 0.499 inch sieve opening size.

(0.952) और छलनी क्षमता (61 क्रेट्स / घंटा) के संदर्भ घूर्णी गति, 9.85% छलनी का झुकाव और 0.499 इंच के छिद्र आकार पर पाया गया।

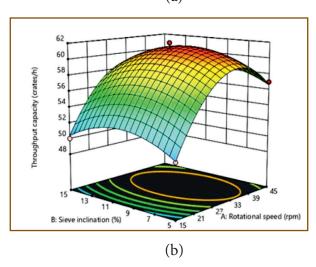


Fig. 2.5.26. (a) Effectiveness of sieve and (b) Capacity of sieve चित्र 2.5.26 ए) छलनी की प्रभावशीलता और (बी) छलनी की क्षमता

2.6 OTHER RESEARCH ACTIVITIES 2.6 अन्य अनुसंधान गतिविधियाँ

Impact assessment of selected technologies developed by ICAR-DMR

1. Hericium cultivation technology

Table 2.34 shows the cost and returns from *Hericium* mushroom cultivation. The share of fixed cost in total cost is 80% on an average. It was highest for smaller units (Rs. 382/ bag) followed by medium units (Rs. 340/ bag) and larger units (Rs. 327/ bag). The variable cost includes cost of raw materials, labour and energy costs. The variable cost/ bag was highest for small units (Rs. 93/ bag) followed by medium (Rs. 88/ bag) and large (Rs. 80/ bag) units. It shows the economies of scale operating in the *Hericium* cultivation. The ROVC for larger units are highest (Rs. 280/ bag) followed by medium (Rs. 253/ bag) and small (Rs. 216/ bag) units.

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन द्वारा विकसित चयनित प्रौद्योगिकियों का प्रभाव मूल्यांकन

1 हेरिशियम खेती तकनीक

तालिका 2.34 हेरिशियम मशरूम की खेती से होने वाली लागत और रिटर्न को दर्शाती है। कुल लागत में निश्चित लागत का हिस्सा औसतन 80% है। यह छोटी इकाइयों (रु. 382 / बैग) के लिए उच्चतम था, इसके बाद मध्यम इकाइयों (रु. 340 / बैग) और बड़ी इकाइयों (रु. 327 / बैग) का स्थान था। परिवर्तनीय लागत में कच्चे माल की लागत, श्रम और ऊर्जा लागत शामिल हैं। परिवर्तनीय लागत / बैग छोटी इकाइयों (रु. 93 / बैग) के लिए सबसे अधिक थी, इसके बाद मध्यम (रु. 88 / बैग) और बड़ी (रु. 80 / बैग) इकाइयों का स्थान था। यह हेरिशियम की खेती में चल रही पैमाने के आर्थिक लाभ को दर्शाता है। बड़ी इकाइयों के लिए आरओवीसी उच्चतम (280 रुपये प्रति बैग) है, इसके बाद मध्यम (253 रुपये प्रति बैग) और छोटी (216 रुपये प्रति बैग) इकाइयों का स्थान है।

Table 2.34. Costs and returns from mushroom cultivation: Hericium mushroom cultivation तालिका 2.34. मशरूम की खेती की लागत और आयः हेरिशियम मशरूम की खेती

Parameters	Categories a/o Mushroom unit size (Rs/ bag/ cycle)					
	Small	Medium	Large	Overall		
No. of bags	<30	30-100	>100			
Total Fixed Cost (Capital	381.75	339.33	326.40	349.16		
Recovery Cost (CRC)+ Salary)	(80.42%)	(79.44%)	(80.27%)	(80.04%)		
Variable Cost						
Saw dust	7.00	5.89	9.38	7.42		
	(1.47%)	(1.38%)	(2.31%)	(1.72%)		
Wheat bran	2.65	3.17	4.22	3.35		
	(0.56%)	(0.74%)	(1.04%)	(0.78%)		
Chemicals	2.33	0.35	0.12	0.93		
	(0.49%)	(0.08%)	(0.03%)	(0.20%)		
Labour cost	30.64	23.68	21.38	25.23		
	(6.46%)	(5.54%)	(5.26%)	(5.75%)		
Energy cost	32.14	33.16	31.88	32.39		
	(6.77%)	(7.76%)	(7.84%)	(7.46%)		

Parameters	Categories a/o Mushroom unit size (Rs/ bag/ cycle)						
Spawn and other costs	18.17	21.59	13.25	17.67			
	(3.83%)	(5.05%)	(3.26%)	(4.05%)			
Total Variable Cost	92.93	87.84	80.22	86.99			
	(19.58%)	(20.56%)	(19.73%)	(19.96%)			
Gross Cost	474.68	4727.17	406.61	436.15			
	(100.00%)	(100.00%)	(100.00%)	(100.00%)			
Gross Returns	308.57	341.05	360.00	336.54			
Net Returns	-166.11	-86.12	-46.61	-99.61			
ROVC	215.64	253.21	279.78	249.55			

Figures in parenthesis are respective share in gross cost कोष्ठक में दिए गए आंकडे सकल लागत में संबंधित हिस्सेदारी हैं

Economic feasibility

It is imperative to know whether the *Hericium* growing units are viable in economic terms or not. The check for the economic feasibility is presented in table 2.35. The economic feasibility analysis suggests that all the units studied were in experimental phase and hence were not viable economically as all were working below their BEP with negative margin of safety. The operating ratio determines how efficiently the units are maintaining the operating expenses from the earned income. For all the units the operating ratio is within optimum limit.

आर्थिक साध्यता

यह जानना जरूरी है कि हेरिशियम उगाने वाली इकाइयां आर्थिक दृष्टि से व्यवहार्य हैं या नहीं। आर्थिक व्यवहार्यता की जाँच तालिका 2.35 में प्रस्तुत की गई है। आर्थिक व्यवहार्यता विश्लेषण से पता चलता है कि अध्ययन की गई सभी इकाइयाँ प्रायोगिक चरण में थीं और इसलिए आर्थिक रूप से व्यवहार्य नहीं थीं क्योंकि सभी सुरक्षा के नकारात्मक मार्जिन के साथ अपने बीईपी से नीचे काम कर रही थीं। परिचालन अनुपात यह निर्धारित करता है कि इकाइयाँ अर्जित आय से परिचालन व्यय को कितनी कुशलता से बनाए रख रही हैं। सभी इकाइयों के लिए परिचालन अनुपात इष्टतम सीमा के भीतर है।

Table 2.35. Measures of economic feasibility of *Hericium* mushroom तालिका 2.35. *हेरिशियम* मशरूम की आर्थिक व्यवहार्यता के उपाय

Parameters	Optimum	Small	Medium	Large	Overall
Rate of return on capital	>1	-0.44	-0.25	-0.14	0.97
Operating ratio	<1	0.30	0.26	0.22	0.28
Benefit Cost Ratio	>1	-0.44	-0.25	-0.14	0.26
Cost elasticity	-ve	-1.05***	-0.17***	-1.16***	-0.79***
Break Even (Quantity in Kg)		10	58	78	49
MOS (Margin of Safety) %	+ve	-95.80	-0.04	-56.61	-50.82

^{***} p<0.000 level of significance

2. Cordyceps cultivation technology

The cost and returns from *Cordyceps* mushroom cultivation is given in Table 2.36. The share of fixed cost in total cost is 31% on an average. It was highest for smaller units (Rs. 21000/ kg) followed by medium units (Rs. 11000/ kg) and larger units (Rs. 4000/ kg). The variable cost includes cost of raw materials, labour and energy costs. The variable cost/ bag was highest for small units (Rs. 31000/ kg) followed by medium (Rs. 21000/ kg) and large (Rs. 17000/ kg) units. It shows the economies of scale operating in the *Cordyceps* cultivation. The net returns and returns over variable costs (ROVC) are highest for large units as the size of unit is increased, the average cost declines and profits increase henceforth.

2. खेती तकनीक

कॉर्डिसेप्स मशरूम की खेती की लागत और रिटर्न तालिका 2.36 में दिया गया है। कुल लागत में निश्चित लागत का हिस्सा औसतन 31% है। यह छोटी इकाइयों (रु. 21000/किग्रा) के लिए उच्चतम था, इसके बाद मध्यम इकाइयों (रु. 11000/किग्रा) और बड़ी इकाइयों (रु. 4000 / किग्रा) का स्थान था। परिवर्तनीय लागत में कच्चे माल की लागत, श्रम और ऊर्जा लागत शामिल हैं। परिवर्तनीय लागत / बैग छोटी इकाइयों (रु. 31000 / किग्रा) के लिए सबसे अधिक थी, इसके बाद मध्यम (रु. 21000 / किग्रा) और बडी (रु. 17000 / किग्रा) इकाइयों के लिए थी। यह कॉर्डिसेप्स खेती में चल रही पैमाने की अर्थव्यवस्थाओं को दर्शाता है। बडी इकाइयों के लिए शुद्ध रिटर्न और परिवर्तनीय लागत पर रिटर्न (आरओवीसी) सबसे अधिक है क्योंकि यूनिट का आकार बढ़ता है, औसत लागत में गिरावट आती है और मुनाफा बढ़ता है।

Table 2.36. Costs and returns from mushroom cultivation: Cordyceps mushroom cultivation तालिका 2.36. मशरूम की खेती की लागत और रिटर्नः कॉर्डिसेप्स मशरूम की खेती

Parameters	Categories a/	o Mushroom	unit size (Rs	000/ bag/ cycle)
	Small	Medium	Large	Overall
Dried production Kg/ cycle	<10	10-50	>50	
Total Fixed Cost (CRC+ Salary)	20.88	10.57	3.92	11.79
	(40.32%)	(33.32%)	(18.86%)	(30.83%)
Variable Cost				
Raw material	4.73	3.39	3.61	3.91
	(9.14%)	(10.68%)	(17.37%)	(12.40%)
Liquid media	10.32	10.12	10.00	10.15
	(19.93%)	(31.90%)	(48.15%)	(33.33%
Liquid spawn	0.96 (1.85%)	0.90 (2.82%)	0.89 (4.30%)	0.92 (4.30%)
Energy cost	7.22	3.58	1.00	3.94
	(13.95%)	(11.29%)	(4.82%)	(10.02%)
Labour cost	2.67	2.00	1.13	1.93
	(5.15%)	(6.30%)	(5.42%)	(5.62%)
Other costs	5.00	1.17	0.23	2.13
	(9.66%)	(3.68%)	(1.08%)	(4.81%)

Parameters	Categories a/o Mushroom unit size (Rs 000/ bag/ cycl						
	Small	Medium	Large	Overall			
Total Variable Cost	30.90 (59.68%)	21.16 (66.6%8)	16.85 (81.14%)	22.97 (69.17%)			
Gross Cost	51.78 (100.00%)	31.73 (100.0%)	20.77 (100.00%)	436.15 (100.00%)			
Gross Returns	40.00	77.50	50.00	55.83			
Net Returns	-11.78	45.77	29.23	21.08			
ROVC	9.10	56.34	33.15	32.86			

Figures in parenthesis are respective share in gross cost

कोष्ठक में दिए गए आंकडे सकल लागत में संबंधित हिस्सेदारी हैं

Economic feasibility

It is imperative to know whether the *Cordyceps* growing units are viable in economic terms or not. The check for the economic feasibility is presented in table 2.37. The rate of return on capital measures the returns earned over invested capital i.e. the efficiency of invested funds.It is highest for large units (7.4). The operating ratio determines how efficiently the units are maintaining the operating expenses low while generating profit at the same time. In all the units, the operating ratio is within optimum limit. BCR- benefit cost ratio which is highest for larger unit showing an earning of Rs. 2.69 for every rupee spent. The cost elasticity is an important economic measure as it presents how the cost will change if units increase their production by one unit. A negative CE is optimum showing as the mushroom production scale is increased the average cost declines representing economies of scale operating in the sample units. Hence, the scale at which units are operating is crucial for their break even position. The breakeven point for all the units is given in the table 2.37 The margin of safety is positive showing that all the units are working above their breakeven point and are earning profits.

आर्थिक साध्यता

यह जानना जरूरी है कि कॉर्डिसेप्स उगाने वाली इकाइयां आर्थिक दृष्टि से व्यवहार्य हैं या नहीं। आर्थिक व्यवहार्यता की जांच तालिका 2.37 में प्रस्तृत की गई है। पुंजी पर रिटर्न की दर निवेशित पुंजी पर अर्जित रिटर्न यानी निवेशित फंड की दक्षता को मापती है। यह बड़ी इकाइयों (7.4) के लिए उच्चतम है। परिचालन अनुपात यह निर्धारित करता है कि इकाइयाँ एक ही समय में लाभ उत्पन्न करते हुए परिचालन व्यय को कितनी कुशलता से कम बनाए रख रही हैं। सभी इकाइयों में परिचालन अनुपात इष्टतम सीमा के भीतर है। लाभ लागत अनुपात जो रुपये की कमाई दिखाने वाली बड़ी इकाई के लिए उच्चतम है। लागत लोच एक महत्वपूर्ण आर्थिक माप है क्योंकि यह प्रस्तृत करता है कि यदि इकाइयाँ अपने उत्पादन में एक इकाई की वृद्धि करती हैं तो लागत कैसे बदल जाएगी। एक नकारात्मक सीई इष्टतम दर्शाता है जैसे-जैसे मशरूम उत्पादन का पैमाना बढ़ता है, इकाइयों में काम करने वाले पैमाने की अर्थव्यवस्थाओं का प्रतिनिधित्व करने वाली औसत लागत में गिरावट आती है। इसलिए, जिस पैमाने पर इकाइयां काम कर रही हैं वह उनकी सम–लाभ स्थिति के लिए महत्वपूर्ण है। सभी इकाइयों के लिए ब्रेकईवन पॉइंट तालिका 2.37 में दिया गया है। सुरक्षा का मार्जिन सकारात्मक है, यह दर्शाता है कि सभी इकाइयाँ अपने ब्रेकईवन पॉइंट से ऊपर काम कर रही हैं और मुनाफा कमा रही हैं।

Table 2.37. Measures of economic feasibility of *Cordyceps* mushroom तालिका 2.37 *कॉर्डिसेप्स* मशरूम की आर्थिक व्यवहार्यता के उपाय

Parameters	Optimum	Small	Medium	Large	Overall
Rate of return on capital	>1	-0.56	4.33	7.46	3.74
Operating ratio	<1	0.77	0.27	0.34	0.46
Benefit Cost Ratio	>1	0.52	2.71	4.85	2.69
Cost elasticity	-ve	-0.36***	-0.34***	-0.07***	-0.26***
Break Even (Quantity in Kg)		11	05	7	8
MOS (Margin of Safety) %	+ve	-59.08	262.04	1095.87	432.94

^{***} p<0.000 level of significance

TRANSFER OF TECHNOLOGY (ToT) प्रौद्योगिकी हस्तांतरण (टीओटी)

1. Training programmes

In the year 2023, the Directorate organized total 56 training programmes among which 45 on-campus, and 11 were off campus training programmes for farmers, farm women, unemployed youth and entrepreneurs under various component schemes for various mushrooms (Table 3.1). Among these, 7 training programmes were conducted for farmers under Tribal Sub Plan (TSP), 4 trainings were organized under North-Eastern Hilly (NEH) region component, and 13 on and off campus training progammes were conducted under Scheduled Caste- Sub Plan (SC-SP) component. It also included one training for scientific/ technical staff of Krishi Vigyan Kendra (KVKs). During the reporting year, a total of 1788 participants were benefitted from various training programmes conducted by the Directorate.

1. प्रशिक्षण कार्यक्रम

वर्ष 2023 में, निदेशालय ने विभिन्न मशरूमों के लिए विभिन्न घटक योजनाओं के तहत किसानों, कृषक महिलाओं, बेरोजगार युवाओं और उद्यमियों के लिए कुल 56 प्रशिक्षण कार्यक्रम आयोजित किए, जिनमें से 45 ऑन–कैंपस और 11 ऑफ–कैंपस प्रशिक्षण कार्यक्रम थे (तालिका 1)। इनमें से, जनजातीय उपयोजना (टीएसपी) के तहत किसानों के लिए 7 प्रशिक्षण कार्यक्रम आयोजित किए गए, उत्तर-पूर्वी पहाडी (एनईएच) क्षेत्र घटक के तहत 4 प्रशिक्षण कार्यक्रम आयोजित किए गए, और अनुसूचित जाति-उपयोजना (एससी-एसपी घटक) के तहत 13 ऑन और ऑफ कैंपस प्रशिक्षण कार्यक्रम आयोजित किए गए। इसमें कृषि विज्ञान केंद्र (केवीके) के वैज्ञानिक / तकनीकी कर्मचारियों के लिए 1 प्रशिक्षण भी शामिल है। रिपोर्टिंग वर्ष के दौरान निदेशालय द्वारा संचालित विभिन्न प्रशिक्षण कार्यक्रमों से कुल 1788 प्रतिभागी लाभान्वित हुए।

Table 3.1. Training programmes organized by ICAR- DMR, Solan (2023)

तालिका 3.1. भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन द्वारा आयोजित प्रशिक्षण कार्यक्रम (2023)

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
1.	Training on Mushroom Cultivation Technologyfor Small and Marginal Farmers/ Growers छोटे और सीमांत किसानों/ उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	09-13 January 09—13 जनवरी	46	Dr. Shwet Kamal Mrs. Shailja Verma डॉ श्वेत कमल श्रीमती शैलजा वर्मा
2.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	18-20 January 18—20 जनवरी	02	Dr. Manoj Nath डॉ मनोज नाथ

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
3.	Training on <i>Cordyceps</i> mushroom cultivation <i>कॉर्डिसेप्स</i> मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	23-25 January 23—25 जनवरी	01	Dr. Satish Kumar डॉ सतीश कुमार
4.	Trainings on Mushroom Cultivation Technology for Entrepreneurs उद्यमियों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	06-11 February 06—11 फरवरी	36	Dr. Anil Kumar Mrs. Shailja Verma डॉ अनिल कुमार श्रीमती शैलजा वर्मा
5.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Dehradun (Uttarakhand) देहरादून (उत्तराखंड)	16 February 16 फरवरी	64	Dr. Satish Kumar डॉ.सतीश कुमार
6.	Training on Mushroom Cultivation Technology for Farmers/ Growers sponsored by Development Foundation, Bilaspur डेवलपमेंट फाउंडेशन, बिलासपुर द्वारा प्रायोजित किसानों / उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	22-24 February 22—24 फरवरी	30	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
7.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	22-24 February 22—24 फरवरी	12	Dr. Manoj Nath डॉ. मनोज नाथ
8.	Training programme on mushroom cultivation under NEH एनईएच के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर– डीएमआर, सोलन	28 February- 01 March 28 फरवरी— 01 मार्च	06	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
9.	Training programme on mushroom cultivation under TSP टीएसपी के अंतर्गत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Kafnu (H.P.) कफनू (हि.प्र.)	28 February- 01 March 28 फरवरी— 01 मार्च	100	Dr. Sushil Kumar डॉ. सुशील कुमार

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
10.	Three months hands-on training programme तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	03 March- 01 June 03 मार्च– 01 जून	5	Dr. Satish Kumar Smt. Shailja Verma डॉ सतीश कुमार श्रीमती शैलजा वर्मा
11.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Sundernagar (H.P.) सुन्दरनगर (हि.प्र.)	15 March 15 मार्च	100	Dr. Anarase Dattatray Dr. Sushil Kumar डॉ. अनारसे दत्तात्रय अर्जुन डॉ. सुशील कुमार
12.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	15-17 March 15—17 मार्च	12	Dr. Manoj Nath डॉ. मनोज नाथ
13.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers छोटे और सीमांत किसानों/ उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	20-24 March 20—24 मार्च	47	Dr. Shweta Bijla Mrs. Shailja Verma डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
14.	Training on Mushroom Cultivation Technology for Entrepreneurs उद्यमियों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	17-22 April 17—22 अप्रैल	23	Dr. Shwet Kamal Dr. Manoj Nath Mrs. Shailja Verma डॉ. श्वेत कमल डॉ. मनोज नाथ श्रीमती शैलजा वर्मा
15.	Training on Cordyceps mushroom cultivation कॉर्डिसेप्स मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	24-26 April 24—26 अप्रैल	07	Dr. Satish Kumar डॉ.सतीश कुमार
16.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	26-28 April 26—28 अप्रैल	13	Dr. Manoj Nath डॉ. मनोज नाथ
17.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Ludhiana (Punjab) लुधियाना (पंजाब)	18 May 18 मई	100	Dr. Anil Kumar डॉ अनिल कुमार

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
18.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers छोटे और सीमांत किसानों/ उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	15-19 May 15—19 मई	35	Dr. B.L. Attri Dr. Anuradha Srivastava Mrs. Shailja Verma डॉ. बी.एल. अत्री डॉ. अनुराधा श्रीवास्तव श्रीमती शैलजा वर्मा
19.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	24-26 May 24—26 मई	05	Dr. Manoj Nath डॉ. मनोज नाथ
20.	Three months hands-on training programme तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	05 June-04 September 05 जून —04 सितम्बर	14	Dr. Satish Kumar Smt. Shailja Verma डॉ. सतीश कुमार शैलजा वर्मा
21.	Training programme on mushroom cultivation under TSP for farmers from Nasik (Maharashtra) नासिक (महाराष्ट्र) के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	06-08 June 06—08 जून	27	Dr. Anarase Dattatray Dr. Reetu Mrs. Shailja Verma डॉ. अनारसे दत्तात्रय अर्जुन डॉ. रीतू श्रीमती शैलजा वर्मा
22.	Training programme on mushroom cultivation under NEH एनईएच के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	09-14 June 09—14 जून	08	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
23.	Training programme on mushroom cultivation under SC SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Malawan (H.P.) मलावन (हिमाचल प्रदेश)	20 June 20 जून	100	Dr. Anarase Dattatray Dr. Sushil Kumar डॉ. अनारसे दत्तात्रय अर्जुन डॉ. सुशील कुमार
24.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	21-23 June 21—23 जून	08	Dr. Manoj Nath डॉ मनोज नाथ

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
25.	Training programme on mushroom cultivation under SC SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Theog (H.P.) ठियोग (हिमाचल प्रदेश)	26 June 26 जून	100	Dr. Manoj Nath डॉ मनोज नाथ
26.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	05-07 July 05–07 ਯੁਕਾੜੀ	05	Dr. Manoj Nath डॉ मनोज नाथ
27.	Training on <i>Cordyceps</i> mushroom cultivation <i>कॉर्डिसेप्स</i> मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	10-14 July 10—14 जुलाई	02	Dr. Satish Kumar डॉ.सतीश कुमार
28.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers छोटे और सीमांत किसानों / उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	17-21 July 17—21 ਯੁਕਾई	52	Dr. Anil Kumar Dr. Manoj Nath Mrs. Shailja Verma डॉ. अनिल कुमार डॉ. मनोज नाथ श्रीमती शैलजा वर्मा
29.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Sanghoi (H.P.) संघोई (H.P.)	18 July 18 जुलाई	100	Dr. B. L. Attri Smt. Shailja Verma डॉ. बी.एल. अत्री श्रीमती शैलजा वर्मा
30.	Training on <i>Cordyceps</i> mushroom cultivation <i>कॉर्डिसेप्स</i> मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	24-26 July 24—26 जुलाई	10	Dr. Satish Kumar डॉ. सतीश कुमार
31.	Training programme on mushroom cultivation under SC-SP एससी–एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Chail (H.P.) चैल (हिमाचल प्रदेश)	25 July 25 जुलाई	100	Dr. Shwet Kamal Smt. Shailja Verma डॉ श्वेत कमल श्रीमती शैलजा वर्मा
32.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	09-11 August 09—11 अगस्त	04	Dr. Manoj Nath डॉ. मनोज नाथ

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
33.	Training on Mushroom Cultivation Technology for Entrepreneurs उद्यमियों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	21-26 August 21—26 अगस्त	30	Dr. Satish Kumar Mrs. Shailja Verma डॉ. सतीश कुमार श्रीमती शैलजा वर्मा
34.	Training programme on mushroom cultivation under TSP for farmers from Kinnaur (H.P.) किन्नौर (हि.प्र.) के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	28-29 August 28—29 अगस्त	32	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
35.	Training programme on mushroom cultivation under SC-SP for farmers from Nasik (Maharashtra) नासिक (महाराष्ट्र) के किसानों के लिए एससी–एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	12-14 September 12—14 सितम्बर	19	Dr. Satish Kumar Mrs. Shailja Verma डॉ. सतीश कुमार श्रीमती शैलजा वर्मा
36.	Training programme on mushroom cultivation under SC-SP for farmers from H.P. हिमाचल प्रदेश के किसानों के लिए एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	12-14 September 12—14 सितम्बर	08	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
37.	Training programme on mushroom cultivation under NEH for farmers from Tripura त्रिपुरा के किसानों के लिए एनईएच के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	12-14 September 12—14 सितम्बर	07	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
38.	Training programme on mushroom cultivation under TSP for farmers from Tripura त्रिपुरा के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	12-14 September 12—14 सितम्बर	08	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
39.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Chail (H.P.) चैल (हिमाचल प्रदेश)	25 September 25 सितम्बर	100	Dr. B. L. Attri Dr. Anarase Dattatray डॉ. बी. एल. अत्री डॉ. अनारसे दत्तात्रय अर्जुन
40.	Training programme on mushroom cultivation under TSP for farmers from Kinnaur (H.P.) किन्नौर (हि.प्र.) के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	25-26 September 25—26 सितम्बर	29	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
41.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	25-27 September 25—27 सितम्बर	03	Dr. Manoj Nath डॉ. मनोज नाथ
42.	Three months hands-on training programme तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	25 Sept-22 Dec 25 सितम्बर —22 दिसंबर	14	Dr. Satish Kumar Smt. Shailja Verma डॉ. सतीश कुमार श्रीमती शैलजा वर्मा
43.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	10-12 October 10—12 अक्टूबर	02	Dr. Manoj Nath डॉ. मनोज नाथ
44.	Training on Mushroom Cultivation Technology for Entrepreneurs उद्यमियों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	16-21 October 16—21 अक्टूबर	35	Dr. Shwet Kamal Mrs. Shailja Verma डॉ श्वेत कमल श्रीमती शैलजा वर्मा
45.	Training on <i>Cordyceps</i> mushroom cultivation <i>कॉर्डिसेप्स</i> मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	23-25 October 23—25 अक्टूबर	09	Dr. Satish Kumar डॉ. सतीश कुमार
46.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Shimla (H.P.) शिमला (हिमाचल प्रदेश)	27 October 27 अक्टूबर	100	Dr. Manoj Nath डॉ. मनोज नाथ

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
47.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	07-09 November 07—09 नवंबर	04	Dr. Manoj Nath डॉ. मनोज नाथ
48.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers छोटे और सीमांत किसाना/ उत्पादकों के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	20-24 November 20—24 नवंबर	36	Dr. Anil Kumar Mrs. Shailja Verma डॉ. अनिल कुमार श्रीमती शैलजा वर्मा
49.	Training programme on mushroom cultivation under NEH for farmers from Arunachal Pradesh अरुणाचल प्रदेश के किसानों के लिए एनईएच के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	06-08 December 06-08 दिसंबर	12	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
50.	Training programme on mushroom cultivation under TSP for farmers from Arunachal Pradesh अरुणाचल प्रदेश के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	06-08 December 06-08 दिसंबर	05	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा
51.	Training programme on mushroom cultivation under SC-SP एससी—एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	Patiala (Punjab) पटियाला (पंजाब)	08 December 08 दिसंबर	100	Dr. Anarase Dattatray Dr. Sushil Kumar डॉ. अनारसे दत्तात्रय अर्जुन डॉ. सुशील कुमार
52.	Training on mushroom cultivation technology for KVK's (Scientist/ SMS/ Technical केवीके (वैज्ञानिक/एसएस/ तकनीकी) के लिए मशरूम खेती प्रौद्योगिकी पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	11-15 December 11—15 दिसंबर	14	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma डॉ. सतीश कुमार डॉ. श्वेता बिजला श्रीमती शैलजा वर्मा

S. No. क्र. सं.	Training प्रशिक्षण	Venue स्थान	Date दिनांक	Number of trainees प्रशिक्षुओं की संख्या	Course Coordinator & Co-Coordinator(s) पाठ्यक्रम समन्वयक एवं सह— समन्वयक
53.	Training on spawn production technology स्पॉन उत्पादन तकनीक पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	19-21 December 19—21 दिसंबर	02	Dr. Manoj Nath डॉ. मनोज नाथ
54.	Training on Shiitake mushroom cultivation शिटाके मशरूम की खेती पर प्रशिक्षण	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	21-22 December 21—22 दिसंबर	02	Dr. Satish Kumar डॉ.सतीश कुमार
55.	Training programme on mushroom cultivation under SC SP for farmers from Narag (H.P.) नारग (हि.प्र.) के किसानों के लिए एससी —एसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	23 December 23 दिसंबर	27	Dr. B. L. Attri ਢૉ. बी. एल. अत्री
56.	Training programme on mushroom cultivation under TSP for farmers from Kinnaur (H.P.) किन्नौर (हि.प्र.) के किसानों के लिए टीएसपी के तहत मशरूम की खेती पर प्रशिक्षण कार्यक्रम	ICAR- DMR, Solan आईसीएआर— डीएमआर, सोलन	27-28 December 27—28 दिसंबर	16	Smt. Shailja Verma Dr. Reetu डॉ. रितु श्रीमती शैलजा वर्मा

2. Training programmes under TSP and NEH

Under the Tribal Sub Plan (TSP), the Directorate organized 1 off campus and 6 on-campus training programmes in which a total of 217 tribal farmers attended from different tribal areas of Kafnu, Kinnaur (Himachal Pradesh), Arunachal, Nasik (Maharashtra). The farmers were given lectures on various aspects of mushroom cultivation and some practical demonstrations were also given. The participants in the training programmes were also provided with critical inputs and mushroom cultivation literature to initiate mushroom cultivation at their level. Moreover, 4 on-campus trainings under NEH (North Eastern and Hilly region) component were conducted which were attended by 33 participants belonging to various regions of Arunachal Pradesh, Tripura, Jorhat (Assam). These trainees were also provided with required inputs and mushroom cultivation literature during the trainings (Fig. 3.1).

2. टीएसपी और एनईएच के तहत प्रशिक्षण कार्यक्रम

जनजातीय उपयोजना (टीएसपी) के तहत, निदेशालय ने 1 ऑफ कैंपस और 6 ऑन-कैंपस प्रशिक्षण कार्यक्रम आयोजित किए, जिसमें काफन्, किन्नौर (हिमाचल प्रदेश), अरुणाचल, नासिक (महाराष्ट्र) के विभिन्न जनजातीय क्षेत्रों से कुल 217 जनजातीय किसानों ने भाग लिया। किसानों को मशरूम की खेती के विभिन्न पहलुओं पर व्याख्यान दिए गए और कुछ व्यावहारिक प्रदर्शन भी दिए गए। प्रशिक्षण कार्यक्रमों में प्रतिभागियों को अपने स्तर पर मशरूम की खेती शुरू करने के लिए महत्वपूर्ण जानकारी और मशरूम खेती साहित्य भी प्रदान किया गया। इसके अलावा, एनईएच (उत्तर पूर्वी और पहाड़ी क्षेत्र) घटक के तहत 4 ऑन-केंपस प्रशिक्षण आयोजित किए गए. जिनमें अरुणाचल प्रदेश. त्रिपुरा, जोरहाट (असम) के विभिन्न क्षेत्रों से संबंधित 33 प्रतिभागियों ने भाग लिया। इन प्रशिक्षुओं को प्रशिक्षण के दौरान आवश्यक सामग्री और मशरूम खेती साहित्य भी प्रदान किया गया।

Fig. 3.1. Mushroom cultivation trainings under TSP and NEH चित्र 3.1. टीएसपी और एनईएच के तहत मशरूम खेती प्रशिक्षण

3. Training programmes under SC-SP

During the year 2023, 13 trainings were conducted for farmers, farm women, and youth belonging to Scheduled Caste under Scheduled Caste-Sub Plan (SC-SP-2023-24) component. Among these, 3 on-campus and 10 off campus trainings at Dehradun, Sundernagar, Ludhiana, Theog (Shimla), Chail, Nasik, Patiala (Punjab) were conducted and attended by a total number of 1018 trainees. Important mushroom cultivation inputs and literature were also distributed to the trainees. At the end of each training programme an interactive feedback session was conducted so that any constraints faced by participants with regards to mushroom cultivation can be identified and necessary solutions were provided by concerned scientist for successful mushroom production (Fig. 3.2).

3. एससी-एसपी के तहत प्रशिक्षण कार्यक्रम

वर्ष 2023 के दौरान, अनुसूचित जाति—उपयोजना (एससी—एसपी—2023—24) घटक के तहत किसानों, कृषक महिलाओं और अनुसूचित जाति के युवाओं के लिए 13 प्रशिक्षण आयोजित किए गए। इनमें से 3 ऑन—कैंपस और 10 ऑफ—कैंपस प्रशिक्षण देहरादून, सुंदरनगर, लुधियाना, ठियोग (शिमला), चैल, नासिक, पिटयाला (पंजाब) में आयोजित किए गए और कुल 1018 प्रशिक्षुओं ने भाग लिया। प्रशिक्षुओं को मशरूम की खेती के महत्वपूर्ण सामग्री और साहित्य भी वितरित किए गए। प्रत्येक प्रशिक्षण कार्यक्रम के अंत में एक इंटरैक्टिव फीडबैक सत्र आयोजित किया गया ताकि मशरूम की खेती के संबंध में प्रतिभागियों के सामने आने वाली किसी भी बाधा की पहचान की जा सके और सफल मशरूम उत्पादन के लिए संबंधित वैज्ञानिक द्वारा आवश्यक समाधान प्रदान किए गए (चित्र 3.2)।

Fig. 3.2. Mushroom cultivation trainings under SP-SP चित्र 3.2. एसपी-एसपी के तहत मशरूम खेती प्रशिक्षण

4. Individual training programmes

Apart from this, trainings on specific mushroom cultivation technologies are also organized by the Directorate. In the year 2023, one training on Shiitake mushroom cultivation was organized which was attended by 2 participants. Moreover, five trainings on cultivation technology of Cordyceps were organized by the Directorate in which total 29 trainees participated from states like Himachal Pradesh, Bihar, West Bengal, Chandigarh, Karnataka, Madhya Pradesh, Delhi, Maharashtra, Uttarakhand, Punjab, Haryana, Rajasthan, Andhra Pradesh, Uttar Pradesh and Gujarat. It is a three days training where participants are given first-hand information, relevant literature, and practical demonstration on Cordyceps mushroom cultivation. Due to increasing demand of Cordyceps among masses, such trainings are to gain more popularity in the coming time. Quality spawn is foremost mushroom requirement of cultivation. Directorate also conducts spawn production trainings in which trainees are given firsthand information and practical demonstration on the process of quality spawn production. At the beginning, they are also shown video films on spawn production. A total number of 12 trainings on spawn production technology were organized in which total 72 trainees participated.

