

ANNUAL REPORT वार्षिक प्रतिवेदन 2024

भा.कृ.अनु.प. - खुम्ब अनुसन्धान निदेशालय ICAR-DIRECTORATE OF MUSHROOM RESEARCH CHAMBAGHAT, SOLAN - 1732 13 (H.P)

ANNUAL REPORT वार्षिक प्रतिवेदन 2024

ICAR-DIRECTORATE OF MUSHROOM RESEARCH

Chambaghat, Solan - 173 213 (H.P.), India

भाकृञ्जनुप-श्नुम्ब अनुसंधान निदेशालय चम्बाघाट, शोलन-173 213 (हि. प्र.), भारत

ANNUAL REPORT 2024

वार्षिक प्रतिवेदन 2024

Correct Citation

ICAR-DMR Annual Report 2024, ICAR- Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India.

Published by

Dr. V.P. Sharma Director

Compiled & Edited by

Dr. B.L. Attri, Principal Scientist

Dr. Anuradha Srivastava, Senior Scientist Dr. Anarase Dattatray Arjun, Scientist

Dr. Shweta Bijla, Scientist

Assisted by

Sh. Deepak Sharma (Cover Page Design)

Published

July 2025

Copies printed

20

Contact

Phone: +91-1792 230451 (O), 230131 (R)

Fax: +91-1792 2312017

Email: director.mushroom@icar.gov.in Website: www.dmrsolan.icar.gov.in

Designed and printed by

Yugantar Prakashan (P) Ltd., New Delhi – 110064

Mobile: 09811349619, 09953134595

Email: yugpress01@gmail.com

सही उद्धरण

भाकृअनुप—खु.अनु.नि. वार्षिक प्रतिवेदन 2024, भाकृअनुप—खुम्ब अनुसंधान निदेशालय, चम्बाघाट, सोलन, हिमाचल प्रदेश, भारत

द्वारा प्रकाशित

डॉ. वी.पी. शर्मा निदेशक

द्वारा संकलित एवं सम्पादित

डॉ. बृज लाल अत्री, प्रधान वैज्ञानिक

डॉ. अनुराधा श्रीवास्तव, वरिष्ठ वैज्ञानिक

डॉ. अनारसे दत्तात्रय अर्जून, वैज्ञानिक

डॉ. श्वेता बिजला. वैज्ञानिक

सहायक

श्री दीपक शर्मा (कवर पेज डिज़ाइन)

प्रकाशन

जुलाई 2025

मुद्रित प्रतियां

20

सम्पर्क

फोनः +91–1792 230451 (कार्या.), 230131 (आवास)

फैक्सः +91-1792 2312017

ई—मेलः director.mushroom@icar.gov.in वेबसाइटः www.dmrsolan.icar.gov.in

डिजाइन व मुद्रण

युगान्तर प्रकाशन (प्रा.) लि., नई दिल्ली – 110 064 मोबाईलः 09811349619, 09953134595 ई–मेलः yugpress01@gmail.com

CONTENTS

विषय शूची

	Preface	V		प्रस्तावना	٧
	Executive Summary	vii		कार्यकारी सारांश	vi
1.	ICAR-DMR, Solan – An Introduction	1	1.	खुम्ब अनुसन्धान निदेशालय, सोलन – एक परिचय	1
2.	Research Achivements	5-55	2.	अनुसंधान उपलब्धियां	5-55
	2.1. Mushroom Genetic Resources	5		2.1 खुम्ब अनुवांशिक संसाधन	5
	2.2. Crop Improvement	11		2.2 फसल सुधार	11
	2.3. Crop Production	24		2.3 फसल उत्पादन	24
	2.4. Crop Protection	28		2.4 फसल सुरक्षा	28
	2.5. Postharvest Technology	34		2.5 कटाई उपरांत प्रौद्योगिकी	34
	2.6.Other Research Activities	49		2.6 अन्य अनुसन्धान गतिविधियां	49
3.	Transfer of Technology	56	3.	प्रौद्योगिकी हस्तांतरण	56
4.	AICRP Mushroom Centres	69	4.	अखिल भारतीय समन्वित खुम्ब अनुसन्धान परियोजना कें	द्र 69
5.	List of Publications	71	5.	प्रकाशनों की सूची	71
6.	Approved on-going Research Projects	74	6.	स्वीकृत चल रही अनुसंधान परियोजनायें	74
7.	Consultancy and Advisory Services	76	7.	परामर्श और सलाहकार सेवाएं	76
8.	Committee Meetings	83	8.	समिति की बैठकें	83
9.	Implementation of Official Language	91	9.	राजभाषा का कार्यान्वयन	91
10.	Institutional Activities	98	10.	संस्थागत गतिविधियां	98
11.	Training and Capacity Building	109	11.	प्रशिक्षण और क्षमता निर्माण	109
12.	Distinguished Visitors	110	12.	विशिष्ट आगंतुक	110
13.	ICAR-DMR, Solan in Press	111	13.	प्रेस में खुम्ब अनुसन्धान निदेशालय, सोलन	111
	Annexures	117-123		अनुबंध 1º	17—123
	i. Personnel of ICAR-DMR, Solan	117		i. भा.कृ.अनु.प.—खु.अनु.नि., सोलन के कार्मिक	117
	ii. Staff News	120		ii. कर्मचारी समाचार	120
	iii. Awards and Recognitions	121		iii. पुरस्कार और मान्यताएँ	121
	iv. Financial Statement for 2024	122		iv. वित्तीय वर्ष 2024 के लिए वित्तीय विवरण	122
	v. Sale of Mushroom Spawn and Culture	s 123		v. खुम्ब स्पॉन और कल्चर की बिक्री	123

Preface प्रश्तावना

ICAR-Directorate of Mushroom Research, Solan (H.P.) is playing a pivotal role in the basic and applied research for strengthening Mushroom Science in the country since its inception in 1983. This Directorate has come to the expectations and needs of the stakeholders involved in mushroom cultivation by developing improved mushroom varieties and innovative low cost technologies suitable for different regions of the country. In last five years the

mushroom production of India has increased from 1.55 lakh MT to 3.92 lakh MT because of adoption of new/improved varieties of different mushrooms, low cost location specific technologies and concerted efforts of the growers.

The scientists of the Directorate have collected 260 accessions of different mushrooms from different parts of the country in 2024 which have further enriched the germplasm collection. Directorate is developing trait specific varieties in button, oyster, milky, shiitake and enoki mushrooms. A number of crop management practices have been developed for different mushrooms during the year. The Directorate took advanced trials to grow Morchella under semicontrolled conditions. The production technologies for other high value mushrooms such as Enoki, Monkey head, Codyceps, Reishi and Turkey tail were standardized and refined at the Directorate. The technology for the development of vegan meat analogues was standardized using oyster mushroom. Short shelf life is a main concern in mushrooms. The Directorate is working seriously to extend the shelf life of commonly cultivated mushrooms like button and oyster. In button mushroom, edible coating of gum ghatti and sunflower oil and postharvest spray of potassium metabisulphite and ethylenediamine tetra acetic acid were found to enhance the shelf life. The shelf life of oyster mushroom can be extended upto 25 days in a steeping solution. Exposure of harvested

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हिमाचल प्रदेश) वर्ष 1983 में अपनी स्थापना के बाद से देश में खुम्ब विज्ञान को मजबूत बनाने के लिए बुनियादी और अनुप्रयुक्त अनुसंधान में महत्वपूर्ण भूमिका निभा रहा है। इस निदेशालय ने देश के विभिन्न क्षेत्रों के लिए उपयुक्त उन्नत खुम्ब किस्मों और नवीन कम लागत वाली प्रौद्योगिकियों को विकसित करके खुम्ब की खेती में शामिल हितधारकों की अपेक्षाओं और जरूरतों को पूरा किया है। पिछले पांच वर्षों में भारत का खुम्ब उत्पादन

1.55 लाख मीट्रिक टन से बढ़कर 3.92 लाख मीट्रिक टन हो गया है, जिसका कारण विभिन्न खुम्बों की नई / उन्नत किस्मों को अपनाना, कम लागत वाली स्थान—विशिष्ट प्रौद्योगिकियों और उत्पादकों के ठोस प्रयास हैं।