5. Three months hands-on training programme

A hands-on training programme for three months is organized by the Directorate which aids the participants to experience all the aspects related to mushroom cultivation. As, mushroom cultivation is highly technical in nature particularly button mushroom compost production, spawn preparation along with various crop management practices, such trainings are critical to give the potential growers a necessary practical experience. It helps in generating skilled man power leading to high growth of Indian mushroom industry. The trainees are provided first-hand information and practical

4. व्यक्तिगत प्रशिक्षण कार्यक्रम

इसके अलावा, निदेशालय द्वारा विशिष्ट मशरूम खेती प्रौद्योगिकियों पर प्रशिक्षण भी आयोजित किए जाते हैं। वर्ष 2023 में. शिटाके मशरूम की खेती पर एक प्रशिक्षण आयोजित किया गया था जिसमें 2 प्रतिभागियों ने भाग लिया था। साथ ही, निदेशालय द्वारा कॉर्डिसेप्स की खेती तकनीक पर पांच प्रशिक्षण आयोजित किए गए, जिसमें हिमाचल प्रदेश, बिहार, पश्चिम बंगाल, चंडीगढ़, कर्नाटक, मध्य प्रदेश, दिल्ली, महाराष्ट्र, उत्तराखंड, पंजाब, हरियाणा, राजस्थान, आंध्र प्रदेश, उत्तर प्रदेश और गुजरात जैसे राज्यों से कुल 29 प्रशिक्षुओं ने भाग लिया। यह तीन दिवसीय प्रशिक्षण है जहां प्रतिभागियों को कॉर्डिसेप्स मशरूम की खेती पर प्रत्यक्ष जानकारी. प्रासंगिक साहित्य और व्यावहारिक प्रदर्शन दिया जाता है। जनता के बीच *कॉर्डिसेप्स* की बढती मांग के कारण आने वाले समय में इस तरह के प्रशिक्षण को और अधिक लोकप्रियता मिलेगी। मशरूम की खेती के लिए गुणवत्तापूर्ण स्पॉन सबसे महत्वपूर्ण आवश्यकता है। निदेशालय स्पॉन उत्पादन प्रशिक्षण भी आयोजित करता है जिसमें प्रशिक्षुओं को गुणवत्तापूर्ण स्पॉन उत्पादन की प्रक्रिया पर प्रत्यक्ष जानकारी और व्यावहारिक प्रदर्शन दिया जाता है। शुरुआत में उन्हें स्पॉन उत्पादन पर वीडियो फिल्में भी दिखाई जाती हैं। स्पॉन उत्पादन तकनीक पर कुल 12 प्रशिक्षण आयोजित किये गये जिनमें कुल 72 प्रशिक्षुओं ने भाग लिया।

5. तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम

निदेशालय द्वारा तीन महीने के लिए एक व्यावहारिक प्रशिक्षण कार्यक्रम आयोजित किया जाता है जो प्रतिभागियों को मशरूम की खेती से संबंधित सभी पहलुओं का अनुभव करने में सहायता करता है। चूंकि, मशरूम की खेती प्रकृति में अत्यधिक तकनीकी है, विशेष रूप से बटन मशरूम खाद उत्पादन, विभिन्न फसल प्रबंधन प्रथाओं के साथ स्पॉन की तैयारी, संभावित उत्पादकों को आवश्यक व्यावहारिक अनुभव देने के लिए ऐसे प्रशिक्षण महत्वपूर्ण हैं। यह भारतीय मशरूम उद्योग के उच्च विकास के लिए कुशल मानव शक्ति उत्पन्न करने में मदद करता है। प्रशिक्षुओं को बटन

experience of growing button mushroom and other specialty mushrooms themselves. They are delivered information and practical experience in spawn production, compost and casing soil preparation, farm design and structure, crop management, harvesting, and post-harvest management of various mushrooms such as Button mushroom, Oyster mushroom, Paddy straw mushroom, Milky mushroom and Shiitake mushroom (Fig. 3.3).

During 2023, three such hands-on training programmes were conducted in the DMR campus from March to June, June to September, and from September to December 2023 in which a total of 33 trainees participated from various states of the country such as Delhi, Uttarakhand, Himachal Pradesh, Haryana, Punjab, Uttar Pradesh, Bihar, Rajasthan, Andhra Pradesh, Tamil Nadu, Odisha, Kerala, Telangana, Maharashtra etc. At the closing of the training, majority of them were fully encouraged and prepared to start their own growing unit for crop production, compost production, and processing also.

मशरूम और अन्य विशेष मशरूम उगाने की प्रत्यक्ष जानकारी और व्यावहारिक अनुभव प्रदान किया जाता है। उन्हें बटन मशरूम, ऑयस्टर मशरूम, पैडी स्ट्रॉ मशरूम, मिल्की मशरूम, शिटाके और विभिन्न मशरूमों के स्पॉन उत्पादन, खाद और आवरण मिट्टी की तैयारी, फार्म डिजाइन और संरचना, फसल प्रबंधन, कटाई और कटाई के बाद के प्रबंधन के बारे में जानकारी और व्यावहारिक अनुभव दिया जाता है (चित्र 3.3)

2023 के दौरान, डीएमआर परिसर में मार्च से जून, जून से सितंबर और सितंबर से दिसंबर 2023 तक तीन ऐसे व्यावहारिक प्रशिक्षण कार्यक्रम आयोजित किए गए, जिसमें देश के विभिन्न राज्यों जैसे दिल्ली, उत्तराखंड, हिमाचल प्रदेश, हरियाणा, पंजाब, उत्तर प्रदेश, बिहार, राजस्थान, आंध्र प्रदेश, तमिलनाडु, ओडिशा, केरल, तेलंगाना, महाराष्ट्र आदि से कुल 33 प्रशिक्षुओं ने भाग लिया। प्रशिक्षण के समापन पर, उनमें से अधिकांश फसल उत्पादन, खाद उत्पादन और प्रसंस्करण के लिए पूरी तरह से प्रोत्साहित थे और मशरूम इकाई शुरू करने के लिए तैयार थे।

Fig. 3.3. Trainees of three months training endgaged in compost preparation चित्र 3.3. तीन माह के प्रशिक्षण में प्रशिक्षणार्थी खाद तैयार करते हुए

6. National Mushroom Mela-2023

The Directorate organized 26th National Mushroom Mela 2023 on 10th September, which was inaugurated and chaired by Dr. Vijay Singh Thakur (Former Vice Chancellor, UHF Nauni). Dr. Brajesh Singh (Director, ICAR- CPRI), Dr. V.P. Sharma (Director, ICAR- DMR, Solan), all the scientists and staff members of ICAR- DMR, Solan (Fig. 3.4) also attended the programme. Few staff members from AICRP centers also attended the programme. The event was attended by around 900 participants (farmers, mushroom growers, students, input suppliers, etc.) from various states of the country. An exhibition of different mushrooms and improved technologies along with value added products was also organized by the Directorate in the Mela which was visited by the participants.

6. राष्ट्रीय मशरूम मेला-2023

निदेशालय ने 10 सितंबर को 26वें राष्ट्रीय मशरूम मेला 2023 का आयोजन किया, जिसका उद्घाटन और अध्यक्षता डॉ. विजय सिंह टाक्र (पूर्व कलपति, यएचएफ नौणी) ने की। डॉ. ब्रजेश सिंह (निदेशक, आईसीएआर–सीपीआरआई), डॉ. वी.पी. शर्मा (निदेशक, आईसीएआर–डीएमआर, सोलन), आईसीएआर-डीएमआर. सोलन के सभी वैज्ञानिक और स्टाफ सदस्य (चित्र 3.4) भी कार्यक्रम में शामिल हुए। कार्यक्रम में एआईसीआरपी केंद्रों के कुछ स्टाफ सदस्य भी शामिल हए। इस कार्यक्रम में देश के विभिन्न राज्यों से लगभग 900 प्रतिभागियों (किसान, मशरूम उत्पादक, छात्र, इनपुट आपूर्तिकर्ता, आदि) ने भाग लिया। मेले में निदेशालय द्वारा मृल्यवर्धित उत्पादों के साथ-साथ विभिन्न मशरूम और उन्नत तकनीकों की एक प्रदर्शनी भी आयोजित की गई, जिसका प्रतिभागियों ने दौरा किया।

Fig. 3.4. Celebration of 26th National Mushroom Mela at ICAR-DMR, Solan चित्र 3.4. आईसीएआर-डीएमआर, सोलन में 26^{वें} राष्ट्रीय मशरूम मेला

In order to create awareness on various improved technologies/practices of mushroom cultivation to the participants, farm visit of the growing units of the Directorate was conducted for the participants. The exhibition also included the stalls of various mushroom input suppliers, mushroom and mushroom products' producers, packaging and machinery suppliers. The participants were provided literature on spawn production technology, cultivation of button

प्रतिभागियों को मशरूम की खेती की विभिन्न उन्नत तकनीकों / प्रथाओं के बारे में जागरूकता पैदा करने के लिए, प्रतिभागियों के लिए निदेशालय की बढ़ती इकाइयों का फार्म दौरा आयोजित किया गया। प्रदर्शनी में विभिन्न मशरूम इनपुट आपूर्तिकर्ताओं, मशरूम और मशरूम उत्पादों के उत्पादकों, पैकेजिंग और मशीनरी आपूर्तिकर्ताओं के स्टॉल भी शामिल थे। प्रतिभागियों को स्पॉन उत्पादन तकनीक, विभिन्न सब्सट्रेट के तहत

mushroom under different substrate, postharvest management, disease protection, etc. The dignitaries addressed participants on various aspects of mushroom cultivation such as importance of quality spawn for mushroom production, meeting the demand-supply gap with increasing production, utilization of agricultural residues for mushroom farming, value addition to create innovative mushroom products, utilization of spent mushroom substrate by making compost, vermicomposting etc. In the afternoon session, a Kisan Goshthi was held to provide solution on various mushroom farming related problems of the growers. These were addressed by a panel of experts/ Scientists of the Directorate.

Four progressive mushroom growers were also recognized and awarded by the Directorate for using innovative mushroom cultivation practices and for promoting mushroom farming in their own and fellow community thus providing livelihood to rural youth and women. The Directorate acknowledged their efforts in encouraging their village youth, farmers and farm women to take up mushroom cultivation as an income generating enterprise. These growers were recognized from different states throughout the country and were felicitated by the Directorate.

बटन मशरूम की खेती, कटाई के बाद प्रबंधन, रोग सुरक्षा आदि पर साहित्य प्रदान किया गया। गणमान्य व्यक्तियों ने मशरूम की खेती के विभिन्न पहलुओं जैसे मशरूम उत्पादन के लिए गुणवत्ता वाले स्पॉन के महत्व बढ़ते उत्पादन के साथ मांग—आपूर्ति का अंतर, मशरूम की खेती के लिए कृषि अवशेषों का उपयोग, उन्नत मशरूम उत्पाद बनाने के लिए मूल्य संवर्धन, खाद, वर्मीकम्पोस्टिंग आदि बनाकर प्रयोग किए गए मशरूम सब्सट्रेट का उपयोग पर प्रतिभागियों को संबोधित किया। दोपहर के सत्र में, उत्पादकों की मशरूम खेती से संबंधित विभिन्न समस्याओं के समाधान के लिए एक किसान गोष्ठी आयोजित की गई जिसे निदेशालय के विशेषज्ञों / वैज्ञानिकों के एक पैनल ने संबोधित किया।

चार प्रगतिशील मशरूम उत्पादकों को नवीन मशरूम खेती प्रथाओं का उपयोग करने और अपने और साथी समुदाय में मशरूम की खेती को बढ़ावा देने और इस प्रकार ग्रामीण युवाओं और महिलाओं को आजीविका प्रदान करने के लिए निदेशालय द्वारा मान्यता और पुरस्कार दिया गया। निदेशालय ने अपने गांव के युवाओं, किसानों और कृषक महिलाओं को मशरूम की खेती को आय सृजन उद्यम के रूप में अपनाने के लिए प्रोत्साहित करने के उनके प्रयासों को स्वीकार किया। इन उत्पादकों को देशभर के विभिन्न राज्यों से चुनकर निदेशालय द्वारा सम्मानित किया गया।

Achievements of growers awarded with "Progressive Mushroom Grower" award "प्रगतिशील मशरूम उत्पादक" पुरस्कार से सम्मानित उत्पादकों की उपलब्धियाँ

Sh. Basanta Chiring Phukan

Sh. Basanta Chiring Phukan from Jorhat (Assam) started oyster mushroom production with 50-60 kg per day during 2001. Further, the

spawn production was taken up during 2004 for self but now the commercial lab for spawn has been established. He has used cold pasteurization technique, cylinder method and hanging rope for oyster mushroom cultivation. For spawn production, both paddy and wheat have been used. He has been recognized by various organizations for his work related to mushroom cultivation and popularization

श्री बसंत सिरिंग फुकन

जोरहाट (असम) के श्री बसंत सिरिंग फुकन ने 2001 के दौरान प्रति दिन 50–60 किलोग्राम के साथ ऑयस्टर मशरूम का उत्पादन शुरू किया। इसके अलावा, 2004

के दौरान स्वयं स्पॉन उत्पादन शुरू किया गया था, लेकिन अब स्पॉन के लिए वाणिज्यिक प्रयोगशाला स्थापित की गई है। उन्होंने ऑयस्टर मशरूम की खेती के लिए ठंडी पाश्चुरीकरण तकनीक, सिलेंडर विधि और रस्सी का उपयोग किया है। स्पॉन उत्पादन के लिए धान और गेहूं दोनों का उपयोग किया गया है। मशरूम की खेती और इसे लोकप्रिय बनाने से संबंधित उनके काम के लिए उन्हें विभिन्न संगठनों द्वारा मान्यता दी गई है।

Sh. Anil Bhokare

Sh. Anil Bhokare from Pune (Maharashtra) started oyster mushroom growing in 1995 with a production of 25 kg per day. Similarly, spawn production was also initiated

during 1995. He is assisting other growers in the area in oyster mushroom cultivation. Apart from oyster mushroom production and spawn preparation, he has developed and popularized a number of value added products from fresh and dried mushroom. Sh. Bhokare is also manufacturing machineries and equipments for mushroom cultivation in the region.

श्री अनिल भोकारे

पुणे (महाराष्ट्र) के श्री अनिल भोकरे ने 1995 में प्रतिदिन 25 किलोग्राम उत्पादन के साथ ऑयस्टर मशरूम उगाना शुरू किया। इसी प्रकार, स्पॉन उत्पादन भी 1995 के दौरान शुरू किया गया था।

वह ऑयस्टर मशरूम की खेती में क्षेत्र के अन्य उत्पादकों की सहायता कर रहे हैं। ऑयस्टर मशरूम उत्पादन और स्पॉन तैयारी के अलावा, उन्होंने ताजे और सूखे मशरूम से कई मूल्य वर्धित उत्पादों को विकसित और लोकप्रिय बनाया है। श्री भोकरे क्षेत्र में मशरूम की खेती के लिए मशीनरी और उपकरण भी बना रहे हैं।

Sh. Gowhar Ali Lone

Sh. Gowhar Ali Lone belongs to Baramulla (J&k) and is growing white button and oyster mushrooms since 2007 and 2009 respectively. He

is producing more than 100kg mushrooms daily. Apart from the fresh mushroom in the market, he is also supplying the readymade compost bags to the Govt. departments and locals. He is also guiding the new mushroom growers on various aspects. He has been awarded by different organizations for his work in mushroom.

श्री गौहर अली लोन

श्री गौहर अली लोन बारामूला (जम्मू—कश्मीर) से हैं और क्रमशः 2007 और 2009 से सफेद बटन और ऑयस्टर मशरूम उगा रहे हैं। वह प्रतिदिन 100 किलो से अधिक मशरूम

का उत्पादन कर रहे हैं। बाजार में ताजा मशरूम के अलावा, वह सरकारी विभाग और स्थानीय लोगों को तैयार खाद बैग की आपूर्ति भी कर रहे हैं। वह नए मशरूम उत्पादकों को विभिन्न पहलुओं पर मार्गदर्शन भी कर रहे हैं। मशरूम में उनके काम के लिए उन्हें विभिन्न संगठनों द्वारा सम्मानित किया गया है।

Smt. Binita Kumari

Smt. Binita Kumari is growing button, oyster, milky, paddy straw from 2012, 2011, 2014 and 2018 respectively with a total production of 250-300 kg per day. Since 2016, she is also producing

spawn and supplying to the mushroom growers in the region. She is imparting training to the rural women on production and value addition of different mushrooms. During this period she has been awarded by different organizations for her work in mushroom.

श्रीमती बिनीता कुमारी

श्रीमती बिनीता कुमारी 2012, 2011, 2014 और 2018 से क्रमशः बटन, ढींगरी, दूधिया, पराली मशरूम उगा रही हैं, जिसका कुल उत्पादन प्रति दिन 250—300 किलोग्राम है। 2016 से, वह स्पॉन का उत्पादन भी कर

रही है और क्षेत्र में मशरूम उत्पादकों को आपूर्ति भी कर रही है। वह ग्रामीण महिलाओं को विभिन्न मशरूम के उत्पादन और मूल्य संवर्धन का प्रशिक्षण दे रही हैं। इस दौरान मशरूम में उनके काम के लिए उन्हें विभिन्न संगठनों द्वारा सम्मानित किया गया है।

7. Mera Gaon Mera Gaurav (MGMG) scheme

'Mera Gaon Mera Gaurav' scheme was launched by Honorable Prime Minister on 25th July, 2015 on the occasion of 87th Foundation day of ICAR specifying the scientists to adopt a particular village for its overall development. This scheme creates a direct interface between the stakeholders and thus accelerates the lab to land process. For scheme implementation, the Directorate formulated two teams of scientists comprising of six scientists in each team. Twelve villages were adopted from Kandaghat block of district Solan. These adopted villages were visited by concerned teams of scientists and two- way interactions were held with the villagers. In these interactions, certain problems faced by the farmers were discussed such as lack of irrigation water sources, low availability of quality inputs, wild animal menace etc. During the reporting year, 6 visits were taken up by the teams and interacted with approximately 110 farmers. These farmers were interested in oyster mushroom cultivation for which practical demonstrations on its cultivation was given and around 100 Kg of spawn of oyster mushroom was distributed to encourage the farmers of the adopted villages (Fig. 3.5). Village youth was encouraged to take up oyster mushroom cultivation initially at a small scale for the self-employment and they were suggested that the mushroom cultivation technology requires smaller initial investment and labour comparatively. Telephonic interactions were also done with the mushroom growers of adopted villages under MGMG program at different times.

Various activities were carried out with these adopted villages and villagers participated actively in various programmes and activities organized by the Directorate. Around 15 farmers from adopted villages attended National Mushroom Mela organized on 10th September 2023 at ICAR-DMR campus and they also

7. मेरा गांव मेरा गौरव (एमजीएमजी) योजना

'मेरा गांव मेरा गौरव' योजना माननीय प्रधान मंत्री द्वारा 25 जुलाई, 2015 को आईसीएआर के 87वें स्थापना दिवस के अवसर पर शुरू की गई थी, जिसमें वैज्ञानिकों को इसके समग्र विकास के लिए एक विशेष गांव को गोद लेने के लिए निर्दिष्ट किया गया था। यह योजना हितधारकों के बीच एक सीधा इंटरफेस बनाती है और इस प्रकार प्रयोगशाला से जमीन तक की प्रक्रिया को तेज करती है। योजना कार्यान्वयन के लिए, निदेशालय ने वैज्ञानिकों की दो टीमें बनाईं जिनमें प्रत्येक टीम में छह वैज्ञानिक शामिल थे। जिला सोलन के कंडाघाट ब्लॉक से बारह गाँव गोद लिये गये। वैज्ञानिकों की संबंधित टीमों द्वारा इन गोद लिए गए गांवों का दौरा किया गया और ग्रामीणों के साथ दोतरफा बातचीत की गई। इन बातचीतों में, किसानों के सामने आने वाली कुछ समस्याओं पर चर्चा की गई, जैसे सिंचाई जल स्रोतों की कमी, गुणवत्ता वाली सामग्री की कम उपलब्धता, जंगली जानवरों का खतरा आदि। रिपोर्टिंग वर्ष के दौरान, टीमों द्वारा 6 दौरे किए गए और लगभग 110 किसानों के साथ बातचीत की गई। ये किसान ऑयस्टर मशरूम की खेती में रुचि रखते थे. जिसके लिए इसकी खेती पर व्यावहारिक प्रदर्शन दिए गए और गोद लिए गए गांवों के किसानों को प्रोत्साहित करने के लिए ऑयस्टर मशरूम का लगभग 100 किलोग्राम स्पॉन वितरित किया गया (चित्र 3.5)। गाँव के युवाओं को स्व-रोज़गार के लिए शुरुआत में छोटे पैमाने पर ऑयस्टर मशरूम की खेती करने के लिए प्रोत्साहित किया गया और उन्हें सुझाव दिया गया कि मशरूम की खेती की तकनीक के लिए तुलनात्मक रूप से कम प्रारंभिक निवेश और श्रम की आवश्यकता होती है। एमजीएमजी कार्यक्रम के तहत गोद लिए गए गांवों के मशरूम उत्पादकों से अलग-अलग समय पर टेलीफोन पर बातचीत भी की गई।

गोद लिए गए इन गाँवों में विभिन्न गतिविधियाँ की गईं और ग्रामीणों ने निदेशालय द्वारा आयोजित विभिन्न कार्यक्रमों और गतिविधियों में सक्रिय रूप से भाग लिया। गोद लिए गए गांवों के लगभग 15 किसानों ने 10 सितंबर 2023 को आईसीएआर—डीएमआर परिसर में आयोजित राष्ट्रीय मशरूम मेले में भाग लिया और वे कार्यक्रम के दौरान आयोजित प्रदर्शनियों और प्रदर्शनों में भी शामिल हुए। गोद लिए गए गांवों में महिलाओं

attended the exhibitions and demonstrations held during the program. Women in the adopted villages were given lectures on nutritional importance of mushrooms and demonstrations on post-harvest management of mushrooms by making mushroom pickle and drying to enhance the shelf life of mushrooms. Under Central government's clean India campaign (Swachh Bharat Abhiyan), the team visited the adopted villages under MGMG and requested them to create awareness on cleanliness and sanitation of their houses, surrounding places and public areas. The team briefed them on utilization of agricultural waste in mushroom cultivation and further on the use of Spent Mushroom Substrate (SMS) for making compost. They were requested to avoid single use plastic, proper disposal of waste and thus keeping the environment clean.

को मशरूम के पोषण महत्व पर व्याख्यान दिया गया और मशरूम की भंडारण अविध बढ़ाने के लिए मशरूम का अचार बनाकर और सुखाकर कटाई के बाद प्रबंधन पर प्रदर्शन किया गया। केंद्र सरकार के स्वच्छ भारत अभियान (स्वच्छ भारत अभियान) के तहत, टीम ने एमजीएमजी के तहत गोद लिए गए गांवों का दौरा किया और उनसे अपने घरों, आसपास के स्थानों और सार्वजनिक क्षेत्रों की स्वच्छता और स्वच्छता के बारे में जागरूकता पैदा करने का अनुरोध किया। टीम ने उन्हें मशरूम की खेती में कृषि अपशिष्ट के उपयोग और खाद बनाने के लिए स्पेंट मशरूम सब्सट्रेट (एसएमएस) के उपयोग के बारे में जानकारी दी। उनसे एकल उपयोग वाले प्लास्टिक से बचने, कचरे का उचित निपटान करने और इस प्रकार पर्यावरण को स्वच्छ रखने का अनुरोध किया गया।

Fig. 3.5. Mushroom cultivation training and distribution of spawn under MGMG चित्र 3.5. एमजीएमजी के तहत मशरूम खेती का प्रशिक्षण एवं स्पॉन का वितरण

8. Exhibitions and Demonstrations organized

The ICAR- Directorate of Mushroom Research. Solan has organized three exhibitions in 2023 in the campus. On 28th February, 37th National Science Day was celebrated in the Directorate with the theme "Global Science for Global Wellbeing" attended by around 50 school students and SHEDS College students. Moreover, National Mushroom Day and Kisan Diwas were celebrated on 23rd December where more than 20 farmers/ farm women, village youth attended the celebration in the campus (Fig. 3.6) In these events, participants were given firsthand information with the help of exhibition on different mushrooms, their varieties, improved technologies, post-harvest management of mushroom with value added products such as mushroom cookies, chips, bhujia, dried powder, mushroom candy etc. Demonstrations were also given by the Directorate to the women farmers on oyster mushroom cultivation and postharvest management under G-20 Women-led development on 22nd March.

8. प्रदर्शनियाँ एवं प्रदर्शन आयोजित किये गये

भा.कृ.अन्.प.—खुम्ब अनुसंधान निदेशालय, सोलन ने 2023 में परिसर में तीन प्रदर्शनियों का आयोजन किया है। 28 फरवरी को निदेशालय में 37वां राष्ट्रीय विज्ञान दिवस "वैश्विक कल्याण के लिए वैश्विक विज्ञान" विषय पर मनाया गया, जिसमें लगभग 50 स्कूली छात्रों और शेड्स कॉलेज के छात्रों ने भाग लिया। इसके अलावा, 23 दिसंबर को राष्ट्रीय मशरूम दिवस और किसान दिवस मनाया गया, जहां 120 से अधिक किसानों / किसान महिलाओं, गांव के युवाओं ने परिसर में समारोह में भाग लिया (चित्र 3.6)। इन आयोजनों में, प्रतिभागियों को विभिन्न मशरूम, उनकी किस्मों, उन्नत तकनीकों, मशरूम कुकीज़, चिप्स, भुजिया, सूखे पाउडर, मशरूम कैंडी आदि जैसे मूल्य वर्धित उत्पादों के साथ मशरूम की कटाई के बाद प्रबंधन पर प्रदर्शनी की मदद से प्रत्यक्ष जानकारी दी गई। निदेशालय द्वारा 22 मार्च को जी—20 महिला नेतृत्व विकास के तहत महिला किसानों को ऑयस्टर मशरूम की खेती और कटाई के बाद के प्रबंधन पर प्रदर्शन भी दिए गए।

Fig. 3.6. Exhibitions during National Science Day and National Kisan Day at ICAR-DMR, Solan चित्र 3.6. आईसीएआर—डीएमआर, सोलन में राष्ट्रीय विज्ञान दिवस और राष्ट्रीय किसान दिवस के दौरान प्रदर्शनियाँ

9. Documentaries

During the reporting year, 527 video documentaries on spawn production, white button mushroom under natural condition, cultivation technology of White button, Oyster, Paddy straw, Shiitake, Milky mushroom, mushroom recipes were sold by the ToT section. This generated revenue of Rs. 48,850 from 371 English and 18, 400 from sale of 156 Hindi documentaries.

10. Visitors and telephone calls attended by ToT section

During the year 2023, 6508 people visited the Directorate from various states of the country. These visitors were given a tour of the farm including composting yard, spawn laboratory, crop protection, post-harvest lab, and transfer of technology (ToT) section etc. The ToT section attended to more than 1000 calls on landline and more than 800 calls on mobile phones on various queries related to trainings, cultivation technologies and extension services provided by ICAR- DMR, Solan.

11. Total mushroom production

During the year 2023, current scenario of mushroom production was examined in the country with the assistance of AICRP network centers. It helps in investigating the state wise mushroom production scenario and impact of prevailing situations on the Indian mushroom industry. The mushroom production has shown increasing trend in the reporting year 2023. The table 3.2 shows the state-wise mushroom production in the year 2022-23. The production is 314.84 thousand tons in 2022-23 with a 7.5 per cent increase from the previous year (2021-22) production (280.36 thousand tons).

9. वृत्तचित्र

रिपोर्टिंग वर्ष के दौरान, टीओटी अनुभाग द्वारा स्पॉन उत्पादन, प्राकृतिक स्थिति में सफेद बटन मशरूम, सफेद बटन की खेती तकनीक, ऑयस्टर, पराली मशरूम, शिटाके, दूधिया मशरूम, मशरूम व्यंजनों पर 527 वीडियो वृत्तचित्र बेचे गए। 371 अंग्रेजी वृत्तचित्रों की बिक्री से रु. 48,850 का राजस्व प्राप्त हुआ और 156 हिंदी वृत्तचित्रों की बिक्री से 18,400 रुपये प्राप्त हुए।

टीओटी अनुभाग द्वारा आगंतुकों और टेलीफोन कॉल का विवरण

वर्ष 2023 के दौरान देश के विभिन्न राज्यों से 6508 लोगों ने निदेशालय का दौरा किया। इन आगंतुकों को कंपोस्टिंग यार्ड, स्पॉन प्रयोगशाला, फसल सुरक्षा, कटाई उपरांत प्रयोगशाला और प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग आदि सहित फार्म का दौरा कराया गया। टीओटी अनुभाग ने लैंडलाइन पर 1000 से अधिक कॉल और मोबाइल पर 800 से अधिक कॉलों को लिया। आईसीएआर—डीएमआर, सोलन द्वारा प्रदान किए गए प्रशिक्षण, खेती प्रौद्योगिकियों और विस्तार सेवाओं से संबंधित विभिन्न प्रश्नों पर मोबाइल फोन पर उत्तर दिया गया।

11. कुल मशरूम उत्पादन

वर्ष 2023 के दौरान एआईसीआरपी नेटवर्क केंद्रों की सहायता से देश में मशरूम उत्पादन के वर्तमान परिदृश्य की जांच की गई। यह राज्यवार मशरूम उत्पादन परिदृश्य और भारतीय मशरूम उद्योग पर मौजूदा स्थितियों के प्रभाव की जांच करने में मदद करता है। रिपोर्टिंग वर्ष 2023 में मशरूम उत्पादन में वृद्धि की प्रवृत्ति देखी गई है। तालिका 3.2 वर्ष 2022—23 में राज्य—वार मशरूम उत्पादन को दर्शाती है। पिछले वर्ष (2021—22) उत्पादन (280.36 हजार टन) से 7.5 प्रतिशत की वृद्धि के साथ 2022—23 में उत्पादन 314.84 हजार टन है।

Table 3.2. State-wise mushroom production in India (2022-23) तालिका 3.2. भारत में राज्यवार मशरूम उत्पादन (2022–23)

State	Production (000 tons)	State	Production (000 tons)
Andhra Pradesh	0.06	Madhya Pradesh	2.12
Arunachal Pradesh	0.01	Manipur	0.04
Assam	1.65	Meghalaya	0.07
Bihar	35.60	Mizoram	0.08
Chhattisgarh	16.79	Nagaland	0.16
Delhi	4.49	Odisha	34.50
Goa	8.86	Punjab	19.75
Gujarat	14.10	Rajasthan	19.96
Haryana	21.50	Sikkim	0.02
Himachal Pradesh	18.61	Tamil Nadu	14.90
Jammu and Kashmir	3.40	Tripura	0.16
Jharkhand	6.63	Uttarakhand	22.35
Karnataka	1.64	Uttar Pradesh	23.41
Kerala	0.13	West Bengal	11.30
Maharashtra	32.55	India	314.84

4. AICRP MUSHROOM CENTRES 4.एआईसीआरपी खुम्ब केंद्र

With a view to test and disseminate the technology developed at ICAR-Directorate of Mushroom Research, Solan and its Centres in different agro-climatic regions of the country and to further popularize mushroom as secondary agriculture along with the existing farming system, the All India Coordinated Research Project on Mushroom (AICRPM) was launched during VI Five-Year Plan on 01.04.1983 with its Headquarters at Directorate of Mushroom Research, Solan, Himachal Pradesh (H.P.). The Director of DMR, Solan (HP) also functions as the Project Co-ordinator of the project. The mandate of AICRP (Mushroom) is to coordinate and monitor multi-location trials with improved mushroom varieties / hybrids, cultivation practices related to crop production, crop protection measures and post harvest technology, all aimed at increasing production, productivity and utilization of mushroom in the country.