निदेशालय के वैज्ञानिकों ने वर्ष 2024 में देश के विभिन्न भागों से विभिन्न खुम्बों की 260 प्रजातियां एकत्रित की हैं, जिससे जर्मप्लाज्म संग्रह में और वृद्धि हुई है। निदेशालय बटन, ऑयस्टर, मिल्की, शिटाके और एनोकी खुम्ब में विशेषता विशिष्ट किरमों का विकास कर रहा है। वर्ष के दौरान विभिन्न खुम्बों के लिए अनेक फसल प्रबंधन पद्धतियां विकसित की गई हैं। निदेशालय ने अर्ध-नियंत्रित परिस्थितियों में मोर्चेला उगाने के लिए उन्नत परीक्षण किए। निदेशालय में एनोकी, मंकी हेड, कॉर्डिसेप्स, रीशी और टर्की टेल जैसे अन्य उच्च मूल्य वाले खुम्बों की उत्पादन प्रौद्योगिकियों का मानकीकरण और परिशोधन किया गया। ढींगरी खुम्ब का उपयोग करके शाकाहारी मांस एनालॉग के विकास की प्रौद्योगिकी का मानकीकरण किया गया। खुम्ब में कम भंडारण अवधि चिंता का एक मुख्य विषय है। निदेशालय बटन और ढींगरी जैसे सामान्य रूप से उगाए जाने वाले खुम्बों की भंडारण अवधि बढ़ाने के लिए गंभीरता से काम कर रहा है। बटन खुम्ब में गोंद घट्टी और सूरजमुखी के तेल की खाद्य कोटिंग और पोटाशियम मेटाबाईसल्फाइट तथा एथिलीनडायमाइन टेट्रा एसिटिक एसिड के कटाई के बाद छिड़काव से भंडारण अवधि बढ़ गई। ढींगरी खुम्ब की भंडारण अवधि को एक घोल में भिगोकर 25 दिनों तक बढाया जा सकता

button mushroom to UV light significantly increased the vitamin D content.

During 2024, Directorate organized 66 training programmes (42 on and 24 off-campus) in which 3383 participants from different parts of the country participated. Individual trainings on cultivation of specialty mushroom and spawn production were also organized. Directorate produced more than 66 tonnes of spawn of different mushrooms to cater the demand of the mushroom growers in the country. A number of events like National Science Day, World Environment Day, International Yoga Day, Hindi Pakhwara, World Soil Day, National Kisan Diwas, Swachhata Pakhwara etc. were also organized at ICAR-DMR, Solan. During this period RAC, IRC meetings and AICRP mushroom workshop were organized along with 27th National Mushroom Mela on 10th September.

I am delighted to present the annual report 2024 of ICAR-DMR, Solan and highly thankful to all the staff members for their contribution in research and other developmental activities during 2024. My sincere gratitude to Dr Himanshu Pathak, Secretary (DARE) & DG (ICAR), Dr A.K. Singh, Ex-DDG (HS), Dr S.K. Singh, DDG (HS), Dr V.B. Patel and Dr Sudhakar Pandey, ADGs (Hort.) for their constant support, encouragement and advise in carrying forward the progress of the Directorate. The editorial team deserves special appreciation for their timely compilation, editing and bringing out the bilingual Annual Report.

(V. P. Sharma)

(V.P.Sharma) Director है। कटे हुए बटन खुम्ब को UV प्रकाश में रखने से विटामिन डी की मात्रा में उल्लेखनीय वृद्धि हुई।

वर्ष 2024 के दौरान निदेशालय ने 65 प्रशिक्षण कार्यक्रम (42 ऑन—कैंपस तथा 23 ऑफ—कैंपस) आयोजित किए, जिनमें देश के विभिन्न भागों से 3383 प्रतिभागियों ने भाग लिया। विशेष खुम्ब की खेती तथा स्पॉन उत्पादन पर व्यक्तिगत प्रशिक्षण भी आयोजित किए गए। निदेशालय ने देश में खुम्ब उत्पादकों की मांग को पूरा करने के लिए विभिन्न खुम्ब के 66 टन से अधिक स्पॉन का उत्पादन किया। भाकृअनुप—खुम्ब अनुसन्धान निदेशालय, सोलन में राष्ट्रीय विज्ञान दिवस, विश्व पर्यावरण दिवस, अंतर्राष्ट्रीय योग दिवस, हिंदी पखवाड़ा, विश्व मृदा दिवस, राष्ट्रीय किसान दिवस, स्वच्छता पखवाड़ा आदि जैसे कई कार्यक्रम भी आयोजित किए गए। इस अवधि के दौरान 10 सितंबर को 27वें राष्ट्रीय खुम्ब मेले के साथ—साथ आरएसी, आईआरसी बैठकें तथा एआईसीआरपी खुम्ब कार्यशाला का आयोजन किया गया।