Initially, the All India Coordinated Mushroom Improvement Project started with six Centres. During the XII Five Year Plan, 11 more coordinating and 9 cooperating centres were added and Faizabad centre was dropped. At present, 24 Coordinating and 8 co-operating Centres are working under AICRPM. These are:

The old centres are

Coordinating Centres

- 1. ICAR Research Complex for NEH Region, Barapani, Meghalaya
- 2. ICAR-Research Complex for Eastern Region Research Centre, Ranchi, Jharkhand
- Punjab Agricultural University, Ludhiana, Punjab
- 4. Tamil Nadu Agricultural University, Coimbatore, Tamilnadu

देश के विभिन्न कृषि-जलवायु क्षेत्रों में भा.कृ.अनु.प. -खुम्ब अनुसंधान निदेशालय, सोलन और इसके केंद्रों में विकसित तकनीक का परीक्षण और प्रसार करने और मौजुदा कृषि प्रणाली के साथ–साथ मशरूम को माध्यमिक कृषि के रूप में लोकप्रिय बनाने के लिए, अखिल भारतीय समन्वित मशरूम अनुसंधान परियोजना (एआईसीआरपीएम) को छठी पंचवर्षीय योजना के दौरान 01.04.1983 को खुम्ब अनुसंधान निदेशालय, सोलन, हिमाचल प्रदेश (हिमाचल प्रदेश) में मुख्यालय के साथ शुरू किया गया था। डीएमआर, सोलन (एचपी) के निदेशक परियोजना के परियोजना समन्वयक के रूप में भी कार्य करते हैं। AICRP (मशरूम) का जनादेश उन्नत मशरूम किस्मों / संकरों, फसल उत्पादन से संबंधित खेती के तरीकों, फसल सुरक्षा उपायों और कटाई के बाद की तकनीक के साथ बह्-स्थानीय परीक्षणों का समन्वय और निगरानी करना है, जिसका उद्देश्य देश में खुम्ब का उत्पादन, उत्पादकता और उपयोग बढाना है।

प्रारंभ में, अखिल भारतीय समन्वित खुम्ब सुधार परियोजना छह केंद्रों के साथ शुरू हुई। बारहवीं पंचवर्षीय योजना के दौरान, 11 और समन्वय केंद्र और 9 सहयोगी केंद्र जोड़े गए और फैजाबाद केंद्र को हटा दिया गया। वर्तमान में एआईसीआरपीएम के तहत 24 समन्वयक और 8 सहकारी केंद्र काम कर रहे हैं। ये हैं:

पुराने केंद्र

समन्वय केंद्र

- एनईएच क्षेत्र के लिए आईसीएआर अनुसंधान परिसर, बारापानी, मेघालय
- पूर्वी क्षेत्र अनुसंधान केंद्र, रांची, झारखंड के लिए आईसीएआर—अनुसंधान परिसर
- 3. पंजाब कृषि विश्वविद्यालय, लुधियाना, पंजाब
- 4. तमिलनाडु कृषि विश्वविद्यालय, कोयम्बटूर, तमिलनाडु

- 5. G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand
- 6. CoA, Mahatma Phule Agricultural University, Pune, Maharashtra
- Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh
- 8. Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan
- 9. CoA, Kerala Agricultural University, Vellayani, Kerala
- 10. C.C.S. Haryana Agricultural University, Hisar, Haryana
- 11. Orissa University of Agricultute and Technology, Bhubaneswar, Odisha
- 12. Dr Rajendra Prasad Central Agricultural University, Samastipur, Pusa, Bihar
- 13. College of Horticulture and Forestry, Central Agril. University, Pasighat, Arunachal Pradesh
- 14. Maharana Pratap Horticultural University (MHU), RMRC, Murthal, Haryana

Cooperating Centres

 Dr. Y. S. Parmar University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh

New centres included during XII Plan

Coordinating Centres

- ICAR Research Complex for NEH Region, Sikkim
- 17. ICAR Research Complex for NEH Region, Arunachal Pradesh
- 18. ICAR Research Complex for NEH Region, Nagaland
- ICAR Research Complex for NEH Region, Manipur
- 20. ICAR Research Complex for NEH Region, Mizoram

- जी.बी. पंत यूनिवर्सिटी ऑफ एग्रीकल्चर एंड टेक्नोलॉजी, पंतनगर, उत्तराखंड
- सीओए, महात्मा फुले कृषि विश्वविद्यालय, पुणे, महाराष्ट्र
- 7. इंदिरा गांधी कृषि विश्वविद्यालय, रायपुर, छत्तीसगढ़
- 8. महाराणा प्रताप कृषि एवं प्रौद्योगिकी विश्वविद्यालय, उदयपुर, राजस्थान
- सीओए, केरल कृषि विश्वविद्यालय, वेल्लयानी, केरल
- 10. सी.सी.एस. हरियाणा कृषि विश्वविद्यालय, हिसार, हरियाणा
- 11. उड़ीसा कृषि और प्रौद्योगिकी विश्वविद्यालय, भूवनेश्वर, ओडिशा
- 12. डॉ राजेन्द्र प्रसाद केन्द्रीय कृषि विश्वविद्यालय, समस्तीपुर, पूसा, बिहार
- 13. कॉलेज ऑफ हॉर्टिकल्चर एंड फॉरेस्ट्री, केन्द्रीय कृषि विश्वविद्यालय, पासीघाट, अरुणाचल प्रदेश
- 14. महाराणा प्रताप बागवानी विश्वविद्यालय (एमएचयू), आरएमआरसी, मुरथल, हरियाणा

सहयोगी केंद्र

15. डॉ. वाई.एस. परमार औद्यानिकी एवं वानिकी विश्वविद्यालय, नौणी, सोलन, हिमाचल प्रदेश

बारहवीं योजना के दौरान शामिल नए केंद्र समन्वय केंद्र

- एनईएच क्षेत्र, सिक्किम के लिए आईसीएआर अनुसंधान परिसर
- 17. एनईएच क्षेत्र, अरुणाचल प्रदेश के लिए आईसीएआर अनुसंधान परिसर
- 18. एनईएच क्षेत्र, नागालैंड के लिए आईसीएआर अनुसंधान परिसर
- 19. एनईएच क्षेत्र, मणिपुर के लिए आईसीएआर अनुसंधान परिसर
- एनईएच क्षेत्र, मिजोरम के लिए आईसीएआर अनुसंधान परिसर

- 21. ICAR Research Complex for NEH Region, Tripura
- 22. ICAR-Central Inland Agricultural Research Institute, Port Blair, A&N Islands
- 23. ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka
- 24. CSKHPKV, Palampur, Himachal Pradesh

Co-operating Centres

- 25. ICAR-VPKAS, Almora, Uttarakhand
- Sher-e- Kashmir University of Agri. Science & Technology, Srinagar, J&K
- Sher-e- Kashmir University of Agri. Science & Technology, Jammu, J&K
- 28. Assam Agri. University, Jorhat, Assam
- 29. Sardar Ballabh Bhai Patel Uni. of Agri & Tech., Meerut, Uttar Pradesh
- 30. Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal
- 31. Sardarkrushinagar- Dantiwada Agri. Uni., Dantiwada, Gujarat
- 32. Acharya N G Ranga Agricultural University, Regional Agricultural Research Station, Tirupati, Andhra Pradesh

- 21. एनईएच क्षेत्र, त्रिपुरा के लिए आईसीएआर अनुसंधान परिसर
- 22. आईसीएआर—केंद्रीय अंतरद्वीपीय कृषि अनुसंधान संस्थान, पोर्ट ब्लेयर, अंडमान और निकोबार द्वीप समूह
- 23. आईसीएआर—इंडियन इंस्टीट्यूट ऑफ हॉर्टिकल्चरल रिसर्च, बैंगलोर, कर्नाटक
- 24. चौधरी सरवन कुमार हिमाचल प्रदेश कृषि विश्वविद्यालय , पालमपुर, हिमाचल प्रदेश

सहयोगी केंद्र

- 25. आईसीएआर-वीपीकेएएस, अल्मोड़ा, उत्तराखंड
- 26. शेर—ए—कश्मीर कृषि विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय, श्रीनगर, जम्मू और कश्मीर
- 27. शेर—ए—कश्मीर कृषि विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय, जम्मू, जम्मू और कश्मीर
- 28. असम कृषि विश्वविद्यालय, जोरहाट, असम
- 29. सरदार बल्लभ भाई पटेल कृषि एवं प्रौद्योगिकी विश्वविद्यालय, मेरठ, उत्तर प्रदेश
- 30. बिधान चंद्र कृषि विश्वविद्यालय, नदिया, पश्चिम बंगाल
- 31. सरदारकृषिनगर— दंतीवाड़ा कृषि प्रौद्योगिकी विश्वविद्यालय, दांतीवाड़ा, गुजरात
- आचार्य एन जी रंगा कृषि विश्वविद्यालय, क्षेत्रीय कृषि अनुसंधान केंद्र, तिरुपति, आंध्र प्रदेश

5. LIST OF PUBLICATIONS

5. प्रकाशनों की सूची

(i) Research papers

- Annepu, S.K., Sharma, V.P., Barh, A., Kamal, S., Shirur, M., Kumar, S., Bairwa, R.K., Gupta, S., Gupta, M., Dutta, U., Summuna, B., Gupta, D. and Kumar, R. 2023. Influence of Heat Treatment and Solid-State Fermentation on the Lignocellulosic Fractions of Substrates Supporting *Lentinula edodes* (Berk.) Pegler Cultivation: Implications for Commercial Production. *Fermentation*, 9 (2):130. https://doi.org/10.3390/fermentation9020130
- 2. Barh, A., Kamal, S., Sharma, V.P., Sharma, K., Kumari, B. and Nath, M. 2023. Identification and morpho molecular characterization of low spore strain in oyster mushroom. *Molecular Biology Reports*, **50**:5029–5038.
- 3. Barh, A., Sharma, K., Nath, M., Kamal, S. and Sharma, V.P. 2023. Expeditious method for genomic DNA extraction from mushroom mycelium for downstream applications. *Agricultural Research Journal*, **60** (1): 153-157.
- 4. Barh, A., Sharma, V.P., Annepu, S.K., Kumari, B., Kamal, S. and Kumar, A. 2023. Estimation of genetic diversity for interspecific hybridization in *Pleurotus* spp. *Vegetos* https://doi.org/10.1007/s42535-023-00575-8
- 5. Bijla, S. and Sharma, V.P. 2023. Economic Analysis of Shiitake Mushroom Cultivation as an Agribusiness Enterprise in India. *Economic Affairs*, **68** (2): 1101-1106.
- 6. Bijla, S. and Sharma, V.P. 2023. Status of

- mushroom production: Global and national scenario. *Mushroom Research*, **32** (2): 91-98.
- 7. Kumar, S., Kaundal, K., Sharma, S., Rao, A. and Sharma, V.P. 2023. Morpho-cultural, biochemical and molecular characterization of a pigment producing *Cordyceps militaris* (Strain DMRO-1164). *Mushroom Research*, **32**(1): 57-66.
- 8. Mala, A., Kamal, S. and Attri, B.L. 2023. A Review: Health Benefits and Quality Value of Mushroom. *International Journal for Multidisciplinary Research*, **5** (4): https://doi.org/10.36948/ijfmr.2023.v05i04.4841.
- 9. Nath, M., Barh, A., Sharma, A., Verma, P., Bairwa, R.K., Kamal, S., Sharma, V.P., Annepu, S.K., Sharma, K., Bhatt, D., Bhatt, P., Gupta, D. and Singh, R.K. 2023 Identification of eight high yielding strains via morpho-molecular characterization of thirty-three wild strains of *Calocybe indica*. *Foods*, **12** (11):2119.
- Neeraj, Siddiqui, S., Srivastava, A., Bindu, Pather, A.K. 2023. Physico-chemical and functional properties of starch from stored potato: effect of anti-sprouting treatments. *Journal of Food Measurement and Characterization* 17, 2224–2232 2023. https://doi.org/10.1007/s11694-022-01749-9
- 11. Saifi, S.K., Passricha, N., Tutejam R., Nath, M., Gill, R., Gill, S.S. and Tuteja, N. 2023.

OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. *Plant Science*, **335**: 111786.

- 12. Sharma, N., Ganjoo, A., Gairola, S., Srivastava, A., Singh, D, and Babu, V. 2023. Two commercially important culinary mushrooms; *Pleurotus* spp. and *Lentinula* spp. And their cultivation potential on lignocellulosic waste from aromatic plants. *Vegetos*, **36**:52-61.
- 13. Sharma, P., Thakur, M. Kamal, S. Chauhan, A., Dev, H. and Gupta, R. 2023. Transcriptome Analysis for gaining insight into Gingerol Biosynthesis and MAPK-Dependent Hormonal Signaling Pathway Involved in Resistance Mechanism in Fusarium Wilt Tolerant Ginger (*Zingiber officinate* Rosc.) Produced through In vitro Mutagenesis and Selection. *Journal of Plat Growth Revolution*. doi.org/10.1007/s00344-023-11078-w
- 14. Srivastava, A., Attri, B.L., Arora, B., Kamal, S. and Sharma, V.P. 2023. Development of Vitamin D and Protein Rich Energy Bar with Mushroom. *Asian Journal of Dairy and Food Research*, **42** (1): 103-109) doi: https://arccjournals.com/journal/asian-journal-of-dairy-and-food-research/DR-1817.
- 15. Verma, P., Nath, M., Sharma, A., Barh, A., Kamal, S., Sharma, V.P. and Kumar, A. 2023. Comparative evaluation of different spawn substrates on the growth and yield of oyster mushroom. *Mushroom Research*, **32** (1): 41-49.

(ii) Technical/popular articles

- 1. Reetu Verma. 2023. Oat (*Avena sativa L*.): A Lesser Known Cereal with Well Recognized Nutritional Potential. *Epidemiology and Public Health*, **1** (2): 1017
- 2. Praveen Kumar Yadav, Reetu Verma, Shashikumara P, D Sandeep Raja, and Jyotsna Srivastava. 2023. Kalanamak Rice (*Oryza sativa* L.): An aromatic rice landrace of eastern U.P, India. *Food and Scientific Reports*, **4** (5): 61-69.

(iii) Technical bulletins/folders: Nil

(iv) TV programme

Dr V.P. Sharma, Director, ICAR-DMR, Solan participated in three DD Kisan live programme on 20th January, 19th May and 22nd December, 2023.

(v) Paper presented in symposia/conference/ workshops attended

- Attri, B.L. Postharvest processing of mushrooms: Way to extend shelf life of mushrooms. Presented keynote lecture in Indian Mushroom Conference w.e.f. 18-19 August, 2023 held at Kerala Agricultural University, Vellayani.
- 2. Attri, B.L., Srivastava, A., Sharma, V.P. and Arjun, A.D. Shelf-life and quality of oyster mushroom (*Pleurotus ostreatus* var. Florida) affected by pre-treatments and packaging. Oral presentation in Indian Mushroom Conference w.e.f. 18-19 August, 2023 held at Kerala Agricultural University, Vellayani.
- 3. Attri, B.L. Postharvest management and value addition of mushrooms. Presented keynote lecture in India Mushroom Summit-2023 w.e.f. 20-22 Nov., 2023 held at Delhi University.

- 4. Sharma, V.P. Transformation of Indian Mushroom Industry Prospects and Challenges. Delivered presidential address and theme lecture in Indian Mushroom Conference w.e.f. 18-19 August 2023 at CoA, Vellayani, Kerala.
- 5. Sharma, V.P. Delivered an expert lecture on Technological Advances and Innovation for Mushroom Production in International Webinar series organized by MANAGE, Hyderabad on 26th Oct., 2023.
- Sharma, V.P. Indian Mushroom Industry Status and Way Forward. Presented keynote lecture in India Mushroom Summit-2023 w.e.f. 20-22 Nov., 2023 held at Delhi University.
- 7. Sharma, V.P. Delivered a keynote lecture on Status of Indian Mushroom Industry and Nutritional Value of Mushrooms in National Seminar on Plant Biodiversity for Food Nutrition and Health Security in North-West Himalayas organized by Indian Society of Plant Genetics Resources, New Delhi at Shoolini University w.e.f 27-28 November 2023.
- 8. Singh, A.K. and Reetu. 2023. Disease Screening and Performance of Dual-purpose Barley in Food-feed Crop Improvement. In: International Conference on Feeding the Future through Sustainable Eco-friendly Innovations in Rangeland, Forages and Animal Sciences held at UAS Bangalore during December 02-04, 2023, p. 108.
- Dr V.P. Sharma, Dr Shwet Kamal, Dr Anil Kumar and Dr Manoj Nath attended XXV Annual Workshop of All India Coordinated Research Project on Mushroom held at

- Sher-e-Kashmir University of Agricultural Sciences & Technology Srinagar (J&K) during 15-16 June 2023.
- 10. Dr Shwet Kamal and Dr Anil Kumar attended India Mushroom Summit-2023 held at Delhi University during 20-22 Nov 2023.

(vi) Book Chapter:

- 1. Anil Kumar Dixit, Biswajit Sen, Shweta Bijla, Sanjit Maiti, Babita Kathayat. 2023. Contribution of Wheat in Global Food Security in Changing Climatic Conditions. Challenges Ahead and Coping Strategies. Wheat Science. (Ed. 1). Taylor and Francis. CRC Press. E-Book ISBN 9781003307938.
- 2. Reetu, Maharishi Tomar, Manoj Kumar and D Seva nayak. 2023. Role of Phenolic Metabolites in Salinity Stress Management in Plants. In: Plant phenolics in abiotic stress management, Springer publisher pp. 353-368.
- 3. Reetu Verma, Maharishi Tomar, Mitali Mahajan, Praveen Yadav, Anita Rana, and D. Seva Nayak.2023. Exploiting Integrated Breeding Strategies to Improve Salinity Tolerance in Crop Plants. In: Salinity and Drought Tolerance in Plants, Springer publisher pp. 315-332.
- 4. Seva Nayak Dheeravathu, S Srividhya, R Swarna, S Avinash, G Rajesha, K Venkatesh, Reetu, Tejveer Singh, Nilamani Dikshit et al. 2023. Crop Plants and Grasses as Potential Phytoremediators: Physiological Perspectives and Efficient Mitigating Strategies. In: Salinity and Drought Tolerance in Plants, Springer publisher pp. 465-490

(vii) Event organized:

1. Indian Mushroom Conference-18-19 August 2023 at College of Agriculture, Kerala Agricultural University, Vellayani, Kerala

Mushroom Society of India (MSI), Solan in collaboration with ICAR-Directorate of Mushroom Research, Solan and AICRP on Mushroom, College of Agriculture, Kerala Agricultural University, Vellayani organized Indian Mushroom Conference on the theme "Mushroom Diversity and Diversification: Opportunities and Challenges" at College of Agriculture, Vellayani, Thiruvananthapuram on 18-19 August 2023 (Fig. 5.1).

Fig. 5.1. Indian Mushroom Conference-2023 at CoA, KAU, Vellayani on 18-19 August 2023

2. G-20 Leaders' Spouse visit held at NASC Complex, New Delhi on 9th September, 2023

G-20 Leaders' Spouse visit was held on 9th September 2023 at NASC Complex, New Delhi. ICAR-DMR, Solan put up an exhibition and showcased the technologies of different mushrooms developed by the Directorate (Fig. 5.2).

(vii) कार्यक्रम का आयोजनः

 भारतीय मशरूम सम्मेलन–18–19 अगस्त 2023, कृषि महाविद्यालय, केरल कृषि विश्वविद्यालय, वेल्लयानी, केरल

मशरूम सोसायटी ऑफ इंडिया (एमएसआई), सोलन ने आईसीएआर—मशरूम अनुसंधान निदेशालय, सोलन और मशरूम पर एआईसीआरपी, कृषि महाविद्यालय, केरल कृषि विश्वविद्यालय, वेल्लयानी के सहयोग से "मशरूम विविधता और विविधीकरणः अवसर और चुनौतियां" विषय पर भारतीय मशरूम सम्मेलन का आयोजन किया। 18—19 अगस्त 2023 को कृषि महाविद्यालय, वेल्लयानी, तिरुवनंतपुरम में (चित्र 5.1)।

चित्र 5.1. 18—19 अगस्त 2023 को सीओए, केएयू, वेल्लयानी में भारतीय मशरूम सम्मेलन—2023

 जी–20 नेताओं की जीवनसाथी यात्रा 9 सितंबर, 2023 को एनएएससी कॉम्प्लेक्स, नई दिल्ली में आयोजित हुई

जी—20 नेताओं की जीवनसाथी यात्रा 9 सितंबर 2023 को एनएएससी कॉम्प्लेक्स, नई दिल्ली में आयोजित की गई थी। आईसीएआर—डीएमआर, सोलन ने एक प्रदर्शनी लगाई और निदेशालय द्वारा विकसित विभिन्न मशरूम की प्रौद्योगिकियों का प्रदर्शन किया (चित्र 5.2)।

Fig. 5.2. Dr. Himanshu Pathak, Secretary (DARE) & DG (ICAR) visiting the stalls for G-20 Leaders' Spouse visit

चित्र 5.2. डॉ. हिमांशु पाठक, सचिव (डेयर) और महानिदेशक (आईसीएआर) जी—20 नेताओं की जीवनसाथी यात्रा के लिए स्टालों का दौरा करते हुए

6. APPROVED ON-GOING RESEARCH PROJECTS6. स्वीकृत चल रही अनुसंधान परियोजनाएं

On-going Research Projects of ICAR-DMR, Solan (H.P.) for the year 2023

Institute Code	Title	Researchers	Tentative Cost of the Project (Rs. in lakhs) as provided by the concerned Scientists	Period/ Remarks
DMR- 2021-1	Standardization of substrate formulations for mushrooms	Dr. V.P. Sharma, Project Leader		
	Refinement of existing technologies and domestication of some novel mushrooms	Dr. Shwet Kamal, PI Dr. Satish Kumar, Co- PI Dr. Anil Kumar, Co-PI Dr. Manoj Nath, Co-PI Dr. Anarase Dattatray, Co-PI Dr. Shweta Bijla, Co-PI	Rs.64.00 lakhs	April, 2021 to March, 2024
DMR- 2021-2(1)	Genetic improvement of mushroom	Dr. V.P. Sharma, Project Leader		
	Development of potential strains in button mushroom (Agaricus bisporus)	Dr. Shwet Kamal, PI Dr. Rakesh Kumar Bairwa, Co-PI (w.e.f. 3.1.2023)	Rs.70.26 lakhs	April, 2021 to March, 2024
DMR- 2021-2(2)	Development of potential strains in Pleurotus spp and Lentinula edodes and Flammulina velutips	Dr. Manoj Nath, PI (w.e.f. 21.08.2022) Dr. Manoj Nath, Co-PI (upto 20.08.2022) Dr. Shwet Kamal, Co-PI		April, 2021 to March, 2024

Institute Code	Title	Researchers	Tentative Cost of the Project (Rs. in lakhs) as provided by the concerned Scientists	Period/ Remarks
DMR- 2021-2(3)	Development of potential strains in Volvariella volvacea, Calocybe indica and Macrocybe giganteum	Dr. Manoj Nath, PI Dr. Satish Kumar, Co- PI Dr. Anil Kumar, Co-PI		April, 2021 to March, 2024
DMR- 2021-3 DMR- 2021-3(1)	Crop Protection in mushroom Development of resource efficient technologies for the management of major insect/pests of mushrooms	Dr. V.P. Sharma, Project Leader Dr. Satish Kumar, PI	15.31 lakhs	August, 2021 to July, 2023
DMR- 2021-3(2)	Re-defining epidemiological parameters and management approaches for major mushroom pathogens	Dr. Anil Kumar	Rs.36.50 lakhs	August, 2021 to July, 2024
DMR- 2021-4	Development of Novel Value Added Products from Selected Medicinal Mushrooms	Dr. Anuradha Srivastava, PI Dr. B.L. Attri, Co-PI Dr. Anarase Dattatray Arjun, Co-PI	Rs.25.45 lakhs	August, 2021 to July, 2023
DMR- 2021-5	Application of Solar energy in mushroom drying	Dr. Anarase Dattatray, PI Dr. BL Attri, Co-PI	Rs.1.60 lakhs	August, 2021 to July, 2023
DMR- 2021-7	Impact assessment of selected technologies developed by ICAR-DMR	Dr. Shweta Bijla, PI	Rs.4.10 lakhs	August, 2021 to July, 2024
DMR- 2023-1	Development and analysis of meat analogues from different mushrooms	Dr. B.L. Attri, PI Dr. Anuradha Srivastava, Co-PI	Rs.22.50 lakhs	April, 2023 to March, 2025

7. CONSULTANCY AND ADVISROY SERVICES 7. परामर्श और सलाहकार सेवाएं

During 2023, advisory services were given by ICAR-DMR, Solan through website, mobile apps, e-mails, telephones and face to face interactions on various aspects of mushroom cultivation, training and marketing. On an average there were about 20-25 queries per day received either by mail/phone/personal visits which were replied. The majority of queries were related to training programmes under various components followed by mushroom cultivation, spawn and marketing of mushrooms. Group of farmers from several parts of the country and students from various educational institutions visted the directorate during 2023 and they were briefed about various facilities and services rendered by ICAR-DMR, Solan. More than 6500 farmers, students and other visitors were attended at transfer of technology (ToT) section of the Directorate. The details of the visitors have been given in table 7.1.

2023 के दौरान, भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन द्वारा मशरूम की खेती, प्रशिक्षण और विपणन के विभिन्न पहलुओं पर वेबसाइट, मोबाइल ऐप, ई-मेल, टेलीफोन और आमने-सामने बातचीत के माध्यम से सलाहकार सेवाएं दी गईं। प्रतिदिन औसतन लगभग 20-25 प्रश्न मेल / फोन / व्यक्तिगत मुलाकात के माध्यम से प्राप्त होते थे जिनका उत्तर दिया जाता था। अधिकांश प्रश्न मशरूम की खेती, स्पॉन और मशरूम के विपणन सहित विभिन्न घटकों के तहत प्रशिक्षण कार्यक्रमों से संबंधित थे। देश के कई हिस्सों से किसानों के समूह और विभिन्न शैक्षणिक संस्थानों के छात्रों ने 2023 के दौरान निदेशालय का दौरा किया और उन्हें आईसीएआर-डीएमआर, सोलन द्वारा प्रदान की जाने वाली विभिन्न सुविधाओं और सेवाओं के बारे में जानकारी दी गई। निदेशालय के प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग में 6500 से अधिक किसानों, छात्रों और अन्य आगंत्कों ने भाग लिया। आगंत्कों का विवरण तालिका 7.1 में दिया गया है।

Table 7.1. Individual and group visits in ICAR-DMR, Solan during 2023 तालिका 7.1. 2023 के दौरान आईसीएआर—डीएमआर, सोलन में व्यक्तिगत और समूह दौरे

S. No.	Visitors' detail	Number of visitors
1.	Farmers from Solan, Himachal Pradesh	70
2.	Farmers from Gujarat	66
3.	Farmers Solan, Himachal Pradesh	05
4.	Farmers from Mandi, Himachal Pradesh	32
5.	Visitors from Sirmour, Himachal Pradesh	51
6.	Students from Tamil Nadu Agricultural University, TN	115
7.	Farmers from Maharashtra	53
8.	Students from Nauni University, Solan, Himachal Pradesh	05
9.	Farmers from KVK Kandaghat, Himachal Pradesh	27
10.	Students from Government Senior Secondary School (GSSS) Chamian, Solan, Himachal Pradesh	71
11.	Farmers from, Hamirpur, Himachal Pradesh	14

12.	Students from GSSS Chamian, Solan, Himachal Pradesh	41
13.	Visitors from Gujarat	46
14.	Imayam Institute of Agriculture and Technology (IIAT), TNAU affiliated	111
15.	Visitors from Rajasthan	52
16.	Students from GSSS, Sirmour, Himachal Pradesh	62
17.	Students from GSSS, Pabiyana, Himachal Pradesh	42
18.	Farmers from Haryana	121
19.	Students from TNAU (Tamil Nadu Agricultural University), Tamil Nadu	111
20.	Students from TNAU, Tamil Nadu	66
21.	Visitors from Delhi	25
22.	Farmers from Punjab	54
23.	Students from GSSS, Kandaghat, Himachal Pradesh	26
24.	Students from TNAU, Tamil Nadu	109
25.	Students from Una, Himachal Pradesh	45
26.	Students from GSSS, Mandi, Himachal Pradesh	47
27.	Students from GSSS, Sandhu, Theog, Himachal Pradesh	18
28.	Students from SHEDS College, Solan, Himachal Pradesh	32
29.	Farmers from KVK Kandaghat, Himachal Pradesh	33
30.	Farmers from Raipur, Chhattisgarh	64
31.	Farmers from Karnal, Haryana	26
32.	Visitors from Kangra, Himachal Pradesh	05
33.	Students from TNAU, Tamil Nadu	115
34.	Students from TNAU, Tamil Nadu	83
35.	Farmers from Bilaspur, Himachal Pradesh	30
36.	Students from TNAU, Tamil Nadu	122
37.	Students from TNAU, Tamil Nadu	71
38.	Students from TNAU, Tamil Nadu	84
39.	Students from TNAU, Tamil Nadu	76
40.	Students from TNAU, Tamil Nadu	210
41.	Students from TNAU, Tamil Nadu	64
42.	Students from TNAU, Tamil Nadu	35
43.	Students from Sri Karan Narendra Agriculture University, Jobner, Rajasthan	125
44.	Students from College of Agriculture, Nauni University, Himachal Pradesh	22
45.	Students Chandigarh Government College, Chandigarh	06

46.	Visitors from Kangra, Himachal Pradesh	05
47.	Students from Indira Gandhi Krishi Vishwavidyalaya, Raipur	63
48.	Farmers	33
49.	Students from TNAU, Tamil Nadu	47
50.	Farmers from Chail, Himachal Pradesh	15
51.	Students from Indira Gandhi Krishi Vishwavidyalaya, Raipur	50
52.	Farmers from KVK Kandaghat, Himachal Pradesh	20
53.	Visitors from Delhi	05
54.	Students from GSSS, Dol Ka Jubbar, Himachal Pradesh	58
55.	Visitors from Chhattisgarh	42
56.	Students from GSSS, Solan, Himachal Pradesh	26
57.	Visitors from Chhattisgarh	65
58.	Visitors from Uttarakhand	05
59.	Visitors from Chhattisgarh	45
60.	Students from TNAU, Tamil Nadu	63
61.	Visitors from Jaipur, Rajasthan	46
62.	Visitors from Rajasthan	50
63.	Farmers from KVK Kandaghat, Himachal Pradesh	37
64.	Visitors from Rajasthan	06
65.	Visitors from Punjab	05
66.	Visitors from Chhattisgarh	49
67.	Students from TNAU, Tamil Nadu	46
68.	Farmers from Panchkula, Haryana	20
69.	Students from Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, Madhya Pradesh	10
70.	Farmers from KVK Kandaghat, Himachal Pradesh	16
71.	Students from UHF Nauni, Himachal Pradesh	37
72.	Visitors from Maharana Pratap Horticultural University (MHU), Murthal, Haryana	10
73.	Visitors from KVK Nasik, Maharashtra	28
74.	Farmers from Panchkula, Haryana	05
75.	Visitors from Uttarakhand	40
76.	Farmers from Pinjor, Haryana	05
77.	Farmers from Odisha	18
78.	Farmers from Badu Sahib, Himachal Pradesh	25
79.	Farmers from Dharampur, Himachal Pradesh	05
80.	Farmers from KVK Kandaghat, Himachal Pradesh	30

81.	Visitors from Tripura	07
82.	Farmers from Chaupal, Himchal Pradesh	08
83.	Visitors from Nasik, Maharashtra	19
84.	Visitors from Jammu	05
85.	Farmers from KVK Kandaghat, Himachal Pradesh	31
86.	Visitors from Solan, Himachal Pradesh	06
87.	Visitors from Shimla, Himachal Pradesh	06
88.	Visitors from Sirmour, Himachal Pradesh	16
89.	Visitors from Bilaspur, Himachal Pradesh	12
90.	Visitors from ATMA Bilaspur, Himachal Pradesh	27
91.	Visitors from Chandigarh	50
92.	Visitors from Jaipur, Rajasthan	50
93.	Visitors from Karnal, Haryana	21
94.	Visitors from Rajgarh, Himachal Pradesh	44
95.	Students from Government Senior Secondary School (GSSS) Chamian, Solan, Himachal Pradesh	50
96.	Farmers from Sirmour	52
97.	Farmers from KVK Kandaghat, Himachal Pradesh	26
98.	Farmers from KVK Kashmir	75
99.	Farmers from JICA Mandi, Himachal Pradesh	14
100.	Farmers from KVK Kashmir	75
101.	Students from Government Senior Secondary School (GSSS) Kasauli, Himachal Pradesh	70
102.	Visitors from Delhi	09
103.	Students from National Finishing and Cookery Institute (NFCI) Solan, Himachal Pradesh	45
104.	Farmers from KVK Kandaghat, Himachal Pradesh	15
105.	Visitors from Karnal, Haryana	06
106.	Students from Government Senior Secondary School (GSSS) Saolgara, Himachal Pradesh	71
107.	Visitors from Karnal	05
i.	Total group visitors	4533
ii.	Number of individual visitors	1980
iii.	Total visitors (2023)	6513

Details of TEFRs prepared by ICAR-DMR, Solan (HP)

Techno Economic Feasibility Reports (TEFRs) for 2023:

One hundred thirty two numbers (132 Nos.) Techno-Economic Feasibility Reports (TEFRs) for setting up of Mushroom Units of 20, 50, 100, 200, 500, above 500 Ton per annum capacity of growing units of white button, Button mushroom compost production, Spawn production, Oyster, Ganoderma, Shiitake, Cordyceps, processing units etc. have been prepared for mushroom growers/firms from different parts of the country (Table 7.2).

आईसीएआर—डीएमआर, सोलन (एचपी) द्वारा तैयार टीईएफआर का विवरण

2023 के लिए तकनीकी आर्थिक व्यवहार्यता रिपोर्ट (टीईएफआर):

सफेद बटन, बटन मशरूम की बढ़ती इकाइयों की प्रति वर्ष 500 टन क्षमता से ऊपर 20, 50, 100, 200, 500 की मशरूम इकाइयों की स्थापना के लिए एक सौ बत्तीस नंबर (132 संख्या) तकनीकी—आर्थिक व्यवहार्यता रिपोर्ट (टीईएफआर) देश के विभिन्न हिस्सों से मशरूम उत्पादकों / फर्मों के लिए खाद उत्पादन, स्पॉन उत्पादन, ऑयस्टर, गैनोडर्मा, शिटाके, कॉर्डिसेप्स, प्रसंस्करण इकाइयाँ आदि तैयार की गई हैं (तालिका 7.2)।

Table 7.2. Techno Economic Feasibility Reports (TEFRs) for 2023 तालिका 7.2. 2023 के लिए तकनीकी आर्थिक व्यवहार्यता रिपोर्ट (टीईएफआर)

S.No.	Name & address	Details
1.	Mr. Bhuwnesh Kumar Spehia, S/o Sh. Om Parkash Village Chhal, PO & Tehsil Harchakian, Block Rait, Distt. Kangra (H.P.)	100 TPA White Button Mushroom Growing+Compost production Unit
2.	M/s. Coon Fresh Agro Farm, Mr. Sharafudheen, Kottarathodi House, PO: Thiruvegappura, via Pattambi, Palakkad District, Kerala- 679304	36 TPA White Button Mushroom Growing Unit
3.	Mr. Sandeep Sharma, S/o Sh. Om Prakash, VPO Staundi, Tehsil Gharaunda, District Karnal (Haryana)- 132114	50 TPA White Button Mushroom Growing Unit
4.	Sh. Umesh Kumar, Chhotaki Kopa, Naubatpur, Patna (Bihar	20 TPA White Button Mushroom Growing Unit
5.	Mr. Rajni Kant, S/o Sh. Surinder Kumar, Village Nakki, PO Baduhi, Tehsil Nurpur, District Kangra (H.P.) – 176201	500 TPA White Button Mushroom Compost production Unit
6.	Mr. Sandeep Kumar Yadav, S/o Sh. Bhale Ram Yadav, Near Indian Gas Godown, Dhana Road, Dadri Gate, Bhiwani (Haryana) – 127021	50 TPA White Button Mushroom Growing Unit
7.	-do-	20 TPA Spawn Production Unit
8.	-do-	500 TPA White Button Mushroom Compost production Unit

S.No.	Name & address	Details
9.	M/s. MOM'S NUTRICION, Ms. Shilpa Nanjappa.M.& Mr.N.M. Nandish Kumar, House No – 175, Vanivilas Layout, Vijaynagar 2nd Stage, Abhishek Circle Road, Mysore, Karnataka. 570016	130 TPA White Button Mushroom Growing+Compost production Unit
10.	Sh. Rajinder Singh, Village Kunthal Pashog, PO Negipool, Tehsil Rajgarh, District Sirmour (H.P.) - 171226	20 TPA White Button Mushroom Growing Unit
11.	Mr. Janardhan, Village Sawana, P.O. Dahan, Tehsil Rajgarh, District Sirmour (H.P.) - 173101	20 TPA White Button Mushroom Growing Unit
12.	M/s. Kangwal Mushroom Plant, Ms. Manisha, W/o Sh.Sukhnandan, Kathgarh Road, Near Shiv Mandir, Kangwal, Ambala, Haryana – 134003	500 TPA White Button Mushroom Compost production Unit
13.	Mr. Manjeet Singh, Ward No.10, Pahrawar to Kheri Sadh Road, Behind Govt. Sen. Sec. School, Pahrawar, District Rohtak, Haryana - 124021	78 TPA White Button Mushroom Growing Unit
14.	M/s. Mushilicious Private Limited, Mr. Saket S/o Sh.Shailendra Kumar Sinha and Ms. Gunjan Srivastava D/o Sh. Vibhuti Bhushan Srivastava, J-903, Tower J, 9th floor, Golden Palm, Sector-168, Noida, Uttar Pradesh, India, 201306	Cultivation (Growing+compost
15.	Mr.Surender Kumar, S/o Sh. Phool Chand, V.P.O. Garhi Kotaha, Tehsil Raipur Rani, District Panchkula (Haryana) - 134204	
16.	Mr. Akshay Sharma, Village Chandpur, Tehsil Haroli, Distt. Una (H.P.)	64 TPA White Button Mushroom Growing Unit
17.	-do-	500 TPA White Button Mushroom Compost production Unit
18.	-do-	20 TPA Spawn Production Unit
19.	M/s. Gill Mushroom Farm, Mr. Lakhwinder Singh Village Maneli, Tehsil Khamano, District Fatehgarh Sahib, Punjab	36 TPA White Button Mushroom Growing Unit
20.	-do-	500 TPA White Button Mushroom Compost production Unit
21.	-do-	20 TPA Spawn Production Unit
22.	Mrs. Savitri, W/o Sh. Rajender, VPO Durjanpur, Tehsil & District Hisar, Haryana, 125052	20 TPA White Button Mushroom Growing Unit

S.No.	Name & address	Details
23.	Mr. Kalam Singh, S/o Sh. Khyali Ram, VPO Barwa, District Dehradun (Uttarakhand)	50 TPA White Button Mushroom Growing Unit
24.	Mr.Subhash Chand, S/o Sh. Phool Chand, V.P.O. Garhi Kotaha, Tehsil Raipur Rani, District Panchkula (Haryana) – 134204	500 TPA White Button Mushroom Compost production Unit
25.	Mrs. Neelam Kumari, W/o Sh. Suresh Kumar, Village Brahamapur, Ward No.3, Tehsil Ghanari, District Una (H.P.) – 1767213	20 TPA White Button Mushroom Growing Unit
26.	Mr. Deepak Singh, S/o Sh. Onkar Singh, Village Hagwal, PO Lodhwan, Tehsil Indora, District Kangra (H.P.) – 176201	20 TPA White Button Mushroom Growing Unit
27.	M/s. Green Tech Agro, Mr. Ajit Kumar, Samana, Basatpur Village, Hapur District, Uttar Pradesh	200 TPA White Button Mushroom Cultivation (Growing+compost production) Project
28.	Mr. Yogesh, Village Saharmalpur, Tehsil Samalkha, District Panipat, Haryana	720 TPA White Button Mushroom Compost production Unit
29.	M/s. Galaxy Mushroom Farm, Mr. Ankit Duhan, S/o Sh. Jagbir Singh, Behind New Bus Stand Uchana, District Jind, Haryana	20 TPA White Button Mushroom Growing Unit
30.	Mr. Shamsher Singh, Village Sullar, PO Ballana District Ambala City, Haryana-134003	100 TPA White Button Mushroom Growing+compost production Project
31.	Agri Station Farmers Producer Company Limited, Sadikpur, Tehsil Bilari, District Moradabad (U.P.) – 202414	200 TPA White Button Mushroom Cultivation (Growing+compost production) Project
32.	Mr. Biresh Kumar, Village Kanswali (Kandholi), P.O. Manduwala, Via Prem Nagar, District Dehradun (Uttarakhand) – 248007	50 TPA White Button Mushroom Growing Unit
33.	M/s. Divya Rudra Mushroom Farm, Thakur Vijay Singh, VPO Khouda, Sub Tehsil Tihra, District Mandi, Himchal Pradesh- 175026	45 TPA White Button Mushroom Growing Unit
34.	Mr. Rajesh Makanwal, Village Lower Maken, PO Ootpur, Tehsil Lad Bharol, District Mandi (H.P.) – 175016	20 TPA White Button Mushroom Growing Unit
35.	Mr. Subrata Majumdar, Mouja-Badili Thana- Venkatapellam, Odisha	50 TPA White Button Mushroom Growing Unit
36.	Mr. Pradeep Kumar, Village Nirsu, PO Duttnagar, Tehsil Rampur Bushahr, District Shimla (H.P.) – 172001	20 TPA White Button Mushroom Growing Unit

S.No.	Name & address	Details
37.	M/s. R B Foods and Travels, Mr. Ankit Rautela and Mr. Tarun Rautela, Village Basantpur, PO Madanpur, Gaulapar, City Haldwani, Dist Nainital 263139 Uttarakhand	720 TPA White Button Mushroom Compost production Unit
38.	Mrs. Kamla, W/o Sh. Prakash Chand, Sumti Deonghat, Tehsil & District Solan (H.P.)	20 TPA White Button Mushroom Growing Unit
39.	Mrs. Neelama Kumari, W/o Sh. Pushap Raj, Village Bakhalwar, PO & Tehsil Thunag, District Mandi (H.P.) – 175048	20 TPA White Button Mushroom Growing Unit
40.	Mr. Sahib Sharma, S/o Sh. Mukesh Kumar Sharma, H. No. 20/D, Subhash Nagar, Mandi Govind Garh, District Fatehgarh Sahib, Punjab	365 TPA White Button Mushroom Cultivation (Growing+compost production) Project
41.	Mr. Akshay Sharma, Village Chandpur, Tehsil Haroli, District Una (H.P.)	500 TPA White Button Mushroom Compost production Unit
42.	Mr. Kunal Kumar, S/o Sub. Sukhdev Singh, VPO Barri Majherwan, Tehsil Ghumarwin, District Bilaspur (H.P.) – 174021	20 TPA White Button Mushroom Growing Unit
43.	Mr. Gopal Chand, S/o Sh. Dharam Chand, Village Seougi, PO Bari, Tehsil & District Kullu (H.P.) – 175101	20 TPA Spawn Production Unit
44.	-do-	500 TPA White Button Mushroom Compost production Unit
45.	Dr. Pooja, W/o Advocate Ravinder Chauhan, Village Sharinala, PO Bajaura, Tehsil Bhuntar, District Kullu (H.P.) 175125	20 TPA Spawn Production Unit
46.	Sh. Sandeep, S/o Sh. Jai Parkash, Ridhad (4-R), Village Ridhau, Sonipat, Haryana - 131408	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
47.	M/s. Himalayan Fresh Mushroom Ms Kshama Meena, Ms. Manisha Meena, Ms. Kamalvati Sahoo, Ms. Shivamgi Meena and Ms. Pushpa Meena Survey, No. 182(S) Gram Chiklod Khurd, Goharganj, Raisen, Madhya Pradesh, Bhopal, M.P.)	96 TPA White Button Mushroom Cultivation (Growing+compost production) Project
48.	-do-	1340 TPA TPA White Button Mushroom Compost production Unit
49.	Mr. Mukesh Kumar, S/o Sh. Jeet Singh, Village Mandoli, Tehsil Sangrah, District Sirmour (H.P.) – 173023	20 TPA White Button Mushroom Growing Unit

S.No.	Name & address	Details
50.	M/s. FUTURISTIC FARMLANDS, Mr. Hardeep Singh, Smt.Ranjeet Kaur, Ludhiana (Punjab)	Integrated project of White Button Mushroom Growing & Compost production = 64 TPA 120 TPA Oyster Mushroom 120 TPA Milky Mushroom
51.	-do-	20 TPA Spawn Production Project report
52.	Mr. Karan Singh, S/o Sh. Shankar Singh, Village Khadol, PO & Sub Tehsil Gangath, District Kangra (H.P.) - 176204	30 TPA White Button Mushroom Growing Unit
53.	M/s. Nagrota Bagwan PKVY Farmers Producer Co. Limited, Village Mundla, PO Sunehar, Tehsil Nagrota Bagwan, Kangra (H.P.) – 176056	500 TPA White Button Mushroom Compost production Unit
54.	Mr. Rakesh Singh, S/o Sh. Narayan Singh, Balir Malot, Himachal Pradesh - 176403	20 TPA White Button Mushroom Growing Unit
55.	M/s. Bhavna Mushroom Farming, Mr. Santosh Kumar, S/o Sh. Ran Singh, Village Bharin, PO Ropa, Tehsil & District Hamirpur (H.P.)- 177001	20 TPA White Button Mushroom Growing Unit
56.	Mr. Karan Singh, S/o Sh. Shankar Singh, Village Khadol, PO & Sub Tehsil Gangath, District Kangra (H.P.) - 176204	30 TPA White Button Mushroom Growing Unit
57.	Mr. Rajesh, S/o Sh. Mula Ram, Fartia, Kehar, Fartia Bheema, Loharu, Bhiwani, Haryana – 127201	68 TPA White Button Mushroom Cultivation (Growing+compost production) Project
58.	M/s. Green Agro Mushroom, Mr. Diwakar Verma & Mr. Nagendra Rajendra Naidu, Gram Tuta, Raipur, Chattisgarh - 492015	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
59.	M/s. Nagrota Bagwan PKVY Farmers Producer Co. Limited, Village Mundla, PO Sunehar, Tehsil Nagrota Bagwan, Kangra (H.P.) – 176056	500 TPA White Button Mushroom Compost production Unit
60.	Mr. Kapil Dev, S/o Sh. Sohan Singh, Village Pandrehar, PO Gurchal, Tehsil Nurpur, Kangra (H.P.) – 176202	20 TPA White Button Mushroom Growing Unit
61.	Ira Devi Cold Storage Pvt. Ltd., Mr. Sourabh Saxena, Madhuban Colony, Rukunpura, Bailey Road, Patna-800014	510 TPA White Button Mushroom Cultivation (Growing+compost production) Project
62.	Mr. Deshraj, S/o Sh. Jagveer Singh, Village Thet, Post Basantpur, Chandpur, Bijnor (U.P.) - 246725	20 TPA Spawn Production Project report

S.No.	Name & address	Details
63.	M/s. Goljyu Agrotech, Mr. Umi Ram Arya, Village Bassani, Fatehpur, Haldwani, Distt. Nainital, Uttarakhand	20 TPA Spawn Production Project report
64.	Ms. Manisha, W/o Sh.Sukhnandan, Kathgarh Road, Near Shiv Mandir, Kangwal, Ambala, Haryana – 134003	50 TPA White Button Mushroom Growing Unit
65.	M/s. Guru Ramdas Mushroom Farm, Mrs. Paramjeet Kaur and Sh. Thana Singh, V.P.O. Thathi Bhai, Tehsil Bagha Purana, District Moga (Punjab)- 142049	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
66.	-do-	20 TPA Spawn Production Project report
67.	M/s. HUSC AGRO, Mr. Harsh Uday Singh, V.P.O Harial, Near Shiv Temple, District Pathankot, Punjab-145001	26 TPA White Button Mushroom Growing Unit
68.	-do-	336 TPA White Button Mushroom Compost Production
69.	Sh. Rajender Singh, S/O Sh Bache Singh, Nagar Koti, VPO Gairar, District Bageshwar, Uttarakhand - 263619	48 TPA White Button Mushroom Growing Unit
70.	Ms. Ritu Thakur, Up Mohal Kamla Nagar, PO Sanjauli, Tehsil Shimla Rural, District Shimla (H.P.) – 171006	20 TPA White Button Mushroom Growing Unit
71.	Mr. Sanjay Kumar, S/o Sh. Sunder Singh, Village Gavda, PO Kangta Failag, Tehsil Dadahu, District Sirmour (H.P.) – 173022	20 TPA White Button Mushroom Growing Unit
72.	Mr. Ashwani Sharma, Village Baorash, PO Duttnagar, Tehsil Rampur Bushahr), District Shimla (H.P.) – 172001	
73.	M/s Sarao Mushroom, Mr. Mohit Kumar, S/o Sh. Sultan Singh, Village Khera Brahmana, Bilaspur to Pabni Road, Yamuna Nagar (Haryana) - 135 102	336 TPA White Button Mushroom Compost Production
74.	Mr. Gagan Preet Singh, Village Kishangarh, Jalandhar, Punjab- 144301	36 TPA White Button Mushroom Growing Unit
75.	Smt. Sukhwinder Kaur, C/o Sh. Baldev Singh, Thowana, Hoshiarpur, Punjab-144520	500 TPA White Button Mushroom Compost Production

S.No.	Name & address	Details
76.	M/s. PS Foods, Mr. Shubham Aggarwal, C33 Shri Ram Nagar, Jwalapur, Haridwar, Uttarakhand}	1000 TPA White Button Mushroom Cultivation (Growing+compost production) Project
77.	Mr. Bhagta Ram, S/o Sh. Deep Ram, Village Khairi Chaingan, PO Kangta Failag, Tehsil Dadahu, District Sirmour (H.P.) - 173022	24 TPA White Button Mushroom Cultivation (Growing+compost production) Project
78.	Mr. Joginder Singh, S/o Sh. Kishan Singh, Dadahu, Chuli, Tehsil Nahan, District Sirmour (H.P.) – 173022	20 TPA White Button Mushroom Growing Unit
79.	Mr. Jai Pal, S/o Sh. Kamla Nand, Village Kharari, PO Kangta-Falge, Tehsil Dadahu, District Sirmour (H.P.) – 173022	20 TPA White Button Mushroom Growing Unit
80.	Ms. Aarzoo Praveen, D/o Mohd. Zakir Nalapani, Tapovan Road, Dehradun, Uttarakhand	20 TPA White Button Mushroom Growing Unit
81.	Sh. Harminder Singh, S/o Sh. Bakhtawar Singh, VPO Ambala Jattan, Tehsil Dasuya, Hoshiarpur, Punjab	
82.	Mr. Satpal Saini, Village Sadarpur, PO Tanda, Tehsil Nagrota Bagwan, District Kangra (H.P.) – 176002	20 TPA White Button Mushroom Growing Unit
83.	Mr. Dharam Singh, Village Sadarpur, PO Tanda, Tehsil Nagrota Bagwan, District Kangra (H.P.) – 176002	20 TPA White Button Mushroom Growing Unit
84.	Mr. Vishal Bali, C/o Sh. Rajender Bali, Village Aghlor, PO Mandli, Tehsil Bangana, District Una (H.P	20 TPA White Button Mushroom Growing Unit
85.	-do-	500 TPA White Button Mushroom Compost Production
86.	Mr. Adarsh Kumar, S/o Sh. Balak Ram, Village Jiskoon, PO Jakha, Tehsil Dodra Kwar, District Shimla (H.P.) – 171221	20 TPA White Button Mushroom Growing Unit
87.	Mr. Rajinder Kumar, S/o Sh. Gurnam Singh, V.P.O. Anandpur Jalbera, Tehsil and District Ambala, Haryana – 134003	50 TPA White Button Mushroom Growing Unit
88.	-do-	500 TPA White Button Mushroom Compost Production
89.	Mr. Ravi Prakash, Village & P.O. Baijnathpur, District Saharsa, Bihar – 852221	20 TPA Spawn Production Project report

S.No.	Name & address	Details
90.	Mr. Ayush Bhanu Verma, Village Shaifabad, P.O. Atma, P.S. Islampur, Bihar – 801303	20 TPA Spawn Production Project report
91.	Mr. Sanjay Kumar, S/o Sh.Roshan Lal, Village Rampur, PO Kanaid, Tehsil Sundernagar, District Mandi (H.P.)- 175019	20 TPA White Button Mushroom Growing Unit
92.	Sh. Ashish Gupta, 13/2, Village Bhirawti, Tehsil & District Nuh (Mewat), Haryana	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
93.	M/s. Hasanpur Farm, Sh. Kabir Singh, Village Chachar, PO Uttam Nagar, Tehsil Kichha, Dist. Udham Singh Nagar, Uttarakhand. 263148.	20 TPA Shiitake Mushroom Cultivation
94.	Mr. Bhavesh Bhole, ASG- 67, Matoshree Bunglow, Ashwin Nagar, Nashik, Maharashtra- 422009	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
95.	Mr. Anurag Sharma, House No. 890, Prashant Vihar Colony, Village Raipur Rani, District Panchkula, Haryana	90 TPA White Button Mushroom Cultivation (Growing+compost production) Project
96.	Mr. Netar Singh, S/o Sh.Bhoop Singh, Resident of Bobri, PO Bali Koti, Tehsil Shillai, District Sirmour (H.P.) - 173027	20 TPA White Button Mushroom Growing Unit
97.	Mrs. Aruna Sanjivv Dogra & Sh. Sanjeev Dogra, VPO Rait, Tehsil Shahpur, District Kangra (H.P.)	100 TPA White Button Mushroom Cultivation (Growing+compost production) Project
98.	M/s. Rao Adal Singh Mushroom Farm, Mrs. Sudesh, W/o Sh. Karam Singh, Village-Khatiwas, Gogjaka PO- Tauru, District Nuh, Pincode-122105 Haryana	324 TPA White Button Mushroom Cultivation (Growing+compost production) Project
99.	Sh. Puneet Thakur, S/o Sh. Ranvir Singh, Village Jhali, PO & Sub Tehsil Neether, District Kullu (H.P.) – 172033	
100.	M/s. Gill Mushroom Farm, Sh. Baljit Singh, S/o Sh. Amarjit Singh, Village Kakra Tehsil Bhagwanigarh, Distrcit Sangrur (Punjab)	500 TPA White Button Mushroom Compost Production
101.	Chief Horticulture Officer, Government of Uttarakhand Almora, Uttarakhand	20 TPA Spawn Production Project report
102.	MAA Mushroom, Smt. Sweta Agrawal, C/o MAA Tyre Retreads, Beside Gururdwara, Ramai Talkies Road Balangir - Pin- 767001, Odisha	165 TPA White Button Mushroom Cultivation (Growing+compost production) Project

S.No.	Name & address	Details
103.	Mr. Kuldeep Singh, S/o Sh. Didar Singh, Village Duttal, Tehsil Patran, District Patiala (Pb.) – 147105	500 TPA White Button Mushroom Compost Production
104.	Mr. Praveen Kumar, S/o Sh. Chand Kishor, VPO Naggar, District Kullu (H.P.) - 175130	500 TPA White Button Mushroom Compost Production
105.	Mr. Lakhvinder, S/o Sh. Jai Narayan, Village Daha, PO Madhuban, Tehsil & District Karnal, Haryana – 132037	20 TPA Spawn Production Project report
106.	Mr. Aditya Chauhan, S/o Sh.Jayanti Prasad Chauhan, 85, Govindpur Road, Near Hill Briqet Industries, Kolakasuma Gosaidi, Dhanbad, Jharkhand - 828109	20 TPA Spawn Production Project report
107.	Sh. Priyabrata Maharana, 270 270 Barilo, Maa Khetrapal, Temple1, Bhubaneswar, Balipatna Khorda-752102, Odisha	50 TPA Oyster Mushroom Production
108.	Mr. Mast Ram, S/o Sh. Sukh Ram, Village Nihog, P.O. Sher Tandula, Tehsil Nohradhar, District Sirmour (H.P.)-173104	20 TPA White Button Mushroom Growing Unit
109.	Sh. Jai Singh, S/o Sh Chattar Singh, Village Sodha Dyadhi, PO Dod Titad, Tehsil Pachhad, District Sirmour (H.P.)-173101	87 TPA White Button Mushroom Cultivation (Growing+compost production) Project
110.	Sh. Bhikam Chandra Jagrit, B46, Hari Bhau Upadhyay Nagar, Main Ajmer, Rajasthan-305004	25 TPA White Button Mushroom Cultivation (Growing+compost production) Project
111.	Accord Agros, Mr. Meharwan Singh Grewal, VPO Thakarwal, District Ludhiana (Punjab) – 142022	500 TPA White Button Mushroom Compost Production
112.	Mr. Virender S/o Sh.Pritam Singh, Village Missa, Tehsil & District Palwal (Haryana) – 121102	50 TPA White Button Mushroom Growing Unit
113.	-do-	500 TPA White Button Mushroom Compost Production
114.	Mr. Vinod Bhukhandi, S/o Sh. Govind Ram, Village Lachmpur, PO Kallghati, Kotwara, Pauri, Garhwal, Uttarakhand	50 TPA White Button Mushroom Growing Unit
115.	Mr. K. Selvakumar, 6/2, First Cross, Therpettai Road,Near TVS Showroom, Denkanikottai (P.O), Krishnagiri District Tamil Nadu – 635107	500 TPA White Button Mushroom Compost Production

S.No.	Name & address	Details
116.	Mr. Soharem Ngadong, Vill - Manchal, PO - Hayuliang, Dist - Anjaw- 792104 (Arunachal Pradesh)	25 TPA White Button Mushroom Cultivation (Growing+compost production) Project
117.	M/s.GREENTECH FARMS, Mr. Rajesh Kumar Prasad, Mr. Satyendra Narayan Singh, Mr. Bishwajit Saha, Mr. Suresh Kumar Baraik, Mrs. Pinky Prasad, At Sumitra Sadan, Office No 401, Main road Hinoo, Hinoo, Ranchi, 834002, Jharkhand	75 TPA White Button Mushroom Cultivation (Growing+compost production) Project
118.	Mr. Ranjeet Singh, Village Kallar (Bassi), PO Lanj, Sub Tehsil Haarchakiyan, District Kangra (H.P.) – 176026	500 TPA White Button Mushroom Compost Production
119.	Mr. Niitin Gupta,S/o Sh. Awadh Ram, Village Khairahni, Post Bamhanpur, Tehshil Nighasan, District Lakhimpur kheri, Uttar Pradesh	20 TPA Milky Mushroom Growing Unit
120.	Mr. Rajender Guleria, S/o Sh. Karam Chand, Village Besti, Post Office Gundiyat Gaoun, Tehsil Purola, District Uttarkashi – 249185, Uttarakhand	20 TPA White Button Mushroom Growing Unit
121.	Mr. Madan Singh, S/o Sh. Kishan Singh, Village Rajyon, PO Sarahan, Tehsil Pachhad, District Sirmour (H.P.) – 173024	20 TPA White Button Mushroom Growing Unit
122.	M/s. Padma Agro Farm, Mr. Shyama Sadhan Maji and Ms Manidipa Maji, C-56, Sector- 2A, Dr. Sukumar Sen Sarani, Aranyak Paschimanchal, PO- Bidhannagar, Durgapur – 713212, Dt. Paschim Bardhaman (West Bengal	365 TPA White Button Mushroom Cultivation (Growing+compost production) Project
123.	The Chief Agriculture Officer, Union Territory of Jammu & Kashmir, Department of Agriculture Production & Farmer Welfare, District Udhampur	, , ,
124.	Mr. Ankit Rana, S/o Sh. Bijender Singh, Village Palwal, District Palwa, Haryana	20 TPA White Button Mushroom Growing Unit
125.	Mr. Purushottam Dutt Uniyal, Village Than, PO Bhawan, Tehsil Dhanaulti, District Tehri Garhwal, Uttarakhand - 249180	20 TPA Spawn Production Project report
126.	Sh.Ramesh Thakur, Village Sear, PO Basadhar, Tehsil Theog, District Shimla (H.P.) -171226	20 TPA White Button Mushroom Growing Unit
127.	Mr. Gaurav Sharma, Village Kondal, District Palwal, Haryana	100 TPA White Button Mushroom Growing Unit

S.No.	Name & address	Details
128.	-do-	500 TPA White Button Mushroom
		Compost Production
129.	Mr. Hemjit Chakravartty, C/o Mrs. Renuka Bhattacharjee, H.No.29, College Nagar, Dhupdhara, P.O./P.S. Dhupdhara, District Goalpara, Assam – 783124	20 TPA Spawn Production Project report
130.	Smt. Jaydai W/o Sh. Dalip Thakur, Village Shaug, PO Ghangughat, Tehsil Arki, District Solan (H.P.) - 171102	
131.	M/s. Sidhuz Mushroom Closet, Mr. Jagjit	500 TPA White Button Mushroom
	Sidhu, Opp. Park Ave Uppli Road, Sangrur,	
	Punjab	-
132.	Mr. Sandeep Singh, S/o Sh.Avtar Singh.	500 TPA White Button Mushroom
	Village Arkbas, Tehsil Lehragaga, District	Compost Production
	Sangrur-148031, Punjab	

8. COMMITTEE MEETINGS

8. समिति की बैठकें

Meeting of Quinquennial Review Team (QRT) of ICAR-DMR, Solan (H.P.) held on 08.02.2023 (Online)

दिनांक 08.02.2023 (ऑनलाइन) को आयोजित भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि.प्र.) की पंचवार्षिक समीक्षा दल (क्यूआरटी) की बैठक

S.No.	Name & Address	Position
क्र,सं,	नाम व पता	पद
1.	Dr. B. Singh, Vice Chancellor, Acharya Narendra Deva University of Agriculture & Technology, Faizabad, Kumarganj, Ayodhya, Uttar Pradesh - 224 229.	Chairman अध्यक्ष
	डॉ. बी. सिंह, कुलपति, आचार्य नरेंद्र देव कृषि एवं प्रौद्योगिकी विश्वविद्यालय, फैजाबाद, कुमारगंज, अयोध्या, उत्तर प्रदेश — 224 229	
2.	Dr. A.S. Krishnamoorthy, Registrar, Tamil Nadu Agriculture University, Lawley Road, Coimbatore, Tamil Nadu – 641 003. डॉ. ए.एस. कृष्णमूर्ति, रजिस्ट्रार, तमिलनाडु कृषि विश्वविद्यालय, लॉली रोड, कोयम्बटूर, तमिलनाडु – 641 003	Member सदस्य
3.	Dr. A.P. Gaikwad, Retd. Mycologist AICRP-Mushroom, Pune Centre, College of Agriculture, Pune - 411 005, Maharashtra. डॉ. ए.पी. गायकवाड़, सेवानिवृत्त कवक विज्ञानी एआईसीआरपी—मशरूम, पुणे केंद्र, कृषि महाविद्यालय, पुणे — 411 005, महाराष्ट्र	Member सदस्य
4.	Dr. H.S. Sodhi, Retd. Mycologist, PAU, Ludhiana (Punjab). डॉ. एच.एस. सोढ़ी, रिटा. माइकोलॉजिस्ट, पीएयू, लुधियाना (पंजाब)	Member सदस्य
5.	Dr. Dayaram, Professor & Project Director, Advance Centre of Mushroom Research, College of Basic Scienes and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar – 848125. डॉ. दयाराम, प्रोफेसर और परियोजना निदेशक, एडवांस सेंटर ऑफ़	Member सदस्य
	मशरूम रिसर्च, कॉलेज ऑफ़ बेसिक साइंसेस एंड ह्यूमैनिटीज़, डॉ. राजेंद्र प्रसाद केंद्रीय कृषि विश्वविद्यालय, पूसा, समस्तीपुर, बिहार — 848125	

6.	Dr. N.S. Atri, Ex-Professor, Atri Paradise, Officer's Colony, JBT Road, Kotlanala, Solan (H.P.) – 173212	Member सदस्य
	डॉ. एन.एस. अत्रि, पूर्व प्राध्यापक, अत्रि पैराडाइज, ऑफिसर्स कॉलोनी, जेबीटी रोड, कोटलानाला, सोलन —173212	
7.	Dr. B.L. Attri, Principal Scientist, ICAR-DMR, Solan (HP) – 173213 (H.P.).	Member – Secretary
	डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक, भाकृअनुप—खुअनुनि, सोलन (हि.प्र.)— 173213	सदस्य सचिव

Meeting of Research Advisory Committee (RAC) of ICAR-DMR, Solan (H.P.) was held on 23rd May, 2023. The Members of RAC are as under for the period 2023-2026 (14.02.2023–13.02.2026).

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि०प्र०) में गठित अनुसंधान सलाहाकार समिति की बैठक दिनांक 23 मई, 2023 को हुई। अनुसंधान सलाहाकार समिति के सदस्य 2023—2026 (14.02.2023—13.02.2026) अविध के लिए निम्नलिखित हैं:

S.No.	Name & Address	Position
क्र,सं, 1.	नाम व पता Dr. Vijay Singh Thakur,	पद Chairman
	Former Vice Chancellor, UHF, Nauni, Village Kohlara, PO Praunthi, Tehsil Jubbal, District Shimla (H.P.) -171205. डॉ. विजय सिंह ठाकुर, पूर्व कुलपति, औद्यानिकी एवं वानिकी	अध्यक्ष
	विश्वविद्यालय, नौणी, गाँव कोहलारा, डाकघर परौंथी, तहसील जुब्बल, जिला शिमला (हि0प्र0) — 171205	
2.	Dr. V.B. Patel, Asstt. Director General (Fruits), Indian Council of Agricultural Research, KAB-II, Pusa, New Delhi – 110 012.	Member सदस्य
	डॉ. वी. बी. पटेल, सहायक महानिदेशक (फल), भारतीय कृषि अनुसंधान परिषद, कृषि अनुसंधान भवन—II, पूसा, नई दिल्ली — 110 012	
3.	Dr. K.P. Singh, Former-Principal Scientist, IIVR, Varanasi B-27/31B 1, Durgakund, Varanasi (U.P.) – 221005. डॉ. के.पी. सिंह, पूर्व प्रधान वैज्ञानिक, भारतीय सब्जी अनुसंधान संस्थान, वाराणसी, बी–27 / 31बी 1, दुर्गाकुंड, वाराणसी (उत्तर प्रदेश) –221005	Member सदस्य
4.	Dr. B.M. Sharma, Prof.(Retd.), HPKVV, Palampur (H.P.) Ganesh Vihar, Khilru, PO Bindravan, Palampur-176061 (H.P.). डॉ. बी. एम. शर्मा, प्रोफेसर (सेवानिवृत्त), हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर (हि0प्र0), गणेश विहार, खिलडू, डाकघर बिंदरावन, पालमपुर (हि0प्र0) — 176061	Member सदस्य

5.	Dr. C.D. Thapa, Ex-Professor, Deptt. of Pl.Path., UHF, Nauni (H.P.) Vaishnav Kunj, Near Power House Saproon, PO Saproon, District Solan (H.P.) – 173211. डॉ. सी.डी. थापा, पूर्व प्रोफेसर, पादप रोगविज्ञान, यूएचएफ, नौणी, वैश्णव कुंज, समीप पावर हाउस, सपरून, डाकघर सपरून, जिला सोलन (हि0प्र0) – 173211	Member सदस्य
6.	Dr. B.Vijay, Ex-Principal Scientist, ICAR-DMR, Solan.Village Ber Ki Ser, PO Chambaghat, Solan (H.P.) – 173213 डॉ. बी. विजय, पूर्व प्रधान वैज्ञानिक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0), गाँव बेर की सैर, डाकघर चम्बाघाट, जिला सोलन (हि0प्र0) – 173 213	Member सदस्य
7.	Dr. V.P. Sharma Director, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (HP) – 1732113. डॉ. वी.पी. शर्मा, निदेशक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0) – 173 213	Member सदस्य
8.	Sh. Dharmender Rana, S/o Sh. Kunwar Mahan Rana, VPO Singha, Tehsil Haroli, District Una (H.P.) – 176602 श्री धर्मेन्द्र राणा, सपुत्र श्री कुंवर मोहन सिंह राणा, गांव व डा. सिंघा, तहसील हरौली, जिला ऊना (हि0प्र0) – 176602	Member सदस्य
9.	Sh. Swaran Singh Chib, S/o Sh. Thoru Ram, R/o Fathu Chak, PO Satrayan, Tehsil Suchetgarh, District Jammu – 181102. श्री स्वर्ण सिंह चिब, सपुत्र श्री थोरू राम, निवासी फथू चक, डाकघर सतरायण, तहसील सुचेतगढ़, जिला जम्मू – 181102	Member सदस्य
10.	Dr. B.L. Attri, Principal Scientist, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) – 173213. डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0)—173213	Member Secretary सदस्य सचिव

Meetings of Institute Research Committee (IRC) of ICAR-DMR, Solan meetings were held on 13-14.02.2023 and 11.08.2023. The Members were as under:

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन की संस्थान अनुसंधान समिति की बैठक दिनांक 13—14.02.2023 व 11.08.2023 को हुई। समिति के सदस्य निम्नलिखित थेः

S.No. क्र,सं,	Name नाम	Designation पदनाम
1.	Dr. V.P. Sharma, Director डॉ. वी.पी. शर्मा, निदेशक	Chairman अध्यक्ष
2.	Dr. B.L. Attri, Principal Scientist डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक	Member Secretary सदस्य सचिव
3.	Dr. Satish Kumar, Principal Scientist डॉ. सतीश कुमार, प्रधान वैज्ञानिक	Member सदस्य
4.	Dr. Shwet Kamal, Principal Scientist डॉ. श्वेत कमल, प्रधान वैज्ञानिक	Member सदस्य
5.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	Member सदस्य
6.	Dr. Anuradha Srivastava, Scientist डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	Member सदस्य
7.	Dr. Reetu, Scientist डॉ. रितु, वैज्ञानिक	Member सदस्य
8.	Dr. Manoj Nath, Scientist डॉ. मनोज नाथ, वैज्ञानिक	Member सदस्य
9.	Dr. Anarase Dattatray Arjun, Scientist डॉ. अनारसे दत्तात्रय अर्जुन, वैज्ञानिक	Member सदस्य
10.	Dr. Shweta Bijla, Scientist डॉ. श्वेता बिजला, वैज्ञानिक	Member सदस्य
11.	Dr. Jagdish Goyanka, Scientist डॉ. जगदीश गोयंका, वैज्ञानिक	Member सदस्य

Research Priority Setting & Monitoring (PME) Committees constituted at ICAR-DMR, Solan (H.P.). भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि0प्र0) में गठित अनुसंधान प्राथमिकता सेटिंग, निगरानी और मृल्याकंन सैल।

S.No. क्र,सं,	Name नाम	Designation
,,		पदनाम
1.	Dr. B.L. Attri, Principal Scientist	Chairman, PME Cell
	डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक	अध्यक्ष, अध्यक्ष पीएमई सेल
2.	Dr. Satish Kumar, Principal Scientist	Co-Chairman
	डॉ. सतीष कुमार, प्रधान वैज्ञानिक	सह–अध्यक्ष पीएमई सैल
3.	Dr. Shwet Kamal, Principal Scientist	Member
	डॉ. श्वेत कमल, प्रधान वैज्ञानिक	सदस्य
4.	Dr. Anuradha Srivastava, Scientist	Member
	डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	सदस्य
5.	Dr. Anil Kumar, Senior Scientist	Member Secretary
	डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	सदस्य सचिव
6.	Mr. Deep Kumar Thakur, PA	Dealing Assistant (PME Cell)
	श्री दीप कुमार ठाकुर, निजी सहायक	संबंधित सहायक (पीएमई सैल)

Meetings of Scientists/Monthly Planning and Review Meetings of Scientists of ICAR-DMR, Solan meetings were held on 03.03.2023, 10.04.2023, 28.04.2023, 12.05.2023, 09.06.2023, 07.07.2023, 04.08.2023, 15.09.2023, 06.10.2023, 23.10.2023, 06.11.2022 and 28.11.2023. The Members were as under:

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन के वैज्ञानिकों की/मासिक योजना व समीक्षा बैठकें दिनांक 03.03.2023, 10.04.2023, 12.05.2023, 09.06.2023, 07.07.2023, 04.08.2023, 15.09.2023, 06.10.2023, 23.10.2023, 06.11.2022 o 28.11.2023 को हुई। समिति के सदस्य निम्नलिखित थेः

S.No. क्र,सं,	Name नाम	Designation पदनाम
1.	Dr. V.P. Sharma, Director डॉ. वी.पी. शर्मा, निदेशक	Chairman अध्यक्ष
2.	Dr. B.L. Attri, Principal Scientist डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक	Member सदस्य
3.	Dr. Satish Kumar, Principal Scientist डॉ. सतीश कुमार, प्रधान वैज्ञानिक	Member सदस्य

4.	Dr. Shwet Kamal, Principal Scientist डॉ. श्वेत कमल, प्रधान वैज्ञानिक	Member सदस्य
5.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	Member सदस्य
6.	Dr. Anuradha Srivastava, Scientist डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	Member सदस्य
7.	Dr. Reetu, Scientist डॉ. रितु, वैज्ञानिक	Member सदस्य
8.	Dr. Manoj Nath, Scientist डॉ. मनोज नाथ, वैज्ञानिक	Member सदस्य
9.	Dr. Anarase Dattatray Arjun, Scientist डॉ. अनारसे दत्तात्रय अर्जुन, वैज्ञानिक	Member सदस्य
10.	Dr. Shweta Bijla, Scientist डॉ. श्वेता बिजला, वैज्ञानिक	Member सदस्य
11.	Dr. Jagdish Goyanka, Scientist डॉ. जगदीश गोयंका, वैज्ञानिक	Member सदस्य