मुझे भाकृअनुप—खुम्ब अनुसन्धान निदेशालय, सोलन की वार्षिक रिपोर्ट 2024 प्रस्तुत करते हुए बहुत खुशी हो रही है और 2024 के दौरान अनुसंधान और अन्य विकासात्मक गतिविधियों में उनके योगदान के लिए सभी कर्मचारियों का बहुत—बहुत धन्यवाद। निदेशालय की प्रगति को आगे बढ़ाने में उनके निरंतर समर्थन, प्रोत्साहन और सलाह के लिए डॉ. हिमांशु पाठक, सचिव (डेयर) और महानिदेशक (भाकृअनुप), डॉ. ए.के. सिंह, पूर्व डीडीजी (बागवानी), डॉ. एस.के. सिंह, डीडीजी (बागवानी विज्ञानं), डॉ. वी.बी. पटेल और डॉ. सुधाकर पांडे, एडीजी (बागवानी विज्ञानं) का मैं तहे दिल से आभार व्यक्त करता हूँ। संपादकीय टीम अपने समय पर संकलन, संपादन और द्विभाषी वार्षिक रिपोर्ट लाने के लिए विशेष प्रशंसा की पात्र है।

manni

(वी.पी. शर्मा) निदेशक

Executive Summary

कार्यकारी सारांश

A significant progress in research, transfer of technology and human resource development was made by ICAR-Directorate of Mushroom Research, Solan (H.P.) during 2024. The major achievements of the Directorate in the area of germplasm conservation, crop improvement, crop production, crop protection, postharvest technology, other research activities and transfer of technology are summarized here:

Germplasm collection

- Fungal expeditions conducted in 2024 resulted in 260 germplasm collections. About 100 of these specimens were identified up to the species level, while 200 were identified to the genus level.
- Some interesting ones are Calvatia cythiformis, Stropharia atroferruginea, Agaricus augustus, Ganoderma lucidum, Clitocybe nuda, Agaricus sp. Cordyceps militaris, Cordyceps sp., Cyclocybe aegeita, Morchella sp. Pure cultures of 11 species including Calvatia cythiformis, Stropharia atroferruginea, Agaricus augustus, Ganoderma lucidum, Clitocybe nuda, Agaricus sp. Cordyceps militaris, Cordyceps sp., Cyclocybe aegerita, Morchella sp. were developed and deposited in the ICAR-Directorate of Mushroom Research culture bank.

Crop improvement

- A total of 15 wild collections of Agaricus germplasm from Maharshtra, Kerala, Himachal Pradesh, Bihar, Punjab, Rajasthan, Kashmir and Tamil Nadu were obtained and identified using ITS rDNA sequences.
- A total of 110 strains of A. bisporus were evaluated for disease resistance against wet bubble disease and a total of six strains showed resistance to the disease. A total 17 SSR markers associated with disease resistance gene in A. bisporus were amplified in 180 strains of A. bisporus.
- A total of 150 strains of A. bisporus have been tested for temperature tolerance under in-vitro conditions at 29 and 33°C with 25°C as control and a total of 18 strains showed good growth at 33°C temperature. A total 02 NBS-LRR regions

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि.प्र.) द्वारा वर्ष 2024 के दौरान अनुसंधान, प्रौद्योगिकी हस्तांतरण और मानव संसाधन विकास में उल्लेखनीय प्रगति की गई है। जर्मप्लाज्म संरक्षण, फसल सुधार, फसल उत्पादन, फसल सुरक्षा, कटाई उपरांत प्रौद्योगिकी, अन्य अनुसंधान गतिविधियों और प्रौद्योगिकी हस्तांतरण के क्षेत्र में निदेशालय की प्रमुख उपलब्धियों का सारांश यहां दिया गया है:

जननद्रव्य संग्रह

- 2024 में किए गए फंगल अभियानों के परिणामस्वरूप 260 जननद्रव्य संग्रह हुए। इनमें से लगभग 100 नमूनों की पहचान प्रजाति स्तर तक की गई, जबिक 200 की पहचान जीनस स्तर तक की गई।
- कुछ दिलचस्प हैं कैल्वेटिया साइथिफॉर्मिस, स्ट्रोफारिया एट्रोफेरुगिनिया, एगेरिकस ऑगस्टस, गैनोडर्मा ल्यूसिडम, किलटोसाइबे न्यूडा, एगेरिकस स्पीशीज, कॉर्डिसेप्स मिलिटेरिस, कॉर्डिसेप्स स्पीशीज, साइक्लोसाइबे एगेटा, मोर्चेला स्पीशीज। कैल्वेटिया साइथिफॉर्मिस, स्ट्रोफारिया एट्रोफेरुगिनिया, एगेरिकस ऑगस्टस, गैनोडर्मा ल्यूसिडम, किलटोसाइबे न्यूडा, एगेरिकस स्पीशीज, कॉर्डिसेप्स मिलिटेरिस, कॉर्डिसेप्स स्पीशीज, साइक्लोसाइबे एगेरिटा, मोर्चेला स्पीशीज सहित 11 प्रजातियों के शुद्ध कल्चरस को विकसित किया गया भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन के कल्चर बैंक में जमा किया गया।

फसल सुधार

- महाराष्ट्र, केरल, हिमाचल प्रदेश, बिहार, पंजाब, राजस्थान, कश्मीर और तिमलनाडु से एगारिकस जर्मप्लाज्म के कुल 15 जंगली संग्रह प्राप्त किए गए और ITS rDN । अनुक्रमों का उपयोग करके उनकी पहचान की गई।
- ए. बाईस्पोरस के कुल 110 उपभेदों का गीले बुलबुले रोग के विरुद्ध रोग प्रतिरोधक क्षमता के लिए मूल्यांकन किया गया और कुल छह उपभेदों ने रोग के प्रति प्रतिरोधक क्षमता दिखाई। ए. बाईस्पोरस में रोग प्रतिरोधक जीन से जुड़े कुल 17 एसएसआर मार्करों को ए. बाईस्पोरस के 180 उपभेदों में प्रवर्धित किया गया।
- ए. बाईस्पोरस के कुल 150 उपभेदों का तापमान सिहष्णुता के लिए इन विट्रो स्थितियों में 29 और 33 डिग्री सेल्सियस पर परीक्षण किया गया है, जिसमें 25 नियंत्रण के रूप में हैं और कुल 18 उपभेदों ने 33 डिग्री सेल्सियस तापमान पर अच्छी वृद्धि दिखाई है। ए. बाईस्पोरस के 180 उपभेदों में

- associated with temperature tolerance were amplified in 180 strains of *A. bisporus*.
- Out of a total of 456 crosses developed, a total of 142 crosses proved to be true hybrids in *A. bisporus*. Ten high yielder hybrids 10 hybrids were selected for further trials.
- In Flammulina mushroom, morphological and ITS-based molecular results confirm the species as *F. elastica*. Phylogenetic analyses revealed that *F. elastica* belongs to a distinct clade. The species showed a large cap size and thick pileus with high fruit body weight. SSIs were isolated from these parental strains (DMRO-1204; DMRO-400 and DMRO-1212) and a total of 76 crosses were attempted using different SSIs of the parental strains (DMRO-1204, DMRO-400 & DMRO-1212). Out of 76 crosses, 29 hybrids confirmed through presence of clamp connection.
- In milky mushroom fruiting was observed in the thirty-three strains out of fifty five strains of milky mushroom. Maximum yield was observed in DMRO-299 (71.38%) followed by DMRO-454 (62.67%) strain. While, minimum yield was recorded in the DMRO-687 (9.75%) strain. Average fruit body weight was maximum in the DMRO-298 (67.27 g) followed by DMRO-318 (62.17 g). Further, preliminary sensory analysis of the different strains of the milky mushroom identified low and high pungency/aroma strain.

Crop production

 Based on the studies on physico-chemical parameters, different combinations were prepared so as to achieve the physico-chemical parameters of the combination near to the standard casing soil mixture. In total, 25 combinations were evaluated for yield performance and eight were selected. Maximum yield was obtained in coir pith with 10% lime powder.

Crop protection

 Occurrence of 9 diseases and competitor moulds of mushrooms was recorded at commercial mushroom farms. Wet bubble disease (*Mycogone perniciosa*) was recorded the most commonly occurring disease in mushroom cultivation with 65-70% and cob web (*Cladobotryum* sp) in oyster mushroom with 55-65% incidence.