Publication Committee

प्रकाशन समिति

S.No.	Name	Designation
क्र,सं,	नाम	पदनाम
1.	Dr. B.L. Attri, Principal Scientist	Chairman
	डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक	अध्यक्ष
2.	Dr. Shwet Kamal, Principal Scientist	Member
	डॉ. श्वेत कमल, प्रधान वैज्ञानिक	सदस्य
3.	Dr. Anil Kumar, Senior Scientist	Member Secretary
	डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	सदस्य सचिव
4.	Dr. Anuradha Srivastava, Scientist	Member
	डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	सदस्य

Meetings of Scientists-Technical Personnel of Scientists of ICAR-DMR, Solan were held on 06.01.2023, 27.02.2023, 17.03.2023, 21.04.2023, 26.05.2023, 23.06.2023, 05.07.2023, 21.07.2023, 15.09.2023, 23.10.2023 & 18.12.2023 The Members were as under:

वैज्ञानिकों व तकनीकी कार्मिकों की बैठकें दिनांक 06.01.2023, 27-02-2023, 17.03.2023, 21-04-2023, 26.05.2023, 23.06.2023, 05.07.2023, 21.07.2023, 15.09.2023, 23.10.2023 व 18.12.2023 को हुई। सदस्य निम्नलिखित है:

S.No.	Name	Designation
क्र,सं,	नाम	पदनाम
1.	Dr. V.P. Sharma डॉ. वी.पी. शर्मा	Director निदेशक
2.	Dr. B.L. Attri डॉ. बी.एल. अत्री	Principal Scientist प्रधान वैज्ञानिक
3.	Dr. Satish Kumar डॉ. सतीश कुमार	Principal Scientist प्रधान वैज्ञानिक
4.	Dr. Shwet Kamal डॉ. श्वेत कमल	Principal Scientist प्रधान वैज्ञानिक
5.	Dr. Anil Kumar डॉ. अनिल कुमार	Senior Scientist वरिष्ठ वैज्ञानिक
6.	Dr. Anuradha Srivastava डॉ. अनुराधा श्रीवास्तव	Scientist वैज्ञानिक
7.	Dr. Reetu डॉ. रितु	Scientist वैज्ञानिक
8.	Dr. Manoj Nath डॉ. मनोज नाथ	Scientist वैज्ञानिक
9.	Dr. Anarase Dattatray Arjun डॉ. अनारसे दत्तात्रय अर्जुन	Scientist वैज्ञानिक
10.	Dr. Shweta Bijla डॉ. श्वेता बिजला	Scientist वैज्ञानिक
11.	Dr. Jagdish Goyanka डॉ. जगदीश गोयंका	Scientist वैज्ञानिक
12.	Dr. Sushil Kumar डॉ. सुशील कुमार	CTO (Farm) मुख्य तक. अधिकारी (फॉर्म)
13.	Smt. Reeta Bhatia श्रीमती रीता भाटिया	CTO (Lib.) मुख्य तक. अधिकारी (पुस्त.)
14.	Smt. Shailja Verma श्रीमती शैलजा वर्मा	CTO (Arts) मुख्य तक. अधिकारी (कला)

S.No.	Name	Designation
क्र,सं,	नाम	पदनाम
15.	Sh. Sunil Verma	ACTO (Farm)
	श्री सुनील वर्मा	स.मुख्य तक. अधिकारी (फॉर्म)
16.	Sh. Gian Chand	TO (Farm)
	श्री ज्ञान चन्द	तकनीकी अधिकारी (फॉर्म)
17.	Sh. Ram Lal	TO (Vehicle)
	श्री राम लाल	तकनीकी अधिकारी (वाहन)
18.	Sh. Deepak Sharma	TO (Computer)
	श्री दीपक शर्मा	तकनीकी अधिकारी (कंप्यूटर)
19.	Sh. Jeet Ram	TO (Farm)
	श्री जीत राम	तकनीकी अधिकारी (फॉर्म)
20.	Sh. Guler Singh Rana	TO (Elec.)
	श्री गुलेर सिंह राणा	तकनीकी अधिकारी (विद्युत)
21.	Sh. Raj Kumar	Tech. Asstt. (Farm)
	श्री राज कुमार	तकनीकी सहायक (फॉर्म)
22.	Sh. Ajeet Kumar	SSS
	श्री अजीत कुमार	एसएसएस
23.	Sh. Vinay Sharma	SSS
	श्री विनय शर्मा	एसएसएस

Institute Technology Management Committee (ITMC) and its Members are as under: संस्थान तकनीकी प्रबंधन समिति (आईटीएमसी) व इसके सदस्य निम्नलिखित है:

S.No.	Name	Designation
क्र,सं,	नाम	पदनाम
1.	Dr. V.P. Sharma डॉ. वी. पी. शर्मा	Director निदेशक
2.	Dr. Sanjeev Sharma डॉ. संजीव शर्मा	Head & Principal Scientist (Plant Protection), ICAR-Central Potato Research Institute, Shimla (H.P.), Specialist प्रमुख एवं प्रधान वैज्ञानिक (पौध संरक्षण),
		भाकृअनुप—केन्दीय आलू अनुसंधान संस्थान, शिमला (हि०प्र०) से विषेशज्ञ

S.No.	Name	Designation
क्र,सं,	नाम	पदनाम
3.	Dr. B.L.Attri ਭૉ. बी.एल. अत्री	Principal Scientist प्रधान वैज्ञानिक
4.	Dr. Anil Kumar डॉ. अनिल कुमार	Senior Scientist वरिष्ठ वैज्ञानिक
5.	Dr. Anuradha Srivastava डॉ. अनुराधा श्रीवास्तव	Scientist वैज्ञानिक
6.	Dr. Satish Kumar डॉ. सतीष कुमार	Principal Scientist/Member Secretary प्रधान वैज्ञानिक / सदस्य सचिव

GRIEVANCE CELL

शिकायत समिति

Meetings of Grievance Committee held on 21.03.2023, 30.06.2023, 29.09.2023 and 18.12.2023 शिकायत समिति की बैठकें 21.03.2023, 30.06.2023, 29.09.2023 और 18.12.2023 को आयोजित की गई। ELECTED MEMBERS OF GRIEVANCE COMMITTEE

शिकायत समिति के निर्वाचित सदस्य

S.No.	Name Designation	Category	Capacity
क्र,सं,	पदनाम व नाम	श्रेणी	क्षमता
1.	Dr. Ritu, Scientist	Scientific	Member
	डा. रितु, वैज्ञानिक	वैज्ञानिक	सदस्या
2.	Smt. Shashi Poonam, UDC	Administrative	Member
	श्रीमती शशी पूनम, व0 लिपिक	प्रशासनिक	सदस्या
3.	Sh.Ram Lal, Technical Officer	Technical	Member
	श्री रामलाल, तकनीकी अधिकारी	तकनीकी	सदस्य
4.	Sh. Vinay Sharma, SSS	Skilled Support Staff	Member
	श्री विनय शर्मा, एस.एस.एस	कुशल सहायक कर्मचारी	सदस्य

NOMINATED OFFICE SIDE MEMBERS OF GRIEVANCE COMMITTEE

शिकायत समिति के कार्यालय पक्ष के मनोनीत सदस्य

S.No.	Name Designation	Category	Capacity
क्र,सं,	पदनाम व नाम	श्रेणी	क्षमता
1.	Dr.V.P. Sharma, Director	Director	Chairman
	डा. वी.पी. शर्मा, निदेशक	निदेशक	अध्यक्ष
2.	Dr.Satish Kumar, Principal Scientist डा. सतीश कुमार, प्रधान वैज्ञानिक	Scientific वैज्ञानिक	Member सदस्या
3.	Finance & Accounts Officer	Audit	Member
	वित्त एवं लेखा अधिकारी	लेखा परीक्षा	सदस्य
4.	Administrative Officer प्रशासनिक अधिकारी	Administrative प्रशासनिक	Member Secretary सदस्य सचिव

INSTITUTE JOINT STAFF COUNCIL (IJSC)

Meetings of Institute Joint Staff Council held on 21.03.2023, 30.06.2023, 19.09.2023 and 18.12.2023

STAFF SIDE MEMBERS OF IJSC:

- 1. Sh.N.P. Negi, Assistant (Member CJSC)
- 2. Sh.Sanjeev Sharma, LDC
- 3. Sh.Jeet Ram, Technical Officer
- 4. Sh. Guler Singh Rana, Technical Officer (Secretary IJSC)
- 5. Smt. Meera Devi, SSS
- 6. Sh.Vinay Sharma, SSS

OFFICE SIDE MEMBERS OF IJSC:

- 1. Dr.B.L. Attri, Principal Scientist
- 2. Dr.Ritu, Scientist
- 3. Dr. Manoj Nath, Scientist
- 4. Dr. Shweta Bijla, Scientist
- 5. Finance & Accounts Officer
- 6. Administrative Officer, Member Secretary

संयुक्त कर्मचारी परिषद (आईजेएससी) की तिमाही बैठकें दिनांक 21.03.2023, 30.06.2023, 19.09.2023 तथा 18.12.2023 को गठित की गई।

कर्मचारी पक्ष के सदस्यः

- 1. श्री एन.पी. नेगी, सहायक (सदस्य सीजेएससी)
- 2. श्री संजीव शर्मा, कनिष्ठ लिपिक
- 3. श्री जीत राम, तकनीकी अधिकारी
- 4. श्री गुलेर सिंह राणा, तकनीकी अधिकारी (सचिव आईजेएससी)
- 5. श्रीमती मीरा देवी, कुशल सहायक कर्मचारी
- 6. श्री विनय शर्मा, कुशल सहायक कर्मचारी

कार्यालय पक्ष के सदस्यः

- 1. डा. बी.एल अत्री, प्रधान वैज्ञानिक
- 2. डा. रितु, वैज्ञानिक
- 3. डा. मनोज नाथ, वैज्ञानिक
- 4. डा. श्वेता बिजला, वैज्ञानिक
- 5. वित्त एवं लेखा अधिकारी
- 6. प्रशासनिक अधिकारी, सदस्य सचिव

INSTITUTE MANAGEMENT COMMITTEE

संस्थान प्रबंधन समिति

S.No.	Name and Address	Designation
क्र,सं,	नाम व पता	पदनाम
1.	Dr. V.P. Sharma, Director, ICAR-DMR, Chambaghat, Solan (H.P.). डा. वी. पी. शर्मा, निदेशक, भाकृअप—खु.अनु.निदेशालय, चम्बाघाट, सोलन (हि.प्र.)	Chairman अध्यक्ष
2.	Assistant Director General (HS-1), Indian Council of Agricultural Research, Krishi Anusandhan Bhavan-II, Pusa, New Delhi-12 सहायक महानिदेशक (बागवानी विज्ञान—1), भारतीय कृषि अनुसंधान परिषद, कृषि अनुसंधान भवन—2, पूसा, नई दिल्ली—11001	Member सदस्य
3.	Director of Horticulture, Govt. of Himachal Pradesh, Navbhahar, Chotta Shimla, Shimla (HP) – 171002 निदेशक (बागवानी), हिमाचल प्रदेश सरकार, नवबहार, छोटा शिमला, शिमला (हि.प्र.) – 171002	Member सदस्य
4.	Director of Horticulture, Govt. of Haryana, Udyan Bhavan, Sector 21, Panchkula – 134117 निदेशक (बागवानी), हरियाणा सरकार, उद्यान भवन, सैक्टर–21 पंचकूला (हरियाणा) – 134117	Member सदस्य
5.	Vice-Chancellor, Dr.Y.S. Parmar University of Hort. & Forestry, Nauni, Distt. Solan (HP). कुलपति, डा. वाई.एस. परमार औद्योनिकी एंव वानिकी विश्वविद्यालय, नौणी, जिला सोलन (हि.प्र.)	Member सदस्य
6.	Dr. Mahesh Chander Yadav, Principal Scientist, ICAR- National Bureau of Plant Genetic Resources, New Delhi. डा. एम.सी. यादव, प्रधान वैज्ञानिक, भाकृअप— राष्ट्रीय पादप आनुवंशिक संसाधन ब्यूरो, नई दिल्ली—12	Member सदस्य
7.	Dr. Shwet Kamal, Principal Scientist, ICAR-Directorate of Mushroom Research, Solan (H.P.). डा. श्वेत कमल, प्रधान वैज्ञानिक, भाकृअप—खुंब अनुसंधान निदेशालय, सोलन (हि.प्र.)	Member सदस्य
8.	Dr. K. Narsaiah, Principal Scientist, ICAR-Central Institute of Post-Harvest Engineering & Technology, Ludhiana (Punjab). डा. के. नरसैया, प्रधान वैज्ञानिक, भाकृअप—केन्द्रीय कटाई उपरान्त अभियांत्रिकी एवं प्रोद्यौगिकी संस्थान, लुधियाना (पंजाब)	Scientist वैज्ञानिक

S.No. क्र,सं,	Name and Address	Designation
я, ч,	नाम व पता	पदनाम
9.	Dr. Sanjeev Kumar Sharma, Principal Scientist, ICAR-Central Potato Research Institute, Shimla – 171001 (H.P.). डा. संजीव कुमार शर्मा, प्रधान वैज्ञानिक, भाकृअप—केन्द्रीय आलू अनुसंधान संस्थान, शिमला (हि.प्र.)—171001	Scientist वैज्ञानिक
10.	Sh. Chandra Prakash, F&AO, ICAR- Central Potato Research Institute, Shimla – 171001 (H.P.). श्री चंद्र प्रकाश, वित्त एवं लेखा अधिकारी, भाकृअप— केन्द्रीय आलू अनुसंधान संस्थान, शिमला (हि.प्र.)—171001	Scientist वैज्ञानिक
11.	Sh.Dharmender Rana, VPO. Singa, Tehsil Haroli, Distt. Una (H.P.)- 176601 श्री धर्मेन्द्र राणा, गांव व पोस्ट आफिस सिंगा, त0 हरोली, जिला ऊना (हि.प्र.)—176601	Non-Official Member गैर सरकारी सदस्य
12.	Sh. Swaran Singh Chib, R/o Fathu Chak, PO. Satrayan, Tehsil Suchetgarh, Distt. Jammu – 181102. श्री स्वर्ण सिंह चिब, गांव फातू चाक, पोस्ट आफिस— सतरायन, त0 सुच्चतगढ, जम्मू —181102	Non-Official Member गैर सरकारी सदस्य
13.	Administrative Officer, ICAR DMR, Chambaghat, Solan (H.P.). प्रशासनिक अधिकारी, भाकृअप—खु.अनु.निदेशालय, चम्बाघाट, सोलन (हि.प्र.)	Member- Secretary सदस्य सचिव

SWACHH ABHIYAN COMMITTEE

1. Sh. T.D. Sharma - Nodal Officer

- 2. Dr. Rajneesh Jaryal Member
- 3. Sh. Jeet Ram Member
- 4. Sh. Sanjeev Sharma Member

स्वच्छ अभियान समिति

- 1. श्री तुलसी दास शर्मा नोडल अधिकारी
- 2. डा. रजनीश जरयाल सदस्य
- 3. श्री जीत राम सदस्य
- 4. श्री. संजीव शर्मा सदस्य

Special Campaign 2.0 for disposal of pending matters from 02.10.2023 to 31.10.2023

Special campaign 2.0 was organised in the Directorate from dated 02.10.2023 to 31.10.2023 as per the directions of the Council. As per the programme, special emphasis was given to settle down the various references received in the Directorate through different portal or otherwise. A comprehensive drive was undertaken to review the old physical files and in total 520 physical files were reviewed and out of which 315 numbers of files have been weeded out. In total, 3.8 tonnes office scrap was disposed off during the campaign, which resulted in the revenue generation of Rs 33,000/- and almost 500 sq feet space/area was free. During the programme, in total 20 No of cleanliness drives were undertaken and various teams of the Directorate visited the Residential Colonies/Parks/School/Prominent Places and the Villages adopted under the "Mera gaon Mera Gaurav" to spread the message of the Cleanliness, sanitation, conservation of water resources and Gandhian Philosophy of Gram Swaraj. All the staff members, farmers, Villagers, Youth and visitors were sensitized about the Swachhata, personal hygiene and overall cleanliness.

Swachhata Pakhwada from 16.12.2023 to 31.12.2023

As per the direction of the ICAR, various activities were organized by the Directorate under the Swachhata Pakhwada held from 16.12.2023 to 31.12.2023. Comprehensive sanitation and cleanliness drives ware organized during the period in the campus as well outside the campus. Various programmes were organized on and off the campus for creating awareness among masses

लंबित मामलों के निस्तारण हेतु दिनांक 02.10.2023 से 31.10.2023 तक विशेष अभियान 2.0

परिषद के निर्देशानुसार निदेशालय में दिनांक 02.10. 2023 से 31.10.2023 तक विशेष अभियान 2.0 आयोजित किया गया। कार्यक्रम के अनुसार निदेशालय में विभिन्न पोर्टल अथवा अन्य माध्यम से प्राप्त विभिन्न सन्दर्भों के निस्तारण पर विशेष बल दिया गया। पुरानी भौतिक फाइलों की समीक्षा के लिए एक व्यापक अभियान चलाया गया और कुल 520 भौतिक फाइलों की समीक्षा की गई और जिनमें से 315 फाइलों को हटा दिया गया है। अभियान के दौरान कुल मिलाकर 3.8 टन कार्यालय स्क्रैप का निपटान किया गया, जिसके परिणामस्वरूप 33,000 / – रुपये का राजस्व प्राप्त हुआ और लगभग 500 वर्ग फुट जगह / क्षेत्र मुक्त हो गया। कार्यक्रम के दौरान, कुल मिलाकर 20 स्वच्छता अभियान चलाए गए और निदेशालय की विभिन्न टीमों ने स्वच्छता, जल संसाधनों का संरक्षण और ग्राम स्वराज का गांधीवादी दर्शन का संदेश फैलाने के लिए आवासीय कॉलोनियों / पार्कों / स्कूलों / प्रमुख स्थानों और "मेरा गांव मेरा गौरव" के तहत गोद लिए गए गांवों का दौरा किया। सभी स्टाफ सदस्यों, किसानों, ग्रामीणों, युवाओं और आगंतुकों को स्वच्छता, व्यक्तिगत स्वच्छता और समग्र स्वच्छता के बारे में जागरूक किया गया।

16.12.2023 से 31.12.2023 तक स्वच्छता पखवाडा

आईसीएआर के निर्देशानुसार दिनांक 16.12.2023 से 31.12.2023 तक आयोजित स्वच्छता पखवाड़ा के अंतर्गत निदेशालय द्वारा विभिन्न गतिविधियाँ आयोजित की गईं। इस अविध के दौरान परिसर के साथ—साथ परिसर के बाहर भी व्यापक स्वच्छता और सफ़ाई अभियान आयोजित किये गये। लोगों के बीच दैनिक जीवन में स्वच्छता के प्रति जागरूकता पैदा करने के लिए परिसर में और बाहर विभिन्न कार्यक्रम आयोजित

for cleanliness in their day to day life. During the Swachhata Pakhwada various activities like Swachhata Pledge, sanitation drive in the villages adopted under the 'Mera Gaon Mera Gaurav', stock taking waste management inside and outside Directorate's campus, wealth from waste and various sanitation campaign etc were organized by involving the farmers, Village youth, students and trainees. Kisan Diwas/Mushroom Day was also celebrated on 23 Dec., 2023 by involving more than 120 farmers. All the people involved were sensitized about the Swachhata, personal hygiene and overall cleanliness.

किए गए। स्वच्छता पखवाड़ा के दौरान किसानों, गाँव के युवा, छात्र और प्रशिक्षुओं को शामिल करके स्वच्छता शपथ, 'मेरा गांव मेरा गौरव' के तहत गोद लिए गए गांवों में स्वच्छता अभियान, निदेशालय परिसर के अंदर और बाहर अपशिष्ट प्रबंधन का स्टॉक लेना, कचरे से धन और विभिन्न स्वच्छता अभियान आदि जैसी विभिन्न गतिविधियां आयोजित की गईं। 23 दिसंबर, 2023 को 120 से अधिक किसानों को शामिल करके किसान दिवस / मशरूम दिवस भी मनाया गया। इसमें शामिल सभी लोगों को स्वच्छता, व्यक्तिगत स्वच्छता और समग्र स्वच्छता के बारे में जागरूक किया गया।

9. IMPLEMENTATION OF OFFICIAL LANGUAGE

9. राजभाषा का कार्यान्वयन

Progress report of official language (Hindi) of ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) 2023

Official Language Implementation Committee (Hindi Committee):

Dr. V.P. Sharma, Director - Chairman

Dr. B. L. Attri, Principal Scientist - Member Shri Tarun Kumar, Administrative Officer -Member

Mrs. Sunila Thakur, Private Secretary - Member Mrs. Shashi Poonam, Upper Division Clerk -Member

Dr. Rajneesh Jaryal, Assistant - Member Secretary Mrs. Reeta Bhatia, CTO- Member Secretary

Brief description of the work done by the official language implementation committee during the year 2023

In order to ensure the implementation of the official language policy of the Government of India and to ensure the use of Hindi in the work being done by the Directorate, an official language implementation committee has been constituted in the Directorate. Despite the absence of any separate officer and employee in the Directorate for the implementation of the official language, as a result of the efforts made by the Official Language Implementation Committee, expected success has been achieved in the work and promotion of Hindi in the Directorate and the goals set by the council have been completed on time. The brief description of the work done by the Directorate during the year 2023 is as follows:-

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, चम्बाघाट, सोलन (हि.प्र.) 2023 की राजभाषा (हिन्दी) की प्रगति रिपोर्ट

राजभाषा कार्यान्वयन समिति (हिन्दी समिति)ः

डॉ. वी.पी. शर्मा, निदेशक — अध्यक्ष डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक — सदस्य श्री तरूण कुमार, प्रशासनिक अधिकारी — सदस्य श्रीमती सुनीला ठाकुर, निजी सचिव — सदस्य श्रीमती शशि पूनम, वरिष्ठ लिपिक — सदस्य डॉ. रजनीश जरयाल, सहायक — सदस्य सचिव श्रीमती रीता भाटिया, मु.त.अधि.— सदस्य सचिव वर्ष 2023 के दौरान राजभाषा कार्यान्वयन समिति द्वारा किये गये कार्यों का संक्षिप्त विवरण

भारत सरकार की राजभाषा नीति के क्रियान्वयन एवं निदेशालय द्वारा किये जा रहे कार्यों में हिन्दी का प्रयोग सुनिश्चित करने हेतु निदेशालय में राजभाषा कार्यान्वयन समिति का गठन किया गया है। निदेशालय में राजभाषा कार्यान्वयन हेतु कोई पृथक अधिकारी एवं कर्मचारी न होने के बावजूद भी राजभाषा कार्यान्वयन समिति के प्रयासों के फलस्वरूप निदेशालय में हिन्दी के कार्य एवं प्रचार—प्रसार में अपेक्षित सफलता प्राप्त हुई है तथा परिषद द्वारा निर्धारित लक्ष्य समय पर पूरे किये गये हैं। वर्ष 2023 के दौरान निदेशालय द्वारा किये गये कार्यों का संक्षिप्त विवरण इस प्रकार है:—

Implementation on Official Language Annual Program

The Official Language Annual Program issued by the Department of Official Language, Ministry of Home Affairs, Government of India was discussed in the quarterly meetings of the Official Language Implementation Committee of the Directorate and action was taken according to the decisions taken and all the officers and employees of the Directorate were informed about the annual program. Correspondence was done to achieve the set target as per the programme.

Action on letters/circulars received from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research, New Delhi.

During this period various types of letters/circulars related to latest instructions/rules related to official language implementation were received from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research, on which action was desired, action was taken on them and they were circulated to all concerned officers and employees for their information and necessary action.

Compilation and review of Quarterly Hindi Progress Report

After obtaining/preparing the progress data related to official language implementation in the Directorate, a consolidated Hindi progress report of the Directorate was prepared by compiling all the data in the quarterly report proforma. This consolidated report was sent online to Indian Council of Agricultural Research, New Delhi, Town Official Language Implementation Committee, Solan and Deputy Director (Implementation), Department of Official Language, Northern Regional Implementation Office-1, Delhi A-Sarojani Nagar, New Delhi. This report was reviewed and sent to all the officers and employees for pointing out the deficiencies found.

राजभाषा वार्षिक कार्यक्रम का कार्यान्वयन

राजभाषा विभाग, गृह मंत्रालय, भारत सरकार द्वारा जारी राजभाषा वार्षिक कार्यक्रम पर निदेशालय की राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों में चर्चा की गई तथा लिए गए निर्णयों के अनुसार कार्यवाही की गई तथा सभी अधिकारियों एवं निदेशालय के कर्मचारियों को वार्षिक कार्यक्रम की जानकारी दी गई। कार्यक्रम के अनुसार निर्धारित लक्ष्य प्राप्त करने हेतु पत्राचार किया गया।

राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद, नई दिल्ली से प्राप्त पत्रों / परिपत्रों पर कार्यवाही

इस अवधि में राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद से राजभाषा कार्यान्वयन संबंधी नवीनतम निर्देशों / नियमों से संबंधित विभिन्न प्रकार के पत्र / परिपत्र प्राप्त हुए, जिन पर कार्यवाही वांछित थी। उन पर कार्यवाही की गई तथा उन्हें सभी संबंधित अधिकारियों एवं कर्मचारियों को उनकी जानकारी एवं आवश्यक कार्यवाही हेत् प्रसारित किया गया।

त्रैमासिक हिन्दी प्रगति रिपोर्ट का संकलन एवं समीक्षा

निदेशालय में राजभाषा कार्यान्वयन से संबंधित प्रगति डेटा प्राप्त / तैयार करने के बाद, त्रैमासिक रिपोर्ट प्रोफार्मा में सभी डेटा संकलित करके निदेशालय की एक समेकित हिंदी प्रगति रिपोर्ट तैयार की गई। यह समेकित रिपोर्ट भारतीय कृषि अनुसंधान परिषद, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन और उप निदेशक (कार्यान्वयन), राजभाषा विभाग, उत्तरी क्षेत्रीय कार्यान्वयन कार्यालय—1, दिल्ली ए—सरोजनी नगर, नई दिल्ली को ऑनलाइन भेजी गई थी। इस रिपोर्ट की समीक्षा की गई और पाई गई कमियों को इंगित करने के लिए सभी अधिकारियों और कर्मचारियों को भेजा गया।

Implementation of Hindi Promotion Scheme

As per the instructions issued by the Department of Official Language, an incentive scheme has been implemented for all officers and employees to do official work in Hindi in the Directorate. Keeping in view the works done in the whole year, an evaluation committee is formed which decides the first, second and third prizes after examining the files and other works.

Holding of quarterly meetings

Quarterly meetings of the Official Language Implementation Committee were organized regularly. In the meetings, discussions were held on achieving the targets set in the Official Language Annual Programme, compliance of instructions/orders received from time to time from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research and in these meetings Action was taken to implement the decisions taken.

Organization of quarterly official language workshops

Following the guidelines of Government of India/Council, quarterly official language workshops were organized regularly in the Directorate. In these workshops (Fig. 9.1), the obstacles in working in Hindi were discussed and measures were suggested to remove them. All types of forms were prepared in bilingual form for all the officers and employees of the Directorate and downloaded on everyone's computers so that they can use these forms in day to day office use.

हिन्दी प्रचार-प्रसार योजना का क्रियान्वयन

राजभाषा विभाग द्वारा जारी निर्देशानुसार निदेशालय में सभी अधिकारियों एवं कर्मचारियों को सरकारी कार्य हिन्दी में करने हेतु प्रोत्साहन योजना लागू की गई है। पूरे वर्ष में किए गए कार्यों को ध्यान में रखते हुए एक मूल्यांकन समिति का गठन किया जाता है जो फाइलों और अन्य कार्यों की जांच के बाद प्रथम, द्वितीय और तृतीय पुरस्कार तय करती है।

त्रैमासिक बैठकों का आयोजन

राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकें नियमित रूप से आयोजित की गईं। बैठकों में राजभाषा वार्षिक कार्यक्रम में निर्धारित लक्ष्यों की प्राप्ति, राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि परिषद से समय—समय पर प्राप्त निर्देशों / आदेशों के अनुपालन पर चर्चा की गई। इन बैठकों में अनुसंधान एवं लिये गये निर्णयों को क्रियान्वित करने हेतु कार्यवाही की गई।

त्रै-मासिक राजभाषा कार्यशालाओं का आयोजन

भारत सरकार / परिषद के दिशा—निर्देशों का पालन करते हुए निदेशालय में नियमित रूप से त्रैमासिक राजभाषा कार्यशालाओं का आयोजन किया गया। इन कार्यशालाओं में (चित्र 9.1) हिंदी में काम करने में आने वाली बाधाओं पर चर्चा की गई और उन्हें दूर करने के उपाय सुझाए गए। निदेशालय के सभी अधिकारियों एवं कर्मचारियों के लिए सभी प्रकार के प्रपत्र द्विभाषी रूप में तैयार किये गये तथा सभी के कंप्यूटरों पर डाउनलोड किये गये ताकि वे इन प्रपत्रों का उपयोग रोजमर्रा के कार्यालय उपयोग में कर सकें।

Fig. 9.1. Staff of the Directorate attending quarterly official language workshop चित्र 9.1. त्रैमासिक राजभाषा कार्यशाला में भाग लेते निदेशालय के कर्मचारी

Hindi fortnight organized

Hindi fortnight was organized at ICAR-Directorate of Mushroom Research, Solan from 14-29 September, 2023, in which 6 competitions were organized, the details of which are as follows:-

Date: 14.09.2023

Calligraphy Competition: This competition was for all the officers and employees of the Directorate. 12 participants took part in this competition. The main objective of this competition was to practice writing and check the beautiful writing of all the officers and employees. The following officers/employees won prizes in this competition:

- Mrs. Shashi Poonam, Upper Division Clerk – I
- 2. Dr. B.L. Attri, Principal Scientist II
- 3. Mrs. Sunila Thakur, PS-III

हिंदी पखवाडे का आयोजन

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन में 14—29 सितंबर, 2023 तक हिंदी पखवाड़े का आयोजन किया गया, जिसमें 6 प्रतियोगिताएं आयोजित की गईं, जिनका विवरण इस प्रकार है:—

दिनांक: 14.09.2023

सुलेख प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों एवं कर्मचारियों के लिए थी। इस प्रतियोगिता में 12 प्रतिभागियों ने हिस्सा लिया। इस प्रतियोगिता का मुख्य उद्देश्य सभी अधिकारियों एवं कर्मचारियों को लेखन का अभ्यास एवं सुन्दर लेखन की जांच करना था। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. श्रीमती शशि पूनम, वरिष्ठ लिपिक प्रथम
- 2. डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक द्वितीय
- 3. श्रीमती सुनीला ठाकुर, निजी सचिव तृतीय

Date: 15.09.2023

Dictation Competition: This competition was for all the officers and employees of the Directorate. 15 participants took part in this competition. The following officers/employees won prizes in this competition:

- 1. Dr Anuradha Srivastava, Scientist I
- 2. Dr. Ashish Dhangar, Finance & Accounts Officer II
- 3. Dr Shwet Kamal, Principal Scientist III Date: 19.09.2023

Hindi Typing Competition in Unicode: This competition was for all the officers and employees of the Directorate. 11 participants of the Directorate participated in this competition. The following officers/employees won prizes in this competition:

- 1. Dr. Rajneesh Jaryal, Assistant I
- Mrs. Shashi Poonam, Upper Division Clerk - II
- 3. Dr Shweta Bijla, Scientist III

Date: 20.09.2023

General knowledge:

This competition was for all the officers and employees of the Directorate. 12 participants of the Directorate participated in this competition. The following officers/employees won prizes in this competition:

- 1. Dr. Rajneesh Jaryal, Assistant I
- Dr. Ashish Dhangar, Finance & Accounts Officer – II
- 3. Dr Shwet Kamal, Principal Scientist III Date: 22.09.2023

Essay Competition: This competition was for all the officers and employees of the Directorate.12 participants participated in this competition.

दिनांकः 15.09.2023

श्रुतलेख प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों एवं कर्मचारियों के लिए थी। इस प्रतियोगिता में 15 प्रतिभागियों ने हिस्सा लिया. इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने प्रस्कार जीतेः

- 1. डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक प्रथम
- 2. डॉ. आशीष धनगर, वित्त एवं लेखाधिकारी द्वितीय
- 3. डॉ. श्वेत कमल, प्रधान वैज्ञानिक तृतीय

दिनांक: 19.09.2023

यूनिकोड में हिंदी टाइपिंग प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों और कर्मचारियों के लिए थी। इस प्रतियोगिता में निदेशालय के 11 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डॉ. रजनीश जरयाल, सहायक प्रथम
- 2. श्रीमती शशि पूनम, वरिष्ठ लिपिक द्वितीय
- 3. डॉ. श्वेता बिजला, वैज्ञानिक तृतीय

दिनांक: 20.09.2023

सामान्य ज्ञानः

यह प्रतियोगिता निदेशालय के सभी अधिकारियों एवं कर्मचारियों के लिए थी। इस प्रतियोगिता में निदेशालय के 12 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डॉ. रजनीश जरयाल, सहायक प्रथम
- 2. डॉ. आशीष धनगर, वित्त एवं लेखाधिकारी द्वितीय
- 3. डॉ. श्वेत कमल, प्रधान वैज्ञानिक तृतीय

दिनांकः 22.09.2023

निबंध प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों एवं कर्मचारियों के लिए थी। इस प्रतियोगिता में 12 प्रतिभागियों ने भाग लिया। इस

The following officers/employees won prizes in this competition:

- 1. Dr. Shweta Bijla, Scientist I
- 2. Dr. B.L. Attri, Principal Scientist II
- 3. Dr. Shwet Kamal, Principal Scientist III

Date: 26.09.2023

Translation from English to Hindi and from Hindi to English: This competition was for all officers and employees of the Directorate. 11 participants participated in this competition. The following officers/employees won prizes in this competition:

- 1. Dr B.L.Attri, Principal Scientist I
- 2. Shri Deep Kumar Thakur, Personal Assistant II
- 3. Dr. Anuradha Srivastava, Scientist III

Dated 29.09.2023

The Hindi fortnight was concluded on 29.09.2023, in which prizes were given to the winners of various competitions and to the officers and employees who did excellent work in Hindi throughout the year.

Award under incentive scheme for doing official work basically in Hindi throughout the year

(Under the guidelines received from the Government of India, Ministry of Home Affairs, Department of Official Language, New Delhi City Centre-2 Building, Jaisingh Road, New Delhi-110 001 vide Office Memorandum No. 12013/01/2011-NR(Policy) dated September 14, 2016 Incentive scheme for doing maximum work in Hindi in the previous year (September, 2022 to August, 2023)

Awards were given to the following officers and employees for doing maximum work in Hindi throughout the year.