- तापमान सिहष्णुता से जुड़े कुल 02 एनबीएस—एलआरआर क्षेत्रों को बढाया गया।
- विकसित किए गए कुल 456 क्रॉस में से, कुल 142 क्रॉस ए. बाईस्पोरस में सच्चे संकर साबित हुए। आगे के परीक्षणों के लिए दस उच्च उपज वाले संकर चुने गए।
- फलेमुलिना खुम्ब में, रूपात्मक और आईटीएस—आधारित आणविक परिणाम एफ. इलास्टिका के रूप में प्रजाति की पुष्टि करते हैं। फाइलोजेनेटिक विश्लेषण से पता चला है कि एफ. इलास्टिका एक अलग क्लेड से संबंधित है। इस प्रजाति ने बड़े आकार की टोपी और मोटी पाइलियस तथा उच्च फलन भार दिखाया। इन पैतृक उपभेदों (डीएमआरओ—1204; डीएमआरओ—400 और डीएमआरओ—1212) से एसएसआई को अलग किया गया और पैतृक उपभेदों (डीएमआरओ—1204, डीएमआरओ—400 और डीएमआरओ—1212) के विभिन्न एसएसआई का उपयोग करके कुल 76 क्रॉस का प्रयास किया गया। 76 क्रॉस में से, क्लैंप कनेक्शन की उपस्थिति के माध्यम से 29 संकर की पुष्टि की गई।
- दूधिया खुम्ब में फलन दूधिया खुम्ब के पचपन उपभेदों में से तैंतीस उपभेदों में देखा गया। अधिकतम उपज DMRO—299 (71.38%) में देखी गई, उसके बाद DMRO—454 (62.67%) उपभेद में। जबिक, न्यूनतम उपज DMRO—687 (9.75%) उपभेद में दर्ज की गई। औसत फलन का वजन DMRO—298 (67.27 ग्राम) में अधिकतम था, उसके बाद DMRO—318 (62.17 ग्राम) था। इसके अलावा, दूधिया खुम्ब के विभिन्न उपभेदों के प्रारंभिक संवेदी विश्लेषण ने कम और उच्च तीखेपन/सुगंध उपभेदों की पहचान की।

फसल उत्पादन

• भौतिक—रासायनिक मापदंडों पर किए गए अध्ययनों के आधार पर, विभिन्न संयोजन तैयार किए गए ताकि संयोजन के भौतिक—रासायनिक मापदंडों को मानक आवरण मिट्टी मिश्रण के करीब लाया जा सके। कुल मिलाकर, उपज प्रदर्शन के लिए 25 संयोजनों का मूल्यांकन किया गया और आठ का चयन किया गया। 10% चूना पाउडर के साथ कॉयर पिथ में अधिकतम उपज प्राप्त की गई।

फसल सुरक्षा

व्यावसायिक खुम्ब फार्मों में खुम्ब की 9 बीमारियों और प्रतिस्पर्धी फफूंदों की उपस्थिति दर्ज की गई। खुम्ब की खेती में सबसे आम बीमारी वेट बबल डिजीज (माइकोगोन पर्निसियोसा) 65-70% और ऑयस्टर खुम्ब में कोब वेब (क्लैडोबोट्रियम एसपी) 55-65% घटना के साथ दर्ज की गई।

- In *Pleurotus ostreatus* and *P. ostreatus* var Florida virus like symptoms including young fruit bodies with long stipe and funnel shaped or morning glory shaped basiodiocarps were recorded 4 samples. Virus suspected samples showed that suspected cultures registered slow diametric mycelial growth (40.85 to 43.75 mm) with yellow discoloration as compared to healthy samples (61.88 mm) after 7 days of incubation.
- Pseudomonas aeruginosa B22 identified effective against M. permiciosa (wet bubble disease) under in-vitro conditions. Bacillus proteolyticus B15 and Pseudomonas putida B16 found effective against Cladobotryum sp showed >90% growth inhibition. However, none of the isolates found effective against Trichoderma sp.

Postharvest technology

- For development of vegan meat analogues, 14 strains of 8 mushrooms were screened on solid and liquid media. Out of different strains, *Pleurotus ostreatus* var. Florida was selected on the basis of mycelial biomass. The selected strain was further grown on different substrates like wheat straw, sawdust, soybean powder, brown rice and wheat brawn. Out of different substrates wheat straw+soybean powder showed fastest linear growth of 8.6cm/7days.
- Through response surface methodology (RSM) pH, temperature and edible media were optimized for the selected strain of mushroom for vegan meat production. Out of 25 combinations, soybean broth with pH 6.0 and temperature 30°C was found most suitable for the growth of mycelium.
- Out of 13 treatment combinations for development of formulation for vegan meat, treatment 12 and 13 were found best on the basis of sensory evaluation.
- As compared to chicken kebab, fat (%) and antioxidant activity was recorded better in vegan kebab.
- Studies were conducted to evaluate post-harvest treatments for enhancing the shelf life and quality of oyster and button mushrooms. Steeping oyster mushrooms in a solution of common salt, citric acid, acetic acid, and potassium meta-bisulfite (KMS) extended their shelf life to 25 days at room temperature.

- प्लुरोटस ऑस्ट्रेटस और पी. ऑस्ट्रेटस वर फ्लोरिडा वायरस जैसे लक्षण जिनमें लंबे डंठल और फनल के आकार या मॉर्निंग ग्लोरी के आकार के बेसियोडियोकार्प्स के साथ युवा फलन शामिल हैं, 4 नमूनों में दर्ज किए गए। वायरस संदिग्ध नमूनों ने दिखाया कि संदिग्ध कल्वर ने 7 दिनों के ऊष्मायन के बाद स्वस्थ नमूनों (61.88 मिमी) की तुलना में धीमी डायमीटरिक माइसेलियल वृद्धि (40.85 से 43.75 मिमी) पीले रंग के मलिनकिरण के साथ दर्ज की।
- स्यूडोमोनास एरुगिनोसा बी22 को इन—विट्रो स्थितियों के तहत एम. पर्मिसियोसा (गीले बुलबुले की बीमारी) के खिलाफ प्रभावी पाया गया। बैसिलस प्रोटियोलिटिकस बी15 और स्यूडोमोनास पुटिडा बी16 क्लैडोबोट्रियम प्रजाति के खिलाफ प्रभावी पाए गए और 90% से अधिक वृद्धि अवरोध दिखाया। हालांकि, कोई भी आइसोलेट ट्राइकोडमी प्रजाति के खिलाफ प्रभावी नहीं पाया गया।

कटाई उपरांत प्रौद्योगिकी

- शाकाहारी मांस के अनुरूपों के विकास के लिए, 8 मशरूमों के 14 उपभेदों को ठोस और तरल मीडिया पर परखा गया। विभिन्न उपभेदों में से, प्लुरोटस ऑस्ट्रेटस वर. फ्लोरिडा को माइसेलियम बायोमास के आधार पर चुना गया। चयनित उपभेद को आगे विभिन्न सब्सट्रेट जैसे गेहूं के भूसे, चूरा, सोयाबीन पाउडर, ब्राउन राइस और गेहूं की चोकर पर उगाया गया। विभिन्न सब्सट्रेट में से गेहूं के भूसे+सोयाबीन पाउडर ने 8.6 सेमी / 7 दिनों की तेज रैखिक वृद्धि दिखाई।
- प्रतिक्रिया सतह पद्धित (RSM) के माध्यम से शाकाहारी मांस उत्पादन के लिए खुम्ब के चयनित उपभेद के लिए पीएच, तापमान और खाद्य मीडिया को अनुकूलित किया गया। 25 संयोजनों में से, पीएच 6.0 और तापमान 30°C वाला सोयाबीन शोरबा माइसेलियम की वृद्धि के लिए सबसे उपयुक्त पाया गया।
- शाकाहारी मांस के लिए फॉर्मूलेशन के विकास के लिए 13 उपचार संयोजनों में से, संवेदी मूल्यांकन के आधार पर उपचार 12 और 13 सर्वश्रेष्ठ पाए गए।
- चिकन कबाब की तुलना में, शाकाहारी कबाब में वसा (%)
 और एंटी—ऑक्सीडेंट गतिविधि बेहतर दर्ज की गई।
- ढींगरी और बटन खुम्ब की भण्डारण अवधि और गुणवत्ता को बढ़ाने के लिए कटाई के बाद के उपचारों का मूल्यांकन करने के लिए अध्ययन किए गए। ढींगरी खुम्ब को साधारण नमक, साइट्रिक एसिड, एसिटिक एसिड और पोटेशियम मेटा—बाईसल्फाइट (केएमएस) के घोल में भिगोने से कमरे के तापमान पर उनकी शेल्फ लाइफ 25 दिनों तक बढ़ गई।

- Edible coatings, particularly gum ghatti and sunflower oil, effectively preserved button mushrooms for six days at 4°C. Post-harvest sprays of KMS, EDTA, and electrolyzed water significantly reduced decay, while UV-C treatment (30 minutes) improved firmness and color retention. These findings highlight effective strategies for postharvest mushroom preservation.
- A study was conducted to standardize protocols for accurately estimating vitamin D2 in mushrooms by comparing two extraction methods: (Methanol + Dichloromethane) and (Choline Chloride + Glycerol). The choline chloride + glycerol method, with hot water and n-hexane purification, was found to be more accurate and reliable, and all subsequent research was based on this approach.
- UVC exposure led to whiteness loss of white button mushrooms, but mushrooms placed closer to the UV lamp (20 cm) retained more of their original color. Vitamin D2 content in white button mushroom, increased significantly with exposure time, reaching 2.29 times higher after 90 minutes of UVC 30W treatment.
- Oyster mushrooms were also tested for vitamin D2 enhancement under two UVC treatments. In T1, UVC 15W (1 lamp) for 1 hour increased vitamin D2 from 17.51 μg/g to 46.99 μg/g and in T2, UVC 30W (2 lamps) for 1 hour increased vitamin D2 to 58.47 μg/g.
- Total polysaccharies, phenols and flavonoids were estimated in *Trametes*, *Hericium* and *Cordyceps*. *In-vitro* antioxidant assay was done in these mushrooms using DPPH free radical scavenging activity. An eco-friendly and non-toxic silver nanoparticles (AgNPs) were synthesized using aqueous extract of *Trametes versicolor*.