1. First Prize

1. Dr B.L.Attri, Principal Scientist

प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डॉ. श्वेता बिजला, वैज्ञानिक प्रथम
- 2. डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक द्वितीय
- 3. डॉ. श्वेत कमल, प्रधान वैज्ञानिक तृतीय

दिनांकः 26.09.2023

अंग्रेजी से हिंदी और हिंदी से अंग्रेजी में अनुवादः यह प्रतियोगिता निदेशालय के सभी अधिकारियों और कर्मचारियों के लिए थी। इस प्रतियोगिता में 11 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डॉ. बी.एल.अत्री, प्रधान वैज्ञानिक प्रथम
- 2. श्री दीप कुमार ठाकुर, निजी सहायक द्वितीय
- 3. डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक तृतीय

दिनांक 29.09.2023

दिनांक 29.09.2023 को हिन्दी पखवाड़ा संपन्न हुआ, जिसमें विभिन्न प्रतियोगिताओं के विजेताओं तथा वर्ष भर हिन्दी में उत्कृष्ट कार्य करने वाले अधिकारियों एवं कर्मचारियों को पुरस्कार दिये गये।

वर्ष भर सरकारी कार्य मूलतः हिन्दी में करने पर प्रोत्साहन योजना के अंतर्गत पुरस्कार

(भारत सरकार, गृह मंत्रालय, राजभाषा विभाग, नई दिल्ली सिटी सेंटर—2 बिल्डिंग, जयसिंह रोड, नई दिल्ली—110001 से प्राप्त दिशानिर्देशों के तहत कार्यालय ज्ञापन संख्या 12013/01/2011—एनआर (नीति) दिनांक 14 सितम्बर, 2016 पिछले वर्ष (सितम्बर, 2022 से अगस्त, 2023) में अधिकतम कार्य हिन्दी में करने पर प्रोत्साहन योजना

वर्ष भर हिन्दी में सर्वाधिक कार्य करने हेतु निम्नलिखित अधिकारियों एवं कर्मचारियों को पुरस्कार दिये गये:

1. प्रथम पुरस्कार

1. डॉ. बी.एल.अत्री, प्रधान वैज्ञानिक

2. Sh. N.P. Negi, Assistant

2. Second Prize

- 1. Dr.Rajneesh Jaryal, Assistant
- 2. Mrs. Shashi Poonam, Upper Division Clerk
- 3. Shri Sanjeev Sharma, Lower Division Clerk

3. Third Prize

- 1. Sh. T.D. Sharma, Administrative Officer
- 2. Sh. Deep Kumar Thakur, Personal Assistant
- 3. Sh. Bhim Singh, Asstt.
- 4. Shri Dharam Das, Upper Division Clerk
- 5. Shri Roshan Negi, Lower Division Clerk

Main activities and achievements related to annual Hindi progress of the Directorate

A concise summary of the major activities and achievements of the Official Language Implementation Committee is presented in the form of an annual Hindi progress report.

- 1. The Directorate was awarded the second prize of '*Rajarshi Tandon Puraskar Yojana*' 2020-21 by the Council for promoting the use of official language Hindi in small institutions of 'A' and 'B' region.
- 2. More than 85 percent personnel of the Directorate have proficiency/working knowledge in Hindi, therefore this Directorate has been notified as Hindi Office in the Gazette of Government of India under Rule 10(4) of Official Language.
- 3. Meetings of the Official Language Implementation Committee were held on 18.01.2023, 29.04.2023, 20.07.2023 and 13.10.2023. The agenda of all the meetings was decided according to the requirements of the annual implementation and only after the approval of the Chairman, Official Language Implementation Committee.

2. श्री. एन.पी. नेगी, सहायक

2. दूसरा पुरस्कार

- 1. डॉ.रजनीश जरयाल, सहायक
- 2. श्रीमती शशि पूनम, वरिष्ठ लिपिक
- 3. श्री संजीव शर्मा, कनिष्ठ लिपिक

3. तृतीय पुरस्कार

- 1. श्री. टी.डी. शर्मा, सहायक प्रशासनिक अधिकारी
- 2. श्री. दीप कुमार ठाकुर, निजी सहायक
- 3. श्री. भीम सिंह, सहायक
- 4. श्री धर्म दास. वरिष्ठ लिपिक
- 5. श्री रोशन नेगी, कनिष्ठ लिपिक

निदेशालय की वार्षिक हिन्दी प्रगति से संबंधित मुख्य गतिविधियाँ एवं उपलब्धियाँ

राजभाषा कार्यान्वयन समिति की प्रमुख गतिविधियों एवं उपलब्धियों का संक्षिप्त सारांश वार्षिक हिंदी प्रगति रिपोर्ट के रूप में प्रस्तुत किया जाता है।

- निदेशालय को 'क' और 'ख' क्षेत्र के छोटे संस्थानों में राजभाषा हिंदी के प्रयोग को बढ़ावा देने के लिए परिषद द्वारा 'राजर्षि टंडन पुरस्कार योजना' 2020–21 का दूसरा पुरस्कार दिया गया।
- 2. निदेशालय के 85 प्रतिशत से अधिक कार्मिक हिन्दी में दक्षता / कार्यसाधक ज्ञान रखते हैं, अतः इस निदेशालय को राजभाषा के नियम 10(4) के अंतर्गत भारत सरकार के राजपत्र में हिन्दी कार्यालय के रूप में अधिसूचित किया गया है।
- उ. राजभाषा कार्यान्वयन सिमिति की बैठकें दिनांक 18.01.2023, 29.04.2023, 20.07.2023 एवं 13.10. 2023 को आयोजित की गईं। सभी बैठकों का एजेंडा वार्षिक कार्यान्वयन की आवश्यकताओं के अनुरूप एवं अध्यक्ष, राजभाषा कार्यान्वयन सिमिति के अनुमोदन के बाद ही तय किया गया।

- 4. Official Language workshops were organized on 10.03.2023, 21.06.2023, 29.09.2023 and 23.12.2023, following the guidelines issued by the Government of India/Council from time to time, in which all the officers and employees of the Directorate voluntarily participated for successfully achieving the objectives of the workshops.
- 5. Out of all the letters received in Hindi or signed in Hindi, to which it was considered necessary to answer, those letters were answered only in Hindi.
- 6. In the context of compliance of Section 3(3) of the Official Language Act, 1963 and other rules, office orders have been issued from time to time to each officer and employee of the Directorate and efforts are being made to ensure their 100% compliance.
- 7. Minutes of most of the meetings of the Directorate were prepared in Hindi.
- 8. All 55 standard forms have been prepared bilingually and continuous efforts are being made so that all the personnel fill them in Hindi only.
- 9. Hindi software has been downloaded in all 35 computers of the Directorate. With this, every officer and employee working on computer can work in Hindi or in both Hindi and English simultaneously in any language as per their wish.
- 10. A roster has been prepared for all the officers of the Directorate with knowledge of Hindi and it has also been put on the Directorate's website dmrsolan.icar.gov.in
- 11. All sign boards, information boards, name boards and other similar boards of the Directorate have been prepared in bilingual form.

- 4. भारत सरकार / परिषद द्वारा समय—समय पर जारी दिशा—निर्देशों का पालन करते हुए दिनांक 10.03.2023, 21.06.2023, 29.09.2023 एवं 23.12. 2023 को राजभाषा कार्यशालाओं का आयोजन किया गया, जिसमें निदेशालय के समस्त अधिकारियों एवं कर्मचारियों ने स्वेच्छा से भाग लेकर कार्यशालाओं के लक्ष्यों को सफलतापूर्वक प्राप्त किया।
- 5. हिन्दी में प्राप्त अथवा हिन्दी में हस्ताक्षरित सभी पत्रों में से जिनका उत्तर देना आपेक्षित समझा गया, उन पत्रों का उत्तर केवल हिन्दी में ही दिया गया।
- 6. राजभाषा अधिनियम, 1963 की धारा 3(3) एवं अन्य नियमों के अनुपालन के सन्दर्भ में निदेशालय के प्रत्येक अधिकारी एवं कर्मचारी को समय—समय पर कार्यालय आदेश जारी किये गये हैं एवं उनकी शत—प्रतिशत अनुपालना सुनिश्चित करने के प्रयास किये जा रहे हैं।
- निदेशालय की अधिकांश बैठकों के कार्यवृत्त हिन्दी में तैयार किये गए।
- सभी 55 मानक प्रपत्र द्विभाषी रूप में तैयार किये गये हैं तथा सभी कार्मिक इन्हें हिन्दी में ही भरें, इसके लिये निरन्तर प्रयास किये जा रहे हैं।
- 9. निदेशालय के सभी 35 कम्प्यूटरों में हिन्दी सॉफ्टवेयर डाउनलोड कर लिया गया है। इससे कम्प्यूटर पर काम करने वाला प्रत्येक अधिकारी एवं कर्मचारी अपनी इच्छानुसार हिन्दी अथवा हिन्दी एवं अंग्रेजी दोनों भाषाओं में एक साथ किसी भी भाषा में कार्य कर सकता है।
- 10. निदेशालय के सभी हिंदी जानने वाले अधिकारियों का एक रोस्टर तैयार किया गया है और इसे निदेशालय की वेबसाइट dmrsolan.icar.gov.in पर भी डाल दिया गया है।
- 11. निदेशालय के सभी साइन बोर्ड, सूचना बोर्ड, नाम बोर्ड और अन्य इसी प्रकार के बोर्ड द्विभाषी रूप में तैयार किए गए हैं।

- 12. Training compendium for the training programs of the Directorate is available in both Hindi and English languages.
- 13. Code manuals and other procedural literature are available in Hindi.
- 14. With the aim of increasing the Hindi word knowledge of the officers and employees of the Directorate, a Hindi word is written everyday on the blackboard under the heading 'Today's word' so that the word knowledge of the officers and employees can increase.
- 15. Rubber stamps to be used in daily works in the office have been prepared in bilingual form.
- 16. A committee has been formed for the purchase of Hindi books, which recommends the purchase of books for the Hindi library. Efforts are being made to buy books in the library every year according to the target set by the Department of Official Language. The list of all the publications available in Hindi in the library of the Directorate has been made available on the website of the Directorate.
- 17. Apart from this, Dr. V.P. Sharma, Director Language Chairman, Official Implementation Committee, under the continuous personal-cooperation guidance, timely organization of Hindi quarterly meetings and workshops and mutual cooperation and coordination of all the officers and employees working in the Directorate, activities related to official implementation progressed language continuously moving forward.

- 12. निदेशालय के प्रशिक्षण कार्यक्रमों का प्रशिक्षण सार—संग्रह हिन्दी एवं अंग्रेजी दोनों भाषाओं में उपलब्ध है।
- कोड मैनुअल और अन्य प्रक्रियात्मक साहित्य हिंदी में उपलब्ध हैं।
- 14. निदेशालय के अधिकारियों एवं कर्मचारियों का हिन्दी शब्द ज्ञान बढ़ाने के उद्देश्य से ब्लैकबोर्ड पर 'आज का शब्द' शीर्षक के अन्तर्गत प्रतिदिन एक हिन्दी शब्द लिखा जाता है ताकि अधिकारियों एवं कर्मचारियों का शब्द ज्ञान बढ़ सके।
- 15. कार्यालय में दैनिक कार्यों में उपयोग किये जाने वाले रबर स्टैम्प को द्विभाषी रूप में तैयार किया गया है।
- 16. हिंदी पुस्तकों की खरीद के लिए एक सिमित का गठन किया गया है, जो हिंदी पुस्तकालय के लिए पुस्तकों की खरीद की सिफारिश करती है। राजभाषा विभाग द्वारा प्रत्येक वर्ष निर्धारित लक्ष्य के अनुरूप पुस्तकालय में पुस्तकें खरीदने का प्रयास किया जा रहा है। निदेशालय के पुस्तकालय में हिंदी में उपलब्ध सभी प्रकाशनों की सूची निदेशालय की वेबसाइट पर उपलब्ध करा दी गई है।
- 17. इसके अलावा डॉ. वी.पी. शर्मा, निदेशक एवं अध्यक्ष, राजभाषा कार्यान्वयन समिति के निरंतर व्यक्तिगत—सहयोग एवं मार्गदर्शन, हिंदी त्रैमासिक बैठकों एवं कार्यशालाओं के समय—समय पर आयोजन तथा निदेशालय में कार्यरत सभी अधिकारियों एवं कर्मचारियों के आपसी सहयोग एवं समन्वय से राजभाषा कार्यान्वयन संबंधी गतिविधियाँ निरंतर प्रगति की ओर अग्रसर हो रही हैं।

10. INSTITUTIONAL ACTIVITIES

10. संस्थागत गतिविधियां

Celebration of Republic Day

ICAR-Directorate of Mushroom Research, Solan celebrated 74th Republic Day on 26th Jan., 2023. Dr V.P. Sharma, Director highlighted the achievements of the Directorate and called upon all the staff members to contribute maximum to take the mushroom industry to new heights in the country (Fig. 10.1).

गणतंत्र दिवस समारोह

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन ने 26 जनवरी, 2023 को 74वां गणतंत्र दिवस मनाया। डॉ. वी.पी. शर्मा, निदेशक ने निदेशालय की उपलब्धियों पर प्रकाश डाला और सभी कर्मचारियों से देश में मशरूम उद्योग को नई ऊंचाइयों पर ले जाने के लिए अधिकतम योगदान देने का आहवान किया (चित्र 10.1)।

Fig. 10.1. Celebration of 74th Republic Day चित्र 10.1. 74^{वें} गणतंत्र दिवस का जश्न

Institute Research Council (IRC) meeting

The Institute Research Council (IRC) meetings of the Directorate were organized on 13th February, 2023 and 11th August, 2023 in which the ongoing research projects were discussed in detail with the technical programme for the next year. The new research projects were also discussed and finalized in the meetings.

संस्थान अनुसंधान परिषद (आईआरसी) की बैठक

निदेशालय की संस्थान अनुसंधान परिषद (आईआरसी) की बैठकें 13 फरवरी, 2023 और 11 अगस्त, 2023 को आयोजित की गईं, जिसमें अगले वर्ष के लिए तकनीकी कार्यक्रम के साथ चल रही अनुसंधान परियोजनाओं पर विस्तार से चर्चा की गईं। बैठकों में नई शोध परियोजनाओं पर भी चर्चा की गईं और उन्हें अंतिम रूप दिया गया।

National Science Day celebration

37th National Science Day was observed on 28th Feb., 2023 at ICAR-DMR, Solan in which all the staff members of the Directorate along with students of law from Shed's College, Chambaghat, Solan (H.P.) actively participated. The theme of the National Science Day was *Global Science for Global Wellbeing*. A small exhibition was also arranged in which the different technologies and mushroom products were displayed on this day for creating awareness about cultivation and utilization of mushroom (Fig.10.2).

राष्ट्रीय विज्ञान दिवस समारोह

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन में 37वां राष्ट्रीय विज्ञान दिवस मनाया गया, जिसमें निदेशालय के सभी स्टाफ सदस्यों के साथ—साथ शेड कॉलेज, चंबाघाट, सोलन (एच.पी.) के कानून के छात्रों ने सक्रिय रूप से भाग लिया। राष्ट्रीय विज्ञान दिवस का विषय वैश्विक कल्याण के लिए वैश्विक विज्ञान था। इस दिन मशरूम की खेती और उपयोग के बारे में जागरूकता पैदा करने के लिए एक छोटी प्रदर्शनी भी आयोजित की गई जिसमें विभिन्न तकनीकों और मशरूम उत्पादों को प्रदर्शित किया गया (चित्र.10.2)।

Fig. 10.2. Celebration of 37th National Science Day चित्र 10.2. 37वें राष्ट्रीय विज्ञान दिवस का उत्सव

Celebration of International Women's Day

49th International Women's Day was celebrated on 8th March, 2023 in which more than 20 women from Chail engaged in mushroom cultivation along with women staff of the Directorate participated in the event. The theme of the day was *Women led development*. The contribution of women in day to day life to uplift the society in various spheres including mushroom cultivation was appreciated by Dr V.P. Sharma, Director, ICAR-DMR, Solan (Fig. 10.3). It was told

अंतर्राष्ट्रीय महिला दिवस का उत्सव

8 मार्च, 2023 को 49वां अंतर्राष्ट्रीय महिला दिवस मनाया गया, जिसमें निदेशालय की महिला कर्मचारियों के साथ—साथ मशरूम की खेती करने वाली चायल की 20 से अधिक महिलाओं ने इस कार्यक्रम में भाग लिया। उस दिन का विषय महिला नेतृत्व विकास था। डॉ. वी.पी. शर्मा, निदेशक, आईसीएआर—डीएमआर, सोलन ने मशरूम की खेती सहित विभिन्न क्षेत्रों में समाज के उत्थान के लिए दैनिक जीवन में महिलाओं के योगदान की सराहना की (चित्र 10.3)।

that with the active involvement of women in mushroom cultivation the mushroom industry can be taken to new horizons which are the need of the hour in the country. बताया गया कि मशरूम की खेती में महिलाओं की सक्रिय भागीदारी से मशरूम उद्योग को नये क्षितिज पर ले जाया जा सकता है, जो देश में समय की मांग है।

Fig. 10.3. Celebration of International Women's Day चित्र 10.3. अंतर्राष्ट्रीय महिला दिवस का उत्सव

Research Advisory Committee meeting

The Research Advisory committee meeting of the Directorate was held on 23rd May, 2023. The Chairman, Dr Vijay Singh Thakur and members Dr V.B. Patel, ADG (Hort.), Dr K.P. Singh, Dr B.M. Sharma, Dr C.D. Thapa along with Sh. Swaran Singh Chib and Sh. Dharmendra Rana, Dr V.P. Sharma and all scientists of the Directorate attended RAC meeting (Fig.10.4). Apart from presentation on action taken report on the last year's recommendations by Dr V.P. Sharma, all the scientists presented the salient achievements of their ongoing research projects. The progress of all the research projects was reviewed very critically by RAC and road map for the next year research activities was finalized along with different recommendations.

अनुसंधान सलाहकार समिति की बैठक

निदेशालय की अनुसंधान सलाहकार समिति की बैठक 23 मई, 2023 को आयोजित की गई। अध्यक्ष डॉ. विजय सिंह ठाकुर और सदस्य डॉ. वी.बी. पटेल, सहायक महानिदेशक (बागवानी), डॉ. के.पी.सिंह, डॉ. बी.एम. शर्मा, डॉ. सी.डी. थापा के साथ स्वर्ण सिंह चिब और श्री. धर्मेन्द्र राणा, डॉ. वी.पी. शर्मा और निदेशालय के सभी वैज्ञानिकों ने आरएसी बैठक में भाग लिया (चित्र. 10.4)। डॉ. वी.पी. शर्मा द्वारा पिछले वर्ष की सिफ़ारिशों पर की गई कार्रवाई रिपोर्ट की प्रस्तुति के अलावा सभी वैज्ञानिकों ने अपने चल रहे अनुसंधान परियोजनाओं की प्रमुख उपलब्धियों को प्रस्तुत किया। आरएसी द्वारा सभी अनुसंधान परियोजनाओं की प्रगति की बहुत गंभीरता से समीक्षा की गई और विभिन्न सिफारिशों के साथ अगले वर्ष की अनुसंधान गतिविधियों के लिए रोड मैप को अंतिम रूप दिया गया।

Fig. 10.4. Members of Research Advisory Committee (RAC) visiting the Directorate चित्र 10.4. अनुसंधान सलाहकार समिति (आरएसी) के सदस्य निदेशालय का दौरा करते हुए

World Environment Day

51st World Environment Day was celebrated in the Directorate on 5th June, 2023 having campaign slogan "Solutions to plastic pollution under the campaign". Dr V.P.Sharma, Director, ICAR-DMR, Solan highlighted the importance of environment around us for having good health and called upon all the staff members to plant more trees, use less plastic and protect the mother nature for the future generations on this occasion. To mark the celebration of the day Caribbean cooper (Euphorbia cotinifolia) was planted in the campus (Fig. 10.5).

विश्व पर्यावरण दिवस

5 जून, 2023 को निदेशालय में 51वां विश्व पर्यावरण दिवस मनाया गया, जिसका नारा था "अभियान के तहत प्लास्टिक प्रदूषण का समाधान"। डॉ. वी.पी.शर्मा, निदेशक, आईसीएआर—डीएमआर, सोलन ने अच्छे स्वास्थ्य के लिए हमारे आसपास पर्यावरण के महत्व पर प्रकाश डाला। इस अवसर पर सभी स्टाफ सदस्यों से अधिक से अधिक पेड़ लगाने, कम प्लास्टिक का उपयोग करने और भावी पीढ़ियों के लिए मातृ प्रकृति की रक्षा करने का आह्वान किया। दिन के जश्न को चिह्नित करने के लिए परिसर में कैरेबियन कूपर (यूफोरिबया कोटिनिफोलिया) लगाया गया (चित्र 10.5)।

Fig. 10.5. Planting of plant on World Environment Day चित्र 10.5. विश्व पर्यावरण दिवस पर पौधारोपण

Foundation Day of ICAR-DMR, Solan and International Yoga Day

ICAR-DMR, Solan celebrated its 41st Foundation Day on 21st June, 2023. Dr V.P. Sharma complemented the contribution of all the staff members to accomplish various research and developmental activities related to mushroom because of which the total mushroom production of India has increased about three times during last couple of years (Fig. 10.6). On this day 9th International Yoga Day was also observed where all the staff members actively participated and performed various yogasanas. Sh Yogesh Sharma from Art of Living demonstrated yogasanas and it was stressed upon that for keeping ourselves fit with a sound mental and physical health yoga must be made an integral part of our day to day life.

41 वॉ स्थापना दिवस () 21 जून, 2023 भार कर अनु ये - जूच अनुसीम निदेशमध्य प्रकार, सीम (सिकाम प्रोत्त) - 73305

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन का स्थापना दिवस और अंतर्राष्ट्रीय योग दिवस

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन ने 21 जून, 2023 को अपना 41वां स्थापना दिवस मनाया। डॉ. वी.पी. शर्मा ने मशरूम से संबंधित विभिन्न अनुसंधान और विकासात्मक गतिविधियों को पूरा करने के लिए सभी स्टाफ सदस्यों के योगदान की सराहना की, जिसके कारण पिछले कुछ वर्षों के दौरान भारत का कुल मशरूम उत्पादन लगभग तीन गुना बढ़ गया है (चित्र 10.6)। इस दिन 9वां अंतर्राष्ट्रीय योग दिवस भी मनाया गया जहां सभी स्टाफ सदस्यों ने सक्रिय रूप से भाग लिया और विभिन्न योगासन किए। आर्ट ऑफ लिविंग के श्री योगेश शर्मा ने योगासनों का प्रदर्शन किया और इस बात पर जोर दिया गया कि स्वस्थ मानसिक और शारीरिक स्वास्थ्य के साथ खुद को फिट रखने के लिए योग को हमारे दैनिक जीवन का अभिन्न अंग बनाना चाहिए।

Fig. 10.6. Celebration of 41st Foundation Day of the Directorate and 9th International Yoga Day चित्र 10.6. निदेशालय के 41वें स्थापना दिवस और 9वें अंतर्राष्ट्रीय योग दिवस का जश्न

AICRP mushroom workshop

The 25th Annual Group Meeting of the All India Coordinated Research Project on Mushroom (AICRP-M) was held at Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir (SKUAST-K) during 15 & 16th of June 2023 (Fig. 10.7). The inaugural session of two days annual meeting hosted by ICAR-Directorate of Mushroom Research, Solan, (H.P.) and Division of Plant Pathology, SKUAST-Kashmir was attended by various delegates,

एआईसीआरपी मशक्तम कार्यशाला

मशरूम पर अखिल भारतीय समन्वित अनुसंधान परियोजना (एआईसीआरपी—एम) की 25वीं वार्षिक समूह बैठक 15 और 16 जून 2023 के दौरान शेर—ए—कश्मीर कृषि विज्ञान और प्रौद्योगिकी विश्वविद्यालय, कश्मीर (SKUAST-K) में आयोजित की गई (चित्र 10.7). भा. कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन (हि.प्र.) और प्लांट पैथोलॉजी डिवीजन, एसकेयूएएसटी—कश्मीर द्वारा आयोजित दो दिवसीय वार्षिक बैठक के उद्घाटन सत्र में सहायक महानिदेशक—बागवानी, आईसीएआर,

ADG-Horticulture, ICAR, New including Delhi, Director, DMR Solan, Vice Chancellor, SKUAST-Kashmir, Directors, Deans and HODs of various institutions and Mushroom scientists associated with cooperating/coordinating Centres from across the country to discuss latest technologies, cutting-edge research, and innovation in mushroom cultivation. The objective of the annual meeting was to deliberate on achievements of various coordinating/ cooperating centres of Mushroom all over the country and to discuss ways to enhance the productivity, quality & profitability in order to make mushroom production a sustainable venture in India.

The proceedings started by Dr. Mohammad Najeeb Mughal, Associate Professor, Plant Pathology and organizing secretary of the annual meet, who welcomed and introduced the delegates and guests. Dr. V.P. Sharma, Director, ICAR, DMR, delivered the project progress reports submitted by various Centres and presented the achievements of AICRP-M and ICAR-DMR, Solan. He also stated about the roadmap for the future research needed for strengthening the mushroom research in the country. Vice Chancellor, SKUAST-K, Prof. M.A.A. Siddiqui, while welcoming the delegates of the country's top agricultural universities and institutions, thanked ICAR-AICRP for holding the annual group meeting for the first time in Kashmir. ADG Horticulture, ICAR, Dr. Sudhakar Pandey thanked SKUAST-K for hosting the annual meeting and put emphasis on the need for quality spawn production and domestication of new edible mushroom for enriching the diversity of edible mushrooms. Prof. A.H. Mughal, Director Research, SKUAST-K and Prof. Neelofar Banday, Dean Faculty of Horticulture emphasized on the importance of modern technologies for mushroom farming in the modern agricultural practices for addressing the nutritional challenges of the country.

नई दिल्ली, निदेशक, डीएमआर, सोलन सहित कुलपित, एसकेयूएएसटी—कश्मीर, निदेशकों, डीन और एचओडी और देश भर के सहयोग/समन्वय केंद्रों से जुड़े मशरूम वैज्ञानिकों ने मशरूम की खेती में नवीनतम तकनीकों, अत्याधुनिक अनुसंधान और नवाचार पर चर्चा की। वार्षिक बैठक का उद्देश्य पूरे देश में मशरूम के विभिन्न समन्वय/सहयोग केंद्रों की उपलब्धियों पर विचार—विमर्श करना और भारत में मशरूम उत्पादन को एक टिकाऊ उद्यम बनाने के लिए उत्पादकता, गुणवत्ता और लाभप्रदता बढ़ाने के तरीकों पर चर्चा करना था।

कार्यवाही की शुरुआत पौध रोग विज्ञान के सह—प्राध्यापक और वार्षिक बैठक के आयोजन सचिव डॉ. मोहम्मद नजीब मुगल ने की, जिन्होंने प्रतिनिधियों और मेहमानों का स्वागत किया और उनका परिचय दिया। डॉ. वी. पी. शर्मा, निदेशक, आईसीएआर, डीएमआर ने विभिन्न केंद्रों द्वारा प्रस्तृत परियोजना प्रगति रिपोर्ट पेश की और एआईसीआरपी-मशरूम और आईसीएआर-डीएमआर, सोलन की उपलब्धियों को प्रस्तुत किया। उन्होंने देश में मशरूम अनुसंधान को मजबूत करने के लिए आवश्यक भविष्य के अनुसंधान के रोडमैप के बारे में भी बताया। SKUAST-K के कुलपति प्रो. एम.ए. ए. सिद्दीकी ने देश के शीर्ष कृषि विश्वविद्यालयों और संस्थानों के प्रतिनिधियों का स्वागत करते हुए कश्मीर में पहली बार वार्षिक समृह बैठक आयोजित करने के लिए आईसीएआर-एआईसीआरपी को धन्यवाद दिया। सहायक महानिदेशक बागवानी, आईसीएआर, डॉ. सुधाकर पांडे ने वार्षिक बैठक की मेजबानी के लिए SKUAST-K को धन्यवाद दिया और खाद्य मशरूम की विविधता को समृद्ध करने के लिए गुणवत्ता वाले स्पॉन उत्पादन और नए खाद्य मशरूम के वर्चस्व की आवश्यकता पर जोर दिया। प्रोफेसर ए.एच. मृगल, निदेशक अनुसंधान, SKUAST-K और प्रोफेसर नीलोफर बांडे, डीन बागवानी संकाय ने देश की पोषण संबंधी चुनौतियों से निपटने के लिए आध्निक कृषि पद्धतियों में मशरूम की खेती के लिए आधुनिक प्रौद्योगिकियों के महत्व पर जोर दिया।

Fig. 10.7. Inauguration of 24th Annual Workshop of AICRP Mushroom चित्र 10.7. एआईसीआरपी मशरूम की 24th वार्षिक कार्यशाला का उद्घाटन

Celebration of Independence Day

77th Independence Day of the country was celebrated at ICAR-DMR, Solan on 15th Aug., 2023. Dr V.P. Sharma, Director addressed all the staff members of the Directorate on this National festival. He highlighted the achievements of the Directorate in his address and called upon all the staff members to contribute immensely to fulfill the demand and expectations of the stakeholders across the country.

Parthenium awareness week

For creating awareness about the harmful effects of obnoxious weed amongst the staff members, trainees and villages under MGMG, Parthenium Awareness Week was observed w.e.f. 16-22 Aug., 2023 at ICAR-DMR, Solan. Various programmes were organized during this week where all the staff members and visitors/trainees as well as nearby villagers were made aware of the parthenium as it is very hardy weed plant and can survive in water logged as well as dry areas causing a number of ailments including allergy in human beings. All were requested to eradicate the weed with roots on community basis from the fields, roads and grasslands before its flowering (10.8).

स्वतंत्रता दिवस समारोह

15 अगस्त, 2023 को भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन में देश का 77वां स्वतंत्रता दिवस मनाया गया। डॉ. वी.पी. निदेशक शर्मा ने इस राष्ट्रीय पर्व पर निदेशालय के सभी सदस्यों को संबोधित किया। उन्होंने अपने संबोधन में निदेशालय की उपलब्धियों पर प्रकाश डाला और सभी कर्मचारियों से देश भर के हितधारकों की मांग और अपेक्षाओं को पूरा करने के लिए महत्वपूर्ण योगदान देने का आह्वान किया।

पार्थेनियम जागरूकता सप्ताह

मेरा गाँव मेरा गौरव के गांवों, स्टाफ सदस्यों, प्रशिक्षुओं गांवों के बीच अप्रिय खरपतवार के हानिकारक प्रभावों के बारे में जागरूकता पैदा करने के लिए 16-22 अगस्त, 2023 के दौरान आईसीएआर—डीएमआर, सोलन में पार्थेनियम जागरूकता सप्ताह मनाया गया। इस सप्ताह के दौरान विभिन्न कार्यक्रम आयोजित किए गए जहां सभी स्टाफ सदस्यों और आगंतुकों / प्रशिक्षुओं के साथ-साथ आस-पास के ग्रामीणों को पार्थेनियम के बारे में जागरूक किया गया क्योंकि यह बहुत ही प्रतिरोधी खरपतवार पौधा है और जल जमाव के साथ–साथ शुष्क क्षेत्रों में भी जीवित रह सकता है और कई बीमारियों का कारण बन सकता है जिसमें मनुष्यों में एलर्जी भी शामिल है। सभी से अनुरोध किया गया कि वे फूल आने (चित्र 10.8) से पहले खेतों, सड़कों और घास के मैदानों से सामुदायिक आधार पर खरपतवार को जड सहित नष्ट कर दें।

Fig. 10.8. Eradication of parthenium from the premises of ICAR-DMR, Solan चित्र 10.8. आईसीएआर-डीएमआर, सोलन के परिसर से पार्थेनियम का उन्मूलन

National Mushroom Mela

ICAR-DMR, Solan organized 26th National Mushroom Mela on 10th Sept., 2023. It was inaugurated by Dr Vijay Singh Thakur, Former Vice-Chancellor, UHF, Nauni and Chairman RAC as chief guest and attended by Dr Brajesh Singh, Director, ICAR-CPRI, Shimla as guest of honour. Dr V.P. Sharma, Director, ICAR-DMR, Solan presented the salient achievements of the Directorate. The programme was attended by more than 850 mushroom growers across the country. Four mushroom growers were felicitated with progressive mushroom grower award on this occasion (Fig. 10.9).

राष्ट्रीय मशरूम मेला

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन ने 10 सितंबर, 2023 को 26वें राष्ट्रीय मशरूम मेले का आयोजन किया। इसका उद्घाटन डॉ. विजय सिंह टाकुर, पूर्व कुलपित, यूएचएफ, नौणी और अध्यक्ष आरएसी ने मुख्य अतिथि के रूप में किया और डॉ. ब्रजेश सिंह, निदेशक, आईसीएआर—सीपीआरआई, शिमला ने सम्मानित अतिथि के रूप में भाग लिया। डॉ. वी.पी. शर्मा, निदेशक, आईसीएआर—डीएमआर, सोलन ने निदेशालय की मुख्य उपलब्धियों को प्रस्तुत किया। कार्यक्रम में देश भर के 850 से अधिक मशरूम उत्पादकों ने भाग लिया (चित्र 10.9)। इस अवसर पर चार मशरूम उत्पादकों को प्रगतिशील मशरूम उत्पादक प्रस्कार से सम्मानित किया गया।

Fig.10.9.Interaction of the Chief guest during 26th National Mushroom Mela चित्र.10.9. 26वें राष्ट्रीय मशरूम मेले के दौरान मुख्य अतिथि की बातचीत

Hindi Pakhwara

From 16-28 Sept., 2023 Hindi Pakhwara was organized at ICAR-DMR, Solan in which 6 competitions *viz.*, Sulekh, Shrutlekhan, Unicode Hindi typing on computer, General Knowledge, Nibandh and translation (Hindi to English and English to Hindi) were conducted for all the staff members of the Directorate for encouraging them to use Hindi language more and more in their day to day official work. The winners of the competitions along with the staff members using maximum Hindi in official work throughout the year were awarded on the closing day (29.09.2023) by Dr V.P. Sharma, Director (Fig. 10.10).

हिंदी पखवाडा

16—28 सितंबर, 2023 तक भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन में हिंदी पखवाडा आयोजित किया गया जिसमें 6 प्रतियोगिताएं जैसे सुलेख, श्रुतलेखन, कंप्यूटर पर यूनिकोड हिंदी टाइपिंग, सामान्य ज्ञान, निबन्ध और अनुवाद (हिंदी से अंग्रेजी और अंग्रेजी से हिंदी) शामिल थीं (चित्र 10.10) । निदेशालय के सभी स्टाफ सदस्यों को अपने दिन—प्रतिदिन के आधिकारिक कार्यों में हिंदी भाषा का अधिक से अधिक उपयोग करने के लिए प्रोत्साहित करने के लिए कार्यक्रम आयोजित किए गए। समापन समारोह (29.09.2023) में डॉ. वी. पी. शर्मा, निदेशक द्वारा प्रतियोगिताओं के विजेताओं के साथ—साथ पूरे वर्ष आधिकारिक कामकाज में अधिकतम हिंदी का उपयोग करने वाले स्टाफ सदस्यों को पुरस्कृत किया गया।

Fig. 10.10. Participants in the competition during Hindi Pakhwara चित्र 10.10. हिंदी पखवाड़ा के दौरान प्रतियोगिता में भाग लेते प्रतिभागी

Celebration of Vigilance Awareness Week

The vigilance awareness week was observed at the Directorate w.e.f. 31 Oct. to 6 Nov., 2023. As per the guidelines from the council the programmes were organized on and off the campus and the report was submitted.

World Soil Day

ICAR-DMR, Solan celebrated 10th World Soil Day on 5th Dec., 2023 at Gram Panchayat, Basal, Chambaghat, Solan as well as at the Directorate which was attended by more than 130 participants. Dr V.P. Sharma, Director, ICAR-DMR, Solan addressed the staff members and called upon to maintain the soil health by adopting organic

सतर्कता जागरूकता सप्ताह का आयोजन

निदेशालय में 31 अक्टूबर से 6 नवंबर, 2023 तक सतर्कता जागरूकता सप्ताह मनाया गया। परिषद के दिशानिर्देशों के अनुसार परिसर में और बाहर कार्यक्रम आयोजित किए गए और रिपोर्ट प्रस्तुत की गई।

विश्व मृदा दिवस

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन ने 5 दिसंबर, 2023 को ग्राम पंचायत, बसाल, चंबाघाट, सोलन के साथ—साथ निदेशालय में 10वां विश्व मृदा दिवस मनाया जिसमें 130 से अधिक प्रतिभागियों ने भाग लिया। डॉ. वी.पी. शर्मा, निदेशक, आईसीएआर—डीएमआर, सोलन ने स्टाफ सदस्यों को संबोधित किया और खेत और बागवानी फसलों में जैविक उर्वरकों, कीटनाशकों /

farming with minimum use of organic fertilizers, insecticides/pesticides and other harmful chemicals in field and horticultural crops. He also emphasized that due to indiscriminate and excessive use of organic chemicals the soil health has deteriorated and it has become unproductive and barren in many states in India (Fig. 10.11).

कीटनाशकों और अन्य हानिकारक रसायनों के न्यूनतम उपयोग के साथ जैविक खेती अपनाकर मिट्टी के स्वास्थ्य को बनाए रखने का आह्वान किया। उन्होंने इस बात पर भी जोर दिया कि जैविक रसायनों के अंधाधुंध और अत्यधिक उपयोग के कारण भारत के कई राज्यों में मिट्टी का स्वास्थ्य खराब हो गया है और यह अनुत्पादक और बंजर हो गई है (चित्र 10.11)।

Fig.10.11. Celebration of World Soil Day at Basal and ICAR-DMR, Solan चित्र.10.11. बसाल और आईसीएआर-डीएमआर, सोलन में विश्व मृदा दिवस मनाया गया

National Kisan Diwas/Mushroom Day

To commemorate the birth anniversary of the late Prime Minister of India and farmer leader Chaudhary Charan Singh, 23rd National Kisan Diwas/Mushroom Day was celebrated on 23rd Dec., 2023 at ICAR-DMR, Solan. The programme was attended by more than 130 farmers/farmwomen along with staff members of the Directorate. The theme of the day was *Mushroom to double farmers' income* (Fig. 10.12).

राष्ट्रीय किसान दिवस / मशरूम दिवस

भारत के दिवंगत प्रधान मंत्री और किसान नेता चौधरी चरण सिंह की जयंती मनाने के लिए, 23 दिसंबर, 2023 को आईसीएआर—डीएमआर, सोलन में 23वां राष्ट्रीय किसान दिवस / मशरूम दिवस मनाया गया। कार्यक्रम में निदेशालय के कर्मचारियों के साथ—साथ 130 से अधिक किसानों / कृषि महिलाओं ने भाग लिया। उस दिन का विषय था किसानों की आय दोगुनी करने के लिए मशरूम (चित्र 10.12)।

Fig. 10.12. Celebration of National Kisan Diwas at ICAR-DMR, Solan चित्र 10.12. आईसीएआर-डीएमआर, सोलन में राष्ट्रीय किसान दिवस का उत्सव

Swachhata Pakhwada

ICAR-DMR, Solan celebrated Swachhata Pakhwada w.e.f. 16-31st December, 2023 (Fig. 10.13). During this period various programmes like Swachhata pledge, sanitation campaign, awareness regarding disposal of waste management, campaign on cleaning of sewerage and water lines, awareness of waste water harvesting for agricultural/horticulture application/kitchen gardens etc. were organized on and off campus.

स्वच्छता पखवाडा

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन ने 16—31 दिसंबर, 2023 तक स्वच्छता पखवाड़ा मनाया (चित्र 10.13)। इस अवधि के दौरान स्वच्छता शपथ, स्वच्छता अभियान, अपशिष्ट प्रबंधन के निपटान के बारे में जागरूकता, सीवरेज और पानी की लाइनों की सफाई पर अभियान, कृषि/बागवानी अनुप्रयोग/रसोई शाकवाटिका के लिए अपशिष्ट जल संचयन के बारे में जागरूकता आदि जैसे विभिन्न कार्यक्रम परिसर में और बाहर आयोजित किए गए।

Fig.10.13. Staff members taking pledge under swachhata pakhwara at ICAR-DMR, Solan चित्र.10.13. आईसीएआर—डीएमआर, सोलन में स्वच्छता पखवाड़ा के तहत शपथ लेते कर्मचारी सदस्य

North Zone ICAR Tournament

ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) contingent participated in Zonal Sports Tournaments (North Zone)-2023 at ICAR-Central Institute of Post- Harvest Engineering & Technology, Ludhiana (Punjab) w.e.f. $17^{\rm th}-20^{\rm th}$ January, 2024. The contingent included 19 (Fig. 10.14) participants (16 Men & 3 Women). The contingent remained runners up in volley ball (smashing), runners up in badminton mixed doubles and Mrs. Sunila Thakur won bronze medal in javelin throw (Fig. 10.15, 10.16 and Fig. 10.17).

उत्तर क्षेत्र आईसीएआर टूर्नामेंट

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, चंबाघाट, सोलन (हिमाचल प्रदेश) के दल ने 17—20 जनवरी, 2024 के दौरान आईसीएआर—सेंट्रल इंस्टीट्यूट ऑफ पोस्ट—हार्वेस्ट इंजीनियरिंग एंड टेक्नोलॉजी, लुधियाना (पंजाब) में जोनल स्पोर्ट्स टूर्नामेंट (उत्तरी क्षेत्र)—2023 में भाग लिया। दल में 19 (चित्र 10.14) प्रतिभागी (16 पुरुष और 3 महिलाएँ) शामिल थे। दल वॉलीबॉल (स्मैशिंग) में उपविजेता रहा, बैडिमेंटन मिश्रित युगल में उपविजेता रहा और श्रीमती सुनीला ठाकुर ने भाला फेंक में कांस्य पदक जीता (चित्र 10.15, 10.16 और चित्र 10.17)।

Fig. 10.14. ICAR-DMR, Solan Contingent चित्र 10.14. आईसीएआर-डीएमआर, सोलन का खेलकूद दल

Fig. 10.15. Volley Ball (Smashing Team) with

Runners Up Trophy
चित्र 10.15. वॉलीबॉल (स्मैशिंग टीम) के साथ
उपविजेता ट्रॉफी

Fig. 10.16. Badminton Mixed Doubles - with

Runners up Medals
चित्र 10.16. बैडमिंटन मिश्रित युगल उपविजेता

पदक के साथ

Fig. 10.17. Mrs. Sunila Thakur won Bronze

Medal in Javelin Throw

चित्र 10.17 श्रीमती सुनीला ठाकुर ने भाला फेंक
में कांस्य पदक जीता

11. TRAINING AND CAPACITY BUILDING

11. प्रशिक्षण और क्षमता निर्माण

- 1. Sh. Deep Kumar Thakur, Personal Assistant, and Dr Rajneesh Jaryal, Assistant, successfully completed online training for Limited Departmental Audit & Accounts Examination (Empowering Aspirants for Success in the LDA&A Examination) organized by ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra w.e.f. 20th July to 6th October, 2023.
- Mrs Reeta Bhatia, CTO attended regional training-cum-awareness workshop on J-Gate @ CeRA for Northern Region on dated 16th October, 2023 at CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur (H.P.).
- 3. Dr Ashish Dhangar, F&AO attended three days training on Accounts of Autonomous bodies w.e.f. 25-27 Oct., 2023 at Arun Jaitley National Institute of Financial Management (AJNIFM), Faridabad (Haryana).

- श्री. दीप कुमार ठाकुर, निजी सहायक और डॉ. रजनीश जरयाल, सहायक ने आईसीएआर—राष्ट्रीय अजैविक तनाव प्रबंधन संस्थान, बारामती, पुणे, महाराष्ट्र द्वारा 20 जुलाई से 6 अक्टूबर, 2023 के दौरान आयोजित सीमित विभागीय लेखा परीक्षा और लेखा परीक्षा (एलडीए और ए परीक्षा में सफलता के लिए उम्मीदवारों को सशक्त बनाना) के लिए ऑनलाइन प्रशिक्षण सफलतापूर्वक पूरा किया।
- श्रीमती रीता भाटिया, मु.त.अधि. ने दिनांक 16 अक्टूबर, 2023 को सीएसके हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर (हि.प्र.) में उत्तरी क्षेत्र के लिए जे—गेट / सीईआरए पर क्षेत्रीय प्रशिक्षण—सह—जागरूकता कार्यशाला में भाग लिया।
- डॉ. आशीष धनगर, वित्त एवं लेखाधिकारी ने स्वायत्त निकायों के खातों पर 25–27 अक्टूबर, 2023 के दौरान अरुण जेटली राष्ट्रीय वित्तीय प्रबंधन संस्थान (एजेएनआईएफएम), फ़्रीदाबाद (हरियाणा) में तीन दिवसीय प्रशिक्षण में भाग लिया।

12. DISTINGUISHED VISITORS 12. विशिष्ट आगंतुक

A number of visitors visited ICAR-Directorate of Mushroom Research, Solan (H.P.) during 2023 and the distinguished ones are as:

S.No.	Name and address	Date of visit to ICAR-DMR, Solan
1.	Dr Vijay Singh Thakur, Former Vice Chancellor, UHF, Nauni, Solan and Chairman RAC डॉ विजय सिंह ठाकुर, पूर्व कुलपति, यूएचएफ, नौणी, सोलन और अध्यक्ष आरएसी	23.05.2023
2.	Dr. V.B. Patel ADG (Hort.), ICAR, New Delhi डॉ. वी.बी. पटेल, सहायक महानिदेशक (बागवानी), आईसीएआर, नई दिल्ली	23.05.2023
3.	Major Dharam Dixit, Chandigarh मेजर धर्म दीक्षित, चंडीगढ़	04.08.2023
4.	Dr Vijay Singh Thakur, Former Vice Chancellor, UHF, Nauni, Solan and Chairman RAC डॉ विजय सिंह ठाकुर, पूर्व कुलपति, यूएचएफ, नौणी, सोलन और अध्यक्ष आरएसी	10.09.2023
5.	Dr. Brajesh Singh, Director, ICAR-CPRI, Shimla (H.P.) डॉ. ब्रजेश सिंह, निदेशक, भा.कृ.अनु.प.—आलू अनुसन्धान संस्थान, शिमला (हि.प्र.)	10.09.2023
6.	Sh. Binod Kumar, Chief Controller of Accounts, Ministry of Agriculture & Farmers' Welfare, Govt. of India, New Delhi श्री बिनोद कुमार, मुख्य लेखा नियंत्रक, कृषि एवं किसान कल्याण मंत्रालय, भारत सरकार भारत सरकार, नई दिल्ली	02.11.2023
7.	Dr. Devender Kumar, Former I/c Director, ICAR-CPRI, Shimla (H.P.) डॉ. देवेन्द्र कुमार, पूर्व प्रभारी निदेशक, आईसीएआर—सीपीआरआई, शिमला (हि.प्र.)	22.11.2023

13. ICAR-DMR, Solan in Press 13. प्रेस में आईसीएआर-डीएमआर, सोलन

शिमला, बुधवार, २२ फरवरी , २०२३ दिव्य हिमाचल

मशरूम में होंगे औषधीय गुण

सोलन का डीएमआर कर रहा शोध, सफलता मिलने पर किसानों को प्रशिक्षण

स्टाफ रिपोर्ट-बोलब

प्राप्त समेत अन्य औषधीय गुणों के हालांकि वैज्ञानिक अब शोध कर किकास के लिए कार्य कर रहा है। यह जांच रहे हैं कि अदरक अवश्य से अब अन्य औषधीयों के अवश्येष में अन्य अवश्येष से विष्टा स्वाप्त से तथार मशरूम में अब अन्य आधियां के अवश्येष में भी गुण आ रहे हैं या नहीं। इसी गुण भी मिल संकेंगे। इसको लेका है हिंगी सम्हेंक्य के उत्पादन का राह है। जानकारी को निरंशालय प्रीक्षण किया जा रहा है। जानकारी को नहिंग सम्हें के अनुसार प्रार्थिक शोध में प्रांच से वाह रही है इस शोध कर्म के उत्पादन के अवश्येष पर खें हों से अहा कर उत्पादक के उत्पादन के अवश्येष पर बिंगी स्वाप्त के विज्ञानिक अवश्येष पर बिंगी से अवश्येष पर बिंगी से अवश्येष पर बिंगी से अवश्येष से कार्य के उत्पादक अवश्येष पर बिंगी से अवश्येष पर बिंगी से अवश्येष पर बिंगी से अवश्येष पर बिंगी से अवश्येष पर बिंगी के अवश्येष पर बिंगी के उत्पाद अवश्येष पर बिंगी कार्य कर रहे हैं। को इसका प्रशिक्षण देना भी आरंप कर दिया जाएगा। इस शोध के पर के साथ तुलसी, अदरक, लैमन डा. वीपी शर्मा, निदेशक, डीएमआर सोलन

का इसका प्रशासन होना भा आरम होने से जहां लोगों को मशरून में और अधिक पौष्टिक तत्व मिलेंगे, बहाँ मशरून उत्पादकों की आर्थिकी भी सुदृढ़ होगी। डीएमआर सोलन मशरून में स्वाद बिज्ञानिकों द्वारा औषधीय पौधों के अवशेषों से दिगरी मशरूम तैयार करने पर शोध किया जा रहा है। अदरक के अवशेषों

अमरउजाला

सोमवार, 1 मई 2023

मरारुम से बने सभी उत्पाद 10 फीसदी तक महंगे बाजार में मरारूम के दाम बढ़ने के बाद निदेशालय ने प्रति किलो 20 रुप<mark>ये बढ़ा</mark>ए, बटन मरारूम अब 80 के बजाय 100 रुपये में मि<mark>लेगी</mark>

दिन-प्रतिदिन महाग हो रहा किट्या माल र शार्म स्थान प्रतिक्रा स्थान र शार्म स्थान प्रतिक्र स्थान स्थान

बाजार में मरारूप के दाम बदने के सांस्ता में कार्य में मरारूप के दानों में 30 परीवारी कर उज्जान के बारों में 30 परीवारी कर उज्जान के बार महरूप अनुसंधान निर्माणक प्रतुसंधान निर्माणक प्रदेश महरूप अनुसंधान निर्माणक पर प्रतुसंधान निर्माणक पर प्रतुसंधान के उपयो बहुत हैं है इसके बार पर प्रतुसंधान के 30 परीवार के 40 परीवार

पांच साल पहले निरामाल्य ने पड़ी हैं। दिन-प्रांतिदिन मात्रक्त तैयार हैं। जीतन में पांच वार्ष भारत पड़िस्ती को तथार्थ के करने के लिए हत्योगल होने वाला पहले 8,000 टन उत्पादन होता था। पढ़िक्त मुस्ता में के तथार्थ के करने के लिए हत्योगल होने वाला पहले 8,000 टन उत्पादन होता था। मेंहूं का मुस्ता मात्रक हता है कि मात्रक्ता मात्रक मात्रक पहले कर हत्याय ने तथार करने पर भी महागई की मार मत्रक मात्रक पड़िक्त मात्रक म

अमरउजाला

पैदावार ज्यादा होने से गिरे गुच्छी के दाम

प्रभाव मुख्ये एकसी
पीडकू भे शेवह में इस बाद गुळी
के दान 7,000 घर्ष में इस बाद गुळी
के दान 7,000 घर्ष में मी सम और
पार्वाच गार हैं । खराब मीसम और
पार्वाच भी सारी को हिल्ता में इस बाद गुळी को अधिक पैरावाद हैं है।
कर कारण ही गुळी के प्रमा तिर हैं
तथा, जंगली से गुळी ततावार कर
पुळाने के बाद के नहें
देश के भाव सिताद होटली में
गुळी को ओसक मांग रहते हैं।
पिछले साल कम पैरावाद के, कारण
गुळी को जीसक मांग रहते हैं।
पिछले साल कम पैरावाद के, कारण
गुळी को जीसन 1900 रहते भीन
किला होते हैं। पिछले स्वेच में हरें।
साल करहें। उर्चये की गुळी का
कारोवाद रहें।। किया कल प्रमेश

रोहड् में 7,000 रुपये प्रति किली पहुंचे दाम, पिछले साल 9,000 रुपये प्रति किलो बिकी थी औषधीय गुच्छी

है। गांव की महिलाएं और बच्चे

अमरउजाला सोमवार, 15 मई 2023

टमाटर, मशरूम उगाने की तकनीक सीखेंगे विद्यार्थी

वोकेशन विषय के तहत जिला शिक्षा विभाग ने की पहल

बच्चों को डी<mark>एमआर</mark> व नौणी विवि में दी जाएगी जानकारी

संवाद न्यून एजेसी
सोलाश जिले के विधार्थी अब
तिवासी बार्च के स्थार कर्नावेश
वासिक करेंगे : इसमें विश्ले के
वासाय अव्याद्धि संद्री जाएंगी जानकररी
तासिक करेंगे : इसमें विश्ले के
वासाय अव्याद्धि अव्य

(104)

अमरउजाला

मंगलवार, ६ जून २०२३

ि गरी मरारूम में आए अदरक-तुलसी के गुण, बढ़ाएगी इम्युनिटी पाचन तंत्र करेगी मजबूत, अब आगामी गुणवत्ता की जांच पंजाब की आधुनिक लेब में होगी

सोलन। अब मशरूम खाने के साथ प्रोटोन ही नहीं, बल्कि अदरक और तुलसों समेत अन्य औषधीय गुण भी मिलेंगे। हींगरी

पारान तत्र करगा मजबूत, अब आगामा गुणावता की जांच पंजाब की आधुनिक लैंब में होगी होगा। पावन शिवत के लिए भी सिला। अब मशरूम खाने के साथ प्रोदोन ही नहीं, बल्कि अदरक और तुलसी संमेव अन्य और से सिला। अब मशरूम खाने के साथ प्रोदोन ही नहीं, बल्कि अदरक और तुलसी संमेव अन्य और से साथ प्रोदोन ही नहीं, बल्कि अदरक और तुलसी संमेव अन्य और से शारी महरूम में अब हतने और प्रोप गुण आ जाएंगे कि इससे खाने से शरीर को कई सोमारियों में शहत मिस्तिगी। खुंब अनुमेक ले व में में जाया हा और से और सीय पौधा के ब्राट्म अपित के कि तोने में साथ प्रावस जांच में से प्रावस जांच में से महरूम में सिला महरूम में सिला अप अप गुणे की भी सही महरूम मंदिरालाय के बेबानिकों भी सिला में आप है, सकता में स्वास महरूम में अब अवशेषों पर अप अप गुणे की भी सही महरूम मान को उपने के मान को जाया के साथ महरूम में आप है, सकता महरूम में अप के अवशेषों मान महरूम में अप है, सकता महरूम में आप है, सकता महरूम में अप के अवशेषों मान महरूम में अप है, सकता में स्वास महरूम में अप के अवशेषों मान महरूम में अप है, सकता महरूम में अप है, सकता महरूम में सिला महरूम में आप है, सकता महरूम में सिला महरूम महरूम में सिला महरूम में सिला महरूम में सिला महरूम में सिला महरूम महरूम में सिला महर

हींगरी महरका में अंदरक और तुस्तरी के गुण आहें हैं। डीएमआ की देव में इसका खुलाब हुआ है। अब इसकी जाव आप्रिक दिव में भी जी जाती इसके लिए इसे पंजाब की आपुक्ति होते में तेजा जाता। किसमें महरका में आए अन्य गुणे की भी सही जानकारी तिल पाएगी लिमन झार पर भी डिली महरका ने उपने के काल किया जा रहा है। यह महरका औषणेव गुणे में महरू होगी। -क्वाँ सोगी प्रमां, निस्त्रफ, खुंब अनुसंधान निस्त्रालय सोलन

सोलन में सजेगा राष्ट्रीय खुब मेला

एक लाख कीमत वाली मशरूम रहेगी आकर्षण, 1200 उत्पादक-वैज्ञानिक आएंगे

संवाद न्यूज एजेंसी

सोलन। खुंब निदेशालय सोलन (डीएमआर) में दस सितंबर को राष्ट्र स्तरीय खुंब मेले का आयोजन किया जा रहा है। तैयारियां शुरू हो गई हैं। मेले का मुख्य आकर्षण एक लाख रुपये प्रति किलो बिकने वाली कोर्डिसीपस मीलिट्रेनस (कीडा-जड़ी) समेत मशरूम की सात नई

किस्में भी रहेंगी। मशरूम उत्पादकों सहित विभिन्न विभागों के वैज्ञानिक भी भाग लेंगे। मेले के दौरान हिमाचल प्रदेश में कच्चा माल महंगा होने से घट रही मश्ररूमं पैदाबार पर भी चर्चा कर इसके लिए विकल्प भी तलाशा

हिमाचल में मशरूम की घटती पैदावार पर भी की जाएगी चर्चा

मशरूम की सात नई किस्मों की भी लगेगी प्रदर्शनी

उत्पादक भाग लेते हैं। इस दौरान उत्पादकों को मशरूम तैयार करने में आ रही समस्याओं सहित मशरूम में लगने वाले रोगों पर चर्चा की जाती है। देश भर में हर वर्ष 3010 मीटिक मेले में देशभर से करीब 1200 टन मशरूम तैयार की जाती है। इससे करीब चार अरब से अधिक का कारोबार होता है। इसके अलावा अकेले हिमाचल में ही 15 हजार टन मशरूम से करीब दो करोड़ का कारोबार होता है। लेकिन अब हिमाचल में मेशरूम की पैदावार में जाएगा। जानकारी के अनुसार खुंब कमी आई है। इसका मुख्य कारण मेला वर्ष 1998 से मनाया जा रहा कच्चा माल महंगा होना बताया जा है। इसमें देश भर के मशरूम रहा है। उधर, खुंब अनुसंधान एवं

निदेशालय के निदेशक डॉ. वीपी शर्मा ने बताया कि राष्ट्रस्तरीय मेले की तैयारियां शुरू हो गई हैं। इस मेले के दौरान देशभर से आए मशरूम उत्पादकों की नई तकनीक सहित अन्य विषयों की जानकारी प्रदान की जाएगी।

प्रदर्शनी में गेनोडोरमा, हेरेशियम, शिटाखे, ऑस्टर मशरूम सहित मशरूम से तैयार खाद्य वस्तुएं, जिनमें आचार, मशरूम केक, मशरूम केंडी, मशरूम ज्वार बिस्कुट समेत अन्य मशरूम के मूल्य संवर्धित उत्पाद शामिल रहेंगे। इसके अलावा पंजाब, उत्तर प्रदेश, उत्तराखंड, छतीसगढ़, तमिलनाडु, हरियाणा, दिल्ली, महाराष्ट्र, हिमाचल प्रदेश, मध्य प्रदेश, उड़ीसां, गुजरात, चंडीगढ़, जम्मू व कश्मीर, मणिपुर सहित अन्य राज्यों के किसान भी मेले में भाग लेगे।

खेतों में पहुंचे कर्मचारी, खरपतवार निकाला प्रभाव न पड़े। इस मौके

स्टाफ रिपोर्टर-सोलन

भाक्अनुप-खुम्ब अनुसंधान निदेशालय, चंबाघाट, सोलन में पार्थेनियम जांगरूकता सप्ताह-2023 मनाया जा रहा है। इसी कार्यक्रम के दौरान डा. सतीश कुमार, प्रधान वैज्ञानिक के निर्देश में सभी स्टाफ सदस्यों से कार्यालय खेल परिसर में निदेशालय के सभी अधिकारियों व कर्मचारियों ने परिसर में उगे पार्थेनियम को भी पार्थेनियम मुक्त बनाने के लिए उखाड़ कर निस्तारित कर दिया गया मिलकर काम करने का आह्वान ताकि इसका कोई हानिकारक किया।

निदेशालय के सभी कर्मचारियों को परिसर में खेतों में ले जाया गया और अत्यंत हानिकारक खरपतवार उन्मूलन का कार्यक्रम चलाया गया। सभी कर्मचारियों से अनुरोध किया गया कि जहां भी उन्हें इस घास के पौधे दिखें, उन्हें हटा दें। इसके अलावा, उनसे अपने गावों में जागरूकता पैदा करने का भी अनुरोध किया। सप्ताह के संमापन दिवस पर डा. वीपी शर्मा, निदेशक, आईसीएआर-डीएमआर, सोलन ने परिसर से हानिकारक खरपतवार को खत्म करने और परिसर क

शकवार, ८ सितंबर, २०२३

सोलन में राष्ट्र स्तरीय खुंब मेला दस सितंबर को

खुंब निदेशालय सोलन (डीएमआर) में दस सितंबर को राष्ट्रस्तरीय खुंब मेले का आयोजनं किया ज़ा रहा है। मेले को सफलता पूर्ण आयोजित करने के लिए तैयारियां शुरू हो गई हैं। राष्ट्रस्तरीय पंत्र मेले में संजाब, उत्तर प्रदेश, निदेशालय सोलन खुंब मेले में पंजाब, उत्तर प्रदेश, उत्तराखंड, छत्तीसगढ़, तमिलनाडु, हरियाणा, दिल्ली, महाराष्ट्र, हिमाचल प्रदेश, मध्यप्रदेश, ओडिशा, हरियाणा, दिखा, महाराष्ट्र, हिमाचल प्रदेश, मध्यप्रदेश, ओडिशा, गुजरात, चंडीगढ़, जम्मू व करमीर, मणिपुर सहित अन्य राज्यों के किसान भी मेले में भाग लेंगे। राष्ट्रकरीय खुंब मेले का सुख्य आकर्षण एक लाख रुपए प्रविक्तिकों विकृत वाली कोर्डिसीपस

मीलिट्रेनस (कीडा-जड़ी) समेत मीलिट्रेन्स (कोडा-जड़ी) समेत मशरूम की सात नई किस्से भी सहँगी। येले में देशभर से करीब 1200 मशरूम उत्पादकों सहित विभन्न विभागों के वैज्ञानिक भी भाग लेंगे। मेले के दौरान हिमाचल प्रदेश में कच्च माल महंगा होने से घट रहा मशरूम प्रदाला पर थी ज्ञाशा जाएगा। उसर, खुंब-अनुसंधान एवं निदेशालय के च्चा कर इसके (लए 19कर) भी जाता आणा। उधर खुब अनुसंधान एवं निरेशालय के निरोशक डा. बीपी दोशालय के कि राष्ट्रस्तीय मेले की तैयारियां सुरू हो गई हैं। इस मेले के दौरान देशांपर से आए मेशरूप अपार्थ की नई तकनीक सहित अन्य विषयों को जानकारी प्रदान की

हिमाचल दस्तक , सोमवार ११ सितंबर, २०२३

मार के 750 माश्रीकाम उद्याव (क्रांत के प्रकार के प्रकार

जी-20 सम्मेलन में सजी सोलन के डीएमआर की मशरूम नई दिल्ली के प्रगति मैदान में आयोजित सम्मेलन में लगाया 7 प्रकार की मशरूम का स्टॉल

देश के 4 मशरूम उत्पादक सम्मानित

पंजाब केसरी

सोमवार MONDAY 11 सितम्बर 2023

जी-20 सम्मेलन में कृषि प्रदर्शनी में सोलन में तैयार मशरूम का प्रदर्शन

निदेशालय के अनुसंघान को मिली सराहना

जिंदशालय के अनुसंधान का Indi संधरिका संतत्न, 10 सिताव्य (ब्यूरो): खुन्य अनुसंधान निदेशालय सोलन में तैयार हो रही 7 किस्मां की मशरूम को दिख्री में आयोजित जी 20 सम्मेलन के दौरान प्रदर्शनों में प्रदर्शित करने का मीका मिला। मारूस्स के क्षेत्र में निदेशालय हार किए जा रहे अनुसंधान को विदेशी मेहमानों ने खुन सराह। जिन देशों में मशरूम का प्रचलन नहीं है उन देशों से आए मेहमान हतनी किस्मां की स्वास्थ्य वर्धक, दवा उपयोगी व कीमती मशरूम को देखकर काफी प्रभावित हुए।

सम्बद्धमा को देखकर काफी प्रभावित हुए।
ख्रम्ब अनुस्थान निर्देशालय के निर्देशक वा भी, ज्ञानी ने उद्यान के निर्देशक वा भी, ज्ञानी ने नी निर्देशक वा भी, ज्ञानी ने नी निर्देशक वा स्वर्गनी में विधिन्न मशह्मा की मैडीसन वैल्यु, इसे तैयार करने की तकनीक व अन्य गुणों के बारों में बताया।
अभी तक कई देश ऐसे हैं जहां इन मश्ल्मा की अधिक जानकारी नहीं है, ऐसे देशों से आए तिनिधियों ने इसकी जानकारी खुटाई मशह्म प्रदर्शनी में सोलन में तैयार की जा रही खुम्ब किसमों के प्रदर्शन से यहां का नाम भी दुनियां पर में रोशन हुआ है।

"एमें रोशन हुआ है।
"अप्तर्मा के प्रदर्शनी में अधिस्टर, अगह्म (बीन) जिसे हैर घर मशह्म पैक के

मशरूम (ढींगरी) जिसे हर घर मशरूम पैक के रूप में तैयार किया गया है। किंग ओयस्टर,

सोलन : दिली में इन मशरूम का किया गया प्रदर्शन।

ि हिल्ली में आयोजित जी-20 सम्मेलन के दौरान कृषि प्रदर्शनी में मशरूम की प्रदर्शनी लगाने के लिए बुलाया गया था। इस दौरान निदेशालय में तैयार की जा रही 7 खुम्बों का प्रदर्शन किया गया। यह निदेशालय और प्रदेश के लिए भी हर्ष का विषय है। — डा. वी.पी. शर्मा, क्ष्मण्ड विशावय

गेनोडर्मा या ऋषि मशरूम, शिटाके, हेरेशियम, साइजोफिलम और कोर्डिसेप्स (कीड़ा जड़ी)।

शिमलां, सोमवार , ११ सितंबर , २०२३ सोलन-सिरमौर

एक लाख रुपए प्रति किलो बिकी मशरूम

26वें राष्ट्रीय मशरूम मेले में कोर्डिसेप्स को डीएमआर ने किया प्रदर्शित, औषधीय गुणों का खजाना है मशरूम

अब गुच्छी मशरूम पर काम करेगा खुंब निदेशालय

सालाना मशरूम मेले में चार उत्पादकों को मिला प्रगतिशील पुरस्कार

स्टाफ रिपोर्टर-सोलन

खुंब अनुसंधान निदेशालय (डीएमआर) चंबाघाट सोलन में रविवार को 26वें राष्ट्रीय मशरूम मेले का आयोजन किया गया। यह मेला सोलन शहर को मशरूम सिटी आफ इंडिया घोषित करने के उपलक्ष्य पर प्रति वर्ष आयोजित किया जाता है जिसमें मशरूम पर

विकसित अनेक प्रजातियों एवं सीलन। 26वें राष्ट्रीय मशरूम मेले में पुरस्कृत किसान मुख्यातिथि के साथ

तकनीकियों को मशरूम उत्पादकों रहे। उन्होंने इस अवसर पर अपने वैज्ञानिकों एवं किसानों के अथक संबोधन में देश के विभिन्न हिस्सों प्रयासों की वजह से ही कुछ वर्षों की प्रदेशाया जाता हु। संवाधन म दश क ावाभन गहस्सा प्रवासा का वजह स हा अध्य ज्या मेले के मुख्यातिथि छा विजय के लिए मशहम की प्रजातियां एवं में मशहम का उत्पादन कई गुणा सिंड टोकुर, पूर्व कुलपित डा. तकनीकियां विकस्तित करने के यशवंत सिंह परमार औद्यानिकी लिए खुंब अनुसंधान निदेशालय एवं वानिकी विश्वविद्यालय, नौणों की प्रशंसा की और कहा कि इनको मिला प्रगतिशील मशरूम उत्पादक पुरस्कार

इस अवसर पर देशभर से आए मशरूम उत्पादकों में से एक महिला किसान सहित चार उत्पादकों को प्रगतिशील मशरूम उत्पादक पुरस्कार से सम्मानित किया गया। पुरस्कार प्राप्त करने वालों में किसान महिला बिनीता कुमारी, बांका (बिहार), अनिल भोकरे, पुणे (महाराष्ट्र), गोहर अली लोन, बारामूला (कश्मीर) व बचत विरंग फुकन, जोरहटं (असम)

अमरउजाला

सोमवार, 11 सितंबर 2023

विनिता ने मशरूम से 5,000 महिलाओं को बनाया आत्मनिर्भर

राष्ट्रीय खुंब मेले में बेहतरीन कार्य करने वाले देश के 4 प्रगतिशील उत्पादक सम्मानित, बिहार <mark>की महिला रोज उगातीं हैं 250 किलो मरारूम</mark>

संवाद न्यूज एजेंसी

सोलन। राष्ट्रीय खुंब मेले में बेहतरीन, कार्य करने वाले चार मशरूम उत्पादकों को प्रगतिशील ारूम उत्पादक राष्ट्रीय पुरस्कार

सं सम्मानित किया।
इनमें बिहार को किसान महिला,
कश्मीर, असम, महाराष्ट्र के उत्पादक
शामिल हो। इन्हें खुब मेले में बती,
पुख्यातिय शामिल नोणी विश्व के तुर्व
कुलपति डॉ. विजय सिंह ठाकुर ने
सम्मानित किया है। बिहार की विनिता
ते 5,000 आदिवासी महिलाओं को
आत्मीनर्गर बनाया है।

विनिता ने 2011 से शुरू किया मशरूम का उत्पादन

जिन्यी मिश्रारूम का उत्पादन राष्ट्रीय अवार्ड में बिहार के बांका जिला के गांव दिस्सा की रहने वाली विनिता कुमारी ने मिल्की, बटन और ऑस्ट्रर महारूम का डीएमआर से प्रशिक्षण दिला। इसके बाद आदिवारी क्षेत्रों की 1200 महिलाओं को मशरूम का प्रशिक्षण देकर, 5000 महिलाओं को अपने साथ जोड़ा है वे सभी महिलाएं मशरूम तैयाह करते के साथ इसकी बाद्या करतु पंत्री कर रही है वहीं विनिता अपने फार्म में से रोजाना 250 किलो मशरूम तैयार कर रही हैं।

धान की पराली पर मशरूम तैयार कर रहे फुकन

तथार कर रह पुक्रकन असम के जिला जोहर निवासी बसर्त चिरिए फुकन ने डीएमआर सोलन से 2001 में प्रशिवण लिया था इसके बाद अन वह असम में दिगरी और बटन मसरूप को पारली और खंतों में भत्तरा कर रहे हैं। इसके साथ वह अपने जिल के किसमोन को भी मसरूप उत्पादन के साथ जोड़ रहे हैं। वह उन्हें प्रशिक्षन भी कर रहे हैं। यह मसरूप स्मीक पर भी काम कर रहे हैं। यहां पर महरूप नैवार करने से लागत भी कम पड़ती है।

बटन मशरूम के साथ खाद तैयार कर रहे कश्मीर के लोन

तियार कर रहें करमीर के लीन करमीर के जिला बारामुला के गुलमा निवासी गोहर अली लोन 2017 से मशरूम तैयार कर रहे हैं। डिम्फाआर के पूपा केंद्र से उन्होंने मशरूम कार्य श्रीक्षण किसानों को श्रीश्रेषण दियां और अपना मशरूम फार्म तैयार कर वहाँ उन्हें रोजगार से भी जोड़ा है। बटन मशरूम के साथ खाद भी तैयार कर रहे हैं। 50 किसानों को अपने फार्म के साथ जोड़ा है उन्हें श्रीशेषण देने के सार्थ खाद बनाने को रकनीक भी बता रहे हैं।

फ्रोजन मशरूम समेत खाद्य वस्तुएं तैयार कर रहे बोकरे

महाराष्ट्र के अनिल एन बोकरे ढिंगरी, बटन मशरूम और स्पॉन तैयार कर रहे हैं। बाजार में ढिंगरी के कम दाम मिलने

पर उन्होंने दिगरी मश्ररूम को सुखाकर उसका पाउडर तैयार की सुखाकर उसका पाउडर तैयार कर कई खाझ वस्तुएं तैयार की है। इसके अलावा वह बटन मश्ररूम का अचार, पाटीन पाउडर, फोजन मश्ररूम, प्रोटीन पाउडर, फोजन मश्ररूम, प्रोटीन पाउडर, फोजन स्वार है है। इसके अलावा मश्ररूम के अवशेषों से वर्मी कंपोस्ट तैयार कर रहे हैं। वे 2,000 किसानों को प्रशिक्षण दे चुके हैं।

अमर उजाला

सोमवार, 11 सितंबर 2023

अब 45 दिन में उगेगी कैंसर से लड़ने वाली शिटाके मशरूम

मरारूम अनुसंधान निदेशालय सोलन ने लकड़ी इस औषधीय मरारूम को उगाने में भारत के बुरादे पर जल्द उगाने में पाई सफलता दिनिया भर में पांचवें स्थान पर पहुंचा

ललित कश्यप

सोलन। कैंसर से लड़ने वाली शिटाके मशरूम अब तीन से छह माह में नहीं, बल्कि मात्र 45 दिन में तैयार होगी। खुंब अनुसंधान निदेशालय (डीएमआर) सोलन ने मशरूम को लकड़ी के बुरादे पर जल्द तैयार करने में सफलता हासिल की है। वर्तमान में दुनिया भर में भारत इस औषधीय मशरूम को तैयार करने में पांचवें स्थान पर पहुंच गया है।

इसका अधिकतर इस्तेमाल कॉफी और दवाओं में होता है। स्वाद में बेहद कड़वी होने से दवा में इसका इस्तेमाल कैप्सूल में किया जाता है। सुखी शिटाके मशरूम 5,000 रुपये प्रति किलो मिलती है। उगाने के बाद सीधे दवा कंपनियों को इसे सप्लाई किया जाता है। यह मशरूम कैंसर की दवा का मुख्य स्रोत है। एंटीऑक्सीडेंट होने के कारण यह शरीर की प्रतिरोधक क्षमता बढ़ाती है, जिससे कैंसर

इसे उगाने पर शोध चल्ल रहा था, जिसमें भारत पांचवें स्थान पर है। संवाद

सफलता मिल गई है। सबसे पहले इसे लकड़ी पर तैयार किया जाता था, जिससे यह छह माह बाद तैयार होती थी। इसके बाद विशेषज्ञों ने इस पर शोध कार्य कर इसे लकड़ी के बुरादे पर तैयार किया। इसमें यह

तीन माह में तैयार हुई। अब यह लकड़ी के बुरादे पर ही 16 से 18 डिग्री तापमान पर 45 दिनों में तैयार हो रही है।

इसे सोलन में चल रहे राष्ट्रीय खुंब मेले में रविवार को प्रदर्शित किया गया। उधर, डीएमआर सोलन के निदेशक डॉ. वीपी शर्मा ने बताया कि वैज्ञानिकों की मेहनत फल लाई है। बीज तैयार करने के बाद अच्छा उत्पादन जसी बीमारियों को नियंत्रित करने में मदद होना शुरू हो गुया है। इसका बीज अब मिलतों है। डीएमआर की ओर से शिटाके : देशभर के 32 केट्री में उपलब्ध है। यह मशरूम का अर्ली स्पॉन तैयार करने के बाद मशरूम दुनिया भर में उगई जाती है, जिसमें

प्लास्टिक बैग के साथ केट में भी उगा सकेंगे मशरूम

प्लास्टिक के कम इस्तेमाल और मशरूम उगाने के खर्च को कम करने के लिए डीएमआर में शोध कर रहा है। इसके तहत प्लास्टिक बैग के स्थान पर क्रेट का इस्तेमाल कर बटन और पैडी स्ट्रॉ मशरूम तैयार की है। खुंब मेले के दौरान इसे प्रदर्शित भी किया गया है।

जी-20 सम्मेलन में भी लगाई सात किस्मों की प्रदर्शनी नई दिल्ली में जी-20 शिखर सम्मेलन में मशरूम सिटी ऑफ इंडिया सोलन में स्थित खुंब निदेशालय ने भी हिस्सा लिया। इसमें मशरूम की सात किस्मों को प्रदर्शित किया गया और इसका विदेशी मेहमानों ने जायजा लेकर इसकी जानकारी भी हासिल की। दिल्ली में गेनोडरमा, शिटाके, कोर्डिसेप्स, साइजोफेल्म हीरेशियम मशरूम की किस्मों की प्रदर्शनी लगाई गई थी।

चार साल में तीन गुना बढ़ा उत्पादन

खुंब अनुसंधान निदेशालय चंबाघाट में राष्ट्रीय मशरूम मेले में दी जानकारी

संवाद न्यूज एजेंसी

सोलन। देश में पिछले चार वर्षों में मशरूम उत्पादन तीन गुणा से ज्यादा बढ़ा है। इनमें बटन, ढींगरी और शिटाके मशरूम आदि शामिल तैयार किया जा रहा है।

इसका खुलासा खुंब अनुसंधान आयोजित एक दिवसीय राष्ट्रीय सिटी ऑफ इंडिया घोषित करने के उपलक्ष्य में हर वर्ष मनाया जाता है। कुलपति डॉ. विजय सिंह ठाकुर ने बतौर मुख्यातिथि शिरकत की। ब्रिजेश सिंह विशिष्ट अतिथि के

से अधिक मशुरूम उत्पादक और वैज्ञानिक पहुँचे मेले में

रूप में मौजूद रहे। जबकि हैं। 2019 में 1.29 लाख और अब कार्यक्रम की अध्यक्षता खुंब 4.86 लाख मीट्रिक टन मशरूम निदेशालय के निदेशक डॉ. वीपी शर्मा ने की।

मुख्य अतिथि ने देश के विभिन्न निदेशालय चंबाघाट में रविवार को हिस्सों के लिए मशरूम की प्रजातियां एवं तकनीक विकसित मशरूम मेले के दौरान हुआ है। यह करने के लिए खुंब अनुसंधान मेला सोलन शहर को मशरूम निदेशालय की प्रशंसा की। कहा कि वैज्ञानिकों एवं किसानों के अथक प्रयासों की बजह से ही कुछ वर्षों इस मौके पर नौणी विवि के पूर्व में मशरूम का उत्पादन लगभग तीन गुणा बढ़ गया है। उन्होंने देश के किसानों को इस उभरते हुए वहीं आईसीएआर के निदेशक डॉ. उद्योग को अपनाने का आह्वान किया, जिससे देश से कुपोषण की

समस्या दूर हो सके। मेले में देशभर से करीब 1000 से अधिक किसान, वैज्ञानिक और मशरूम उत्पादकों ने भाग लिया। विशेष अतिथि ने भी अधिकाधिक कृषि अवशेषों का इस्तेमाल .. करके मशरूम उत्पादन को बढ़ाने में सहयोग के लिए किसानों का आह्वान किया।

निदेशालय के निदेशक डॉ. वीपी शर्मा ने सोलन शहर में खुंब उत्पादन की शुरुआत के इतिहास पर चर्चा करते हुए पिछले वर्ष हुए कार्यों पर प्रस्तुति दी। जबकि प्रधान वैज्ञानिक बृज लाल अत्री ने सभी का आभार जताया।

सोमवार, 25 सितंबर 2023

देश भर के उत्पादकों के लिए बड़ी सौगात, खुंब अनुसंघान निदेशालय ने नई किस्म एनबीएस 5 की तैयार

के बाद अब काली नहीं पड़ेगी बटन मशरूम

सोलन। देशभर में सबसे अधिक उगाई जाने वाली बटन मशरूम अब लोगों को अच्छी गुणवत्ता और

दुधिया रंग के साथ मिलेगी। तुड़ान के बाद बटन मशरूम काली नहीं पड़ेगी। इसकी शेल्फ लाइफ अधिक होगी।

खुंब अनुसंधान निदेशालय सोलन के वैज्ञानिकों ने बटन मशरूम की एक नई किस्म एनबीएस-5 तैयार की है, जिसकी प्रदर्शनी हाल ही में क्योंकि तुड़ान के बाद यह काली पड़ आयोजित राष्ट्रीय खुंब मेले और जी- जाती हैं। नई एनबीएस-5 किस्म दो करेगी। इसलिए यह किस्म देशभर के 20 सम्मेलन में भी लगाई गई थी। से तीन दिन तक खराब नहीं होगी। उत्पादकों के द्विए सीगात है। खुंब

रवावार

जानकारी के अनुसार देश में बटन मशरूम सबसे ज्यादा लोकप्रिय

है, जो भारत के कुल मशरूम उत्पादन में करीब 70 प्रतिशत योगदान देता है। इन किस्मों को तोड़ने के बाद तुरंत बेचना पड़ता है, दो से तीन दिन नहीं होगी खराब, अभी खाद डालते मशरूम को हाथ भी लग जाए तो हो जाती है खराब

देशभर में 70 प्रतिशत होता है मशरूम का उत्पादन अभी तोड़ने के तूरंत बाद करनी पड़ती है बिक्री

है, जितनां दूसरी मशरूम को उगाने विभिन्न जलवायु परिस्थितियों में तीन में आता है।

खाद डालते समय इस मशरूम को हाथ भी लग जाए तो दूसरी किस्मों की तरह यह खराब नहीं होगी। एनबीएस-5 किस्म सफेद रंग के कारण ग्राहकों को आकर्षित करेगी। इसलिए यह किस्म देशभर के

यह मशरूम उसी खर्च में तैयार होती निदेशालय ने इस मशरूम का वर्षों तक परीक्षण किया है। अधिकांश बटन मशरूम की खेती पर्यावरणीय कारकों और मशरूम की उपज गुणवत्ता से प्रभावित होती है, लेकिन इस किस्म का विभिन्न स्थानों पर परीक्षण किया गया हैं। अच्छी गुणवत्ता और रंग के कारण बाजार में इसकी मांग बढ़ेगी। संवाद

मश्रारूम में लगने वाला भुरड़ रोग इस किस्म में नहीं लगता

इस किस्म की मुख्य विशेषताएं ये हैं कि यह मशरूम बिल्कुल सफेद रंग की होती है। मशरूम में लगने वाला अमूमन भुरड़ रोग इस किस्म को नहीं लगता इसमें दूसरी किस्मों की तुलना में ज्यादा शुष्क तत्व पाया जाता है। इसके छिलके बहुत पतले और देरी से खुलते हैं। इससे इसकी गुणवत्ता खराब नहीं होती है।

- डॉ. वीपी शर्मा, खुंब अनुसंधान एवं निदेशालय,

(19)

मंगलवार १० अक्टूबर, २०२३ (

भास्कर खास• डीएमआर सोलन के वैज्ञानिकों ने तैयार की नई मशरूम, लोगों को दे रहे उगाने का <mark>प्रशिक्षण</mark>

याद्दाश्त बढ़ाने, नर्वस सिस्टम को मजबूत करने और कैंसर के लिए लाभदायक है मंकी हेड मशरूम, उगाने में भी आसान

पवन ठाकुर | सोलन मंकी हेड यानी हेरिशियम मशरूम

लोगों के नर्वस सिस्टम को मजबूत

करती है। साथ ही याददाश्त बढ़ाने

और कैंसर जैसी बीमारियों में भी

लाभदायक है। डायरेक्टोरेट ऑफ

मशरूम रिसर्च (डीएमआर) इस

नई किस्म की मशरूम को उगाने के विधि लोगों को सिखाने का काम

अभी इस किस्म की मशक्तम

की खेती शुरुआती दौर में है, लेकिन वैज्ञानिकों का मानना है

35 से 40 दिन में तैयार हो जाती है ये प्रजाति

डीएमआर के वैज्ञानिक डॉ. सतीश शर्मा ने कहा कि हिरेशियम प्रजाति कि मशरूम औषधीय गुणों से भरपूर है। इसमें बीटागम, रुपात निर्माण नावाया चुणा संस्कृत है इस्ते पाटाना, ज्वाना, साईकेन, हरिशमान तत्व पाया जाता है जो दिमाग की नसों के लिए फायदेमंद है। इस मशरूम का सेवन करने से इंसान के सोचने की शक्ति बढ़ती है और इसमें विटामिन-डी भी भरपूर मात्रा में पाई जाती है जो हड्डियों को मजबूत बनाती है। पहले यह मशरूम सिर्फ लकड़ी के बुरादे पर उगाई जाती थी, अब इसे खाद में भी तैयार किया जाने लगा है। इसे 18 से

🕏 20 डिग्री तापमान में रखा जाता है। थोड़ी सी ग्रोथ के बाद इसे 23 से 25 डिग्री तापमान में रखा जाता है जहां ये प्रजाति 35 से 40 दिन में तैयार हो जाती है। इसमें लैटीनैन नामक पॉलीसेकराइड पाया जाता है जो कैंसर, अल्सर और आंत की बीमारियों में भी लड़ने में सहायक है। इसमें पाया जाने बाला नर्व ग्रोथ फैक्टर नर्वस सिस्टम जबकि सेलेनियम लीवर को मजबूत करता है।

कि आने वाले दिनों में इसकी इस किस्म की मशरूम उगाने में की किस्म को डीएमआर सोलन वैज्ञानिकों के अनुसार इसमें आयरन खेती बढ़ेगी। मशरूम उत्पादक रूचि दिखा रहे हैं। इस मशरूम के ही वैज्ञानिकों ने तैयार किया है। और तत्व भरपूर मात्रा में रहते हैं।

मशरूम अब आपकी बंद पड़ी दिमाग की नसें खोलने के साथ-साथ याददाश्त भी बढ़ाएगी।

हिरेशियम मशरूम की बारे में लोग जानकारी प्राप्त करके इसकी खेती कर आजीविका का साधन बना रहे हैं। उत्तरी भारत के लोग ज्यादातर इस मशरूम में रुचि दिखा रहे हैं। ग्रामीण महिलाएं और बेरोजगार युवा मशरूम की इस प्रजाति की खेती करके घर बैठे अच्छी आजीविका कमा सकते हैं। मशरूम की इस प्रजाति की खेती कम लागत से होती है। इस मशरूम की कीमत 150 से 250 रुपए प्रतिकिली रहती है।

कर रहा है।

मेले में आकर्षण का केंद्र रही एक लाख रुपये वाली खुंब

खुंब मेले में कोर्डीसीपस समेत अन्य मरारूम की लगी प्रदर्शनी

संवाद न्यूज एजेंसी

सोलन। खुंब मेले के दौरान मशरूम सहित इससे निर्मित कई खाद्य वस्तुओं की प्रदर्शनी लगाई गई। इस दौरान एक लाख रुपये प्रति किलो बिकने वाली कोर्डीसीपस मीलिट्रनस मशरूम आकर्षण का केंद्र रहा। जहां पर डीएमआर के विशेषज्ञों से इस मशरूम की खासियत जानने के लिए लोगों की भीड़ लगी.

कोर्डीसीपस औषधीय मशरूम है। इसे तैयार करने के बाद सखाकर बेचा जाता है। हालांकि हिमाचल में इसकी बहुत कम बाजार है। राष्ट्रीय और अंतर राष्ट्रीय बाजार में इसकी काफी मांग रहती है। इसके अलावा प्रदर्शनी में गेनोंडोरमा, हेरेशियम, शिटाके, ऑस्टर मशरूम सहित मशरूम से तैयार खाद्य वस्तुएं शामिल रहीं। इसमें आचार, मशरूम केक, मशरूम कैंडी, मश्ररूम ज्वार बिस्कुट समेत अन्य मशरूम के मूल्य संवर्धित उत्पाद शामिल रहे। इस मौके पर पंजाब, उत्तर प्रदेश; उत्तराखंड, छतीसगढ़, तमिलनाडू, हरियाणा, दिल्ली, महाराष्ट्र, हिमाचल प्रदेश, मध्य प्रदेश, उड़ीसा, गुजरात, चंडीगढ़, जम्मू व काश्मीर, मणिपुर सहित अन्य राज्यों के किसानों ने भाग लिया। खुंब निदेशक डॉ. वीपी शर्मा, डॉ. बीएल अत्रि, डॉ. अनिल ने कक्षों एवं एससीएसपी के तहत बने कम लागत में बने मशरूम घर का भ्रमण करवाया गया। उत्पादकों ने भी रखीं अपनी समस्याएं : मंशरूम की समुद्ध में लगाना चाहिए, ताकि गोरखपुर यूपी से आए ग्रोवर संजय कुमार कंपनी की माँग पूरी हो सहें।

प्रदर्शनी में रखी एक लाख रुपये वाली मशरूम। संबद

प्रजापित और दिनेश प्रसाद भट्ट ने बताया कि उन्होंने डीएमआर से ढिंगरी मशरूम का प्रौशक्षण लिया है। मशरूम का उत्पादन सही हो रहा है, लेकिन इसमें मक्खी लग रही है। जिससे फसल खराब हो रही है। इस बारे में उन्होंने डीएमआर के विशेषज्ञ डॉ. अनिल से बात की, जिस पर उन्होंने किसानों की समस्या का समाधान

कीड़ा-जड़ी की कैसे करें ब्रिकी : अलीगढ़ से आए लोकेश ने बताया कि उन्होंने कीड़ा जड़ी मशरूम लगाई है। लेकिन मशरूम लगाने के बाद अब इसका बाजार मिलना बहुत मुश्किल हो रहा है। उन्होंने छोटे स्तर पर यह मशरूम लगाई है। विशेषज्ञों ने बताया कि कीडा-जडी मशरूम सबसे महंगी मशरूम है। इसका कारोबार बड़े स्तर पर किया जाता है। इस

जंगली मरारुम की 300 किस्मों पर शोध शुरू, कौन खाने लायक लगेगा पता

सोलन। हिमाचल में कौन सी जंगली मशरूम खाने लायंक है और कौन सी विषैली, इसके बारे में अब जल्द पता चलेगा। प्रदेश में जंगली मशरूम की तीन हजार किस्में हैं, इनमें से 300 पर शोध किया जा रहा है।

सोलन के चंबाघाट स्थित खुंब अनुसंधान निदेशालय में पहली बार बड़ी संख्या में जंगली मशरूम शोध किया जा रहा है। दो से तीन महीने में शोध कार्य पूरा हो जाएगा। इसके बाद निदेशालय विषैली और खाने लायक मशरूम की जानकारी सार्वजनिक करेगा। हिमाचल में जंगली मशरूम खाने से हर साल कोई न कोई जान गंवा रहा है। इसको देखते हुए ही खुंब निदेशालय जंगली मशरूम पर शोध कर रहा है, ताकि विषेली मशरूम से

किसी की जान न जाए। प्रदेश में जंगली मशरूम का सबसे अधिक सेवन कुल्लू, शिमला, मंडी, चंबा, किनोर और सिरमीर में किया जाता है। विश्वभर में मशरूम की 14 जाता है। विश्वनार में नरारून पा। 14 हजार से अधिक प्रजातियां हैं। इनमें से तीन हजार हिमाचल में पाई जाती हैं। खाने लायक मशरूम की बात करें तो इनमें से कम ही हैं। लगभग 30 प्रतिशत ऐसी प्रजातियां हैं जो जहरीली

तरह की जंगली मरारुम पाई जाती हैं हिमाचल में

सबसे जहरीली है अमानिटा मशरूम

अमानिटा मश्रीरूप्स अन तक के जोश में पता चला है कि अमानिटा प्रजाति की मशरूस्स अधिक जहरीती होती है। इस मगरूम को खाने में 24 घंटे में व्यवत्वत को मौत वो असती है। जबकि अन्य जहरीती मशरूम से पट वर्ष दस्त, उन्हीं, पेट में एंटन और बार्ग्या दस्त की समस्या होती है। किंग बोलीट, पहुन मश्रूस, पुल्की मशरूम, सीम पश्रूस, मुक्तम, सर्वात, मीम प्रमुख्य, मरूप्स, सर्वात, माइस मन्त्रसं, पुल्की मशरूम, माइस मन्त्रसं, जीक खाई जाने बाले जंगली मशरूम हैं।

30% खाने योग्य निकली थीं। खुंब अनुसंधान निदेशालय के निदेशक डॉ. वीपी शर्मा ने बताया कि जंगली इनमें से कम हा है। लगभग 30 बाग श्रमा/न बेवाया कि जनती प्रतिप्रत ऐसी प्रजातियाँ हैं जो ज़हरिती होती हैं। खुंब निरशालय ने वर्ष 2021 में जाती मशहरूम की 500 प्रजातियाँ जो खोज की थी। इसमें से खाने से बचना चाहिए। संजद

(12)

अमरउजाला मंगलवार, ३१ अक्तूबर २०२३

Annexure-I Personnel of ICAR-DMR, Solan

अनुबंध – । आईसीएआर–डीएमआर, सोलन के कार्मिक

CADRE STRENGTH OF SCIENTIFIC STAFF OF ICAR-DMR, SOLAN

भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन के वैज्ञानिक कर्मचारियों का कैडर

s.	Name of the discipline	Pay band and Level	Sanctioned	S	Scientist		Sr.	Sr. Scientist		Princip	Principal Scientist	tist	Total		
No.			strength	In position	Vacant	Total	In position	Vacant	Total	In position	Vacant Total	Total	In position	Vacant	Total
1	Agricultural Biotechnology	57700-182400 (L-10) 79800-211500 (L-12)	1 Sr. Scientist 1 Scientist	1	1	1		1	1	1	1	1	1	1	2
2	Agricultural Economics	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
3	Agricultural Entomology	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	:	-	-	-	1	-	1
4	Agril.Extension	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
5	Agrl.Engg.(ASPE)	57700-182400 (L-10)	1 Scientist	1	-	1	-	1	-	1	-		1	1	1
9	Economic botany & PGR	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
7	Food Technology	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
∞	Fruit Science	144200-218200 (L-14)	1 Pri. Scientist	-			-	1	1	1		1	1	-	1
6	Genetics & Plant breeding	57700-182400 (L-10)	2 Scientists	2	1	2	1	1	1	1		1	2	1	2
10	Plant Biochemistry	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
6	Plant Pathology	57700-182400 (L-10) 79800-211500 (L-12) 144200-218200 (L-14)	1 Scientist 3 Sr. Scientist 1 Pri. Scientist	1	1	2	1	1	E	1	1	1	2	3	5
10	Soil Science	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
	G.Total		18 posts	8	4	12	1	3	4	1	1	2	10	8	18

CADRE STRENGTH OF TECHNICAL, ADMINISTRATIVE AND SUPPORTING CATEGORY

तकनीकी, प्रशासनिक और सहायक संवर्ग का कैडर

S.No.	Designation	Pay band and Level	Sanctioned posts	In position posts	Vacant posts	Total
TECH	NICAL POSTS					
1	T-3	29200-92300 (L-5)	4	4	-	4
2	T-1	21700-69100 (L-3)	7	5	2	7
	GRAND TOTAL		11	9	2	11
ADMI	NISTRATIVE POSTS					
1	Administrative Officer	56100-177500 (L-10)	1	-	1	1
2	Fin. & A/Cs Officer	56100-177500 (L-10)	1	1	-	1
3	Private Secretary	44900-142400 (L-7)	1	1	-	1
4	Asstt.Admn.Officer	44900-142400 (L-7)	1	1	-	1
5	Assistant	35400-112400 (L-6)	4	4	-	4
6	Personal Assistant	35400-112400 (L-6)	2	1	1	2
7	UDC	25500-81100 (L-4)	2	2	-	2
8	LDC	19900-63200 (L-2)	2	2	-	2
	GRAND TOTAL		14	12	2	14
SKILL	ED SUPPORT STAFF					
	Skilled Support Staff	18000-56900 (L-1)	5	4	1	5

Staff in position at ICAR-DMR, Solan (H.P.) as on 31.12.2023

31.12.2023 तक आईसीएआर-डीएमआर, सोलन (एच.पी.) में कार्यरत कर्मचारी

Name	Designation	Email ID Official
Scientific staff		
Dr V.P. Sharma	Director	Ved.Sharma@icar.gov.in
Dr B.L.Attri	Principal Scientist	BL.Attri@icar.gov.in
Dr Satish Kumar	Principal Scientist	Satish.Kumar6@icar.gov.in
Dr Shwet Kamal	Principal Scientist	Shwet.Kamal@icar.gov.in
Dr Anil Kumar	Senior Scientist	Anil.Kumar14@icar.gov.in
Dr Anuradha Srivastava	Scientist	Anuradha.Srivastava@icar. gov.in
Dr Reetu	Scientist (w.e.f 24.03.2023)	reetu@icar.gov.in
Dr Manoj Nath	Scientist	manoj.nath@icar.gov.in
Dr Rakesh Kumar Bairwa	Scientist (upto 3.03.2023)	rakesh.bairwa@icar.gov.in
Dr Anarase Dattatray Arjun	Scientist	anarase.arjun@icar.gov.in

Ms Shweta Bijla	Scientist	shweta.bijla@icar.gov.in
Dr Jagdish Goyanka	Scientist (w.e.f.21.07.2023)	Jagdish.goyanka@icar.gov.in
Administrative staff		
Sh. Tarun Kumar (upto 31.07.2023)	AO	tarun.kumar@icar.gov.in
Dr Ashish Dhangar	FAO	Ashish.dhangar@icar.gov.in
Sh. T.D. Sharma	AAO	Tulsi.Sharma@icar.gov.in
Sh. Bhim Singh	Asstt.	Bhim.Singh1@icar.gov.in
Smt. Sunila Thakur	Private Secretary	Sunila.Thakur@.icar.gov.in
Sh. Deep Kumar Thakur	PA	Deep.Thakur@icar.gov.in
Sh. N.P. Negi	Asstt.	Nawang.Negi@icar.gov.in
Dr. Rajneesh Jaryal	Asstt.	Rajneesh.Jaryal@icar.gov.in
Sh. Satinder Kumar Thakur	Asstt.	Satinder.Thakur@icar.gov.in
Sh. Dharam Dass	UDC	Dharam.Dass@icar.gov.in
Smt. Shashi Poonam	UDC	Shashi.Poonam@icar.gov.in
Sh. Roshan Negi	LDC	Roshan.Negi@icar.gov.in
Sh. Sanjeev Sharma	LDC	Sanjeev.Sharma2@icar.gov.in
Technical staff		
Dr Sushil Kumar	СТО	Sushil.Kumar@icar.gov.in
Smt. Reeta Bhatia	СТО	Reeta.Bhatia@icar.gov.in
Smt. Shailja Verma	СТО	Shailja.Verma@icar.gov.in
Sh. Sunil Verma	ACTO	Sunil.Verma@icar.gov.in
Sh. Gian Chand (upto 31.07.2023)	ТО	Gian.Chand@icar.gov.in
Sh. Deepak Sharma	ТО	Deepak.Sharma1@icar.gov.in
Sh. Ram Lal	ТО	ram.lal@icar.gov.in
Sh. Ram Swaroop (upto 31.03.2023)	ТО	ram.saroop@icar.gov.in
Sh. Jeet Ram	ТО	Jeet.Ram@icar.gov.in
Sh. Guler Singh Rana	ТО	Guler.Rana@icar.gov.in
Sh. Raj Kumar	Senior Technician	Raj.Kumar8@icar.gov.in
Skilled supporting staffa		
Sh. Naresh Kumar	SSS	naresh.kumar16@icar.gov.in
Smt. Meera Devi	SSS	meera.devi1@icar.gov.in
Sh. Ajeet Kumar	SSS	Ajeet.kumar@icar.gov.in
Sh. Vinay Sharma	SSS	vinay.sharma@icar.gov.in

Annexure-II Staff News अनुबंध — II स्टाफ समाचार

PROMOTION

1. Smt Shailja Verma, ACTO promoted as Chief Technical Officer w.e.f. 28.08.2021.

MACP

1. Sh. Satinder Thakur, Assistant granted Modified Assured Career Progression (MACP) Scheme in the next higher level– 7 w.e.f 28.08.2023.

IOINING

- 1. Dr. Reetu, Scientist (Plant Biochemistry) joined at this Directorate w.e.f. 24.03.2023 (FN)
- 2. Dr. Jagdish Goyanka, Scientist (Economic Botany & Pl. Genetic Resources) joined at this Directorate w.e.f. 21.07.2023 (FN).

TRANSFER

1. Dr. Rakesh Bairwa, Scientist (Genetics & Plant Breeding) transferred from ICAR-DMR, Solan to ICAR-IIWBR Karnal w.e.f. 03.03.2023 (AN)

PROBATION:

- 1. Dr. Anarase Dattatray Arjun, Scientist cleared probation and confirmed w.e.f. 07.01.2022.
- 2. Dr. Shweta Bijla, Scientsit cleared probation and confirmation w.e.f. 04.10.2022.

पदोन्नति

 श्रीमती शैलजा वर्मा, एसीटीओ को 28.08.2021 से मुख्य तकनीकी अधिकारी के रूप में पदोन्नत किया गया।.

एमएसीपी

1. श्री. सतिंदर ठाकुर, सहायक को 28.08.2023 से अगले उच्च स्तर— 7 में संशोधित सुनिश्चित कैरियर प्रगति (एमएसीपी) योजना प्रदान की।

कार्यभार ग्रहण

- 1. डॉ. रीतू, वैज्ञानिक (पादप जैवरसायन) ने इस निदेशालय में 24.03.2023 (पूर्वाह्र) को कार्यभार ग्रहण किया।
- 2. डॉ. जगदीश गोयंका, वैज्ञानिक (आर्थिक वनस्पति विज्ञान एवं पादप अनुवांशिक संसाधन) ने इस निदेशालय में 21.07.2023 (पूर्वाह्र) को कार्यभार ग्रहण किया।

स्थानांतरण

 डॉ. राकेश बैरवा, वैज्ञानिक (अनुवांशिकी एवं पादप प्रजनन) का आईसीएआर—डीएमआर, सोलन से आईसीएआर—आईआईडब्ल्यूबीआर करनाल के लिए 03.03.2023 (अपराह्न) को स्थानांतरण हुआ।

परिवीक्षाः

- डॉ. अनारसे दत्तात्रय अर्जुन, वैज्ञानिक ने परिवीक्षा एवं स्थायीकरण पूर्ण की और दिनांक 07.01.2022 से पुष्टि हुयी।
- डॉ. श्वेता बिजला, वैज्ञानिक ने परिवीक्षा एवं स्थायीकरण पूर्ण की और दिनांक 04.10.2022 से इसकी पुष्टि की गयी।

Annexure-III Awards and Recognitions अनुबंध—III पुरस्कार और मान्यताएँ

Dr B.L.Attri received All India Paramount Achievement Award-2022 for postharvest technology from Society for Human and Nature (SADHNA), Dr Y S Parmar University of Horticulture & Forestry, Nauni, Solan (H.P.). डॉ. बी.एल.अत्री को सोसाइटी फॉर ह्यूमन एंड नेचर (SADHNA), डॉ. वाई.एस. परमार यूनिवर्सिटी ऑफ हॉर्टिकल्चर एंड फॉरेस्ट्री, नौणी, सोलन (हि.प्र.) से पोस्टहार्वेस्ट टेक्नोलॉजी के लिए ऑल इंडिया पैरामाउंट अचीवमेंट अवार्ड—2022 प्राप्त हुआ।

Annexure – IV Financial Statement for the year 2023 (01-01-2023 to 31-12-2023)

अनुबंध — IV वर्ष 2023 के लिए वित्तीय विवरण (01—01—2023 से 31—12—2023)

S.No.	Heads of Accounts	Allocation 2023	Exp. 2023
i	Lands	-	-
ii	Works	110.00	88.60
iii	Equipment	35.00	5.60
iv	Information Technology	3.00	1.57
v	Library	0.90	0.45
vi	Furniture & Fixture	1.00	1.20
vii	Vehicles	-	-
viii	Others (SC-SP Equipments)	-	-
Total Capital	Assets	149.90	97.08
i	Establishment Expenses	661.11	637.73
ii	Establishment Charges	-	-
iii	Wages	-	-
iv	O.T.A	-	-
Total Estt. Ch	arges	661.11	637.73
II	General Revenue	-	-
1	Pension and Other retirement Benefits	83.45	83.45
2	TA domestic/ TA transfer	8.45	6.40
3	Research and Operational expenses	102.02	90.77
4	Administrative expenses	181.55	195.64
5	Misc. Expenses	33.00	32.18
Total Revenue		408.47	408.44
NEH		5.00	4.44
TSP		8.75	8.73
SCSP		43.75	29.73
Grand Total (Capital and Revenue)	1276.98	1186.15

S. No.	Head of Account	Allocation	Expenditure
1	DMR-Budget 2023	1276.98	1186.15
2	AICRP Mushroom	591.80	591.80
3	Revenue Receipt	106.41	106.41

Annexure-V Sale of Mushroom Spawn-2023

अनुबंध — V मशरूम स्पॉन की बिक्री—2023

Revenue (Rs.)	0009	36000	36000	39000	15000	24000	15000	12000	0006	0009	12000	0009	216000
No. of trainees participated in spawn training	2	12	12	13	5	8	5	4	3	2	4	2	72
Revenue (Rs.)	200	1	ı	1000	1000	1	8000	-	2500	1500	3000	-	17500
Mother spawn (bottle)	1	1	1	2	2	1	16	-	5	3	9	-	35
Revenue (Rs.)	228480	414640	511080	158120	226280	404240	432880	102880	457840	315840	188520	276080	3716920
Total quantity (Kg)	2856	5183	6388.5	1976.5	2828.5	5053	5411	1286	5723	3948	2356.5	3451	46461
Hericium	63	40	7	27	1	48	65	17	6	13	19	47	355
Ganoderma	345	121	70	2	35	52	265	-	1	50	3	5	948
Milky Shiitake	28	41	14	20	1	-	100	7	68	26	137	24	486
Milky	-	-	73	87	28	26	54	40	9	-	-	-	1426
Oyster	1515	3909	5433.5	826	1653.5	4865	4737	1142	4942	3448	1878.5	2798	37299.5
Button	905	1072	791	862.5	1112	62	190	80	618	411	319	577	6999.5
Month	Jan. 23	Feb. 23	Mar. 23	Apr. 23	May 23	Jun. 23	Jul. 23	Aug. 23	Sep. 23	Oct. 23	Nov. 23	Dec. 23	Total

भाक्अनुप-खुम्ब अनुसंधान निदेशालय ICAR-DIRECTORATE OF MUSHROOM RESEARCH CHAMBAGHAT, SOLAN - 1732 13 (H.P)