Other research activities

- The economic impact of NBS 5 variety of white button mushroom was studied. Its share is declining significantly and is merely 1.7% (2023) showing the stagnation in technology adoption.
- In terms of area, out of total 600 ha of total button mushroom area in the country, NBS 5 variety covered around 2.8% of the area in 2023.

- खाद्य कोटिंग्स, विशेष रूप से गोंद घट्टी और सूरजमुखी तेल, ने बटन खुम्ब को 4 डिग्री सेल्सियस पर छह दिनों तक प्रभावी रूप से संरक्षित किया। केएमएस, ईडीटीए और इलेक्ट्रोलाइज्ड पानी के कटाई के बाद के छिड़काव ने क्षय को काफी कम कर दिया, जबिक यूवी—सी उपचार (30 मिनट) ने दृढ़ता और रंग प्रतिधारण में सुधार किया। ये निष्कर्ष कटाई के बाद खुम्ब के संरक्षण के लिए प्रभावी रणनीतियों पर प्रकाश डालते हैं।
- खुम्ब में विटामिन डी2 का सटीक अनुमान लगाने के लिए प्रोटोकॉल को मानकीकृत करने के लिए दो निष्कर्षण विधियों की तुलना करके एक अध्ययन किया गयाः (मेथनॉल + डाइक्लोरोमेथेन) और (कोलीन क्लोराइड + ग्लिसरॉल)। गर्म पानी और एन—हेक्सेन शुद्धिकरण के साथ कोलीन क्लोराइड ग्लिसरॉल विधि अधिक सटीक और विश्वसनीय पाई गई, और बाद के सभी शोध इसी दृष्टिकोण पर आधारित थे।
- यूवीसी एक्सपोजर के कारण सफेद बटन खुम्ब की सफेदी खत्म हो गई, लेकिन यूवी लेंप (20 सेमी) के करीब रखे गए खुम्ब ने अपने मूल रंग को अधिक बनाए रखा। सफेद बटन खुम्ब में विटामिन डी2 की मात्रा एक्सपोजर समय के साथ काफी बढ़ गई, जो 90 मिनट के यूवीसी 30W उपचार के बाद 2.29 गुना अधिक हो गई।
- ऑयस्टर खुम्ब को दो UVC उपचारों के तहत विटामिन D2 वृद्धि के लिए भी परखा गया। T1 में, 1 घंटे के लिए UVC 15W (1 लैंप) ने विटामिन D2 को 17.51 μg/g से बढ़ाकर 46.99 μg/g कर दिया और T2 में, 1 घंटे के लिए UVC 30W (2 लैंप) ने विटामिन D2 को 58.47 μg/g तक बढ़ा दिया।
- ट्रैमेटेस, हेरिशियम और कॉर्डिसेप्स में कुल पॉलीसेकेराइडस, फिनोल और फ्लेबोनोइड्स का अनुमान लगाया गया। इन खुम्ब में DPPH फ्री रेडिकल स्कैवेंजिंग गतिविधि का उपयोग करके इन—विट्रो एंटीऑक्सीडेंट परख की गई। ट्रैमेटेस वर्सीकलर के जलीय अर्क का उपयोग करके एक पर्यावरण के अनुकूल और गैर—विषाक्त सिल्वर नैनोकणों (AgNPs) को संश्लेषित किया गया।

अन्य अनुसंधान गतिविधियाँ

- सफेद बटन खुम्ब की एनबीएस 5 किस्म के आर्थिक प्रभाव का अध्ययन किया गया। इसकी हिस्सेदारी में उल्लेखनीय कमी आ रही है और यह मात्र 1.7% (2023) रह गई है, जो प्रौद्योगिकी अपनाने में ठहराव को दर्शाता है।
- क्षेत्र के संदर्भ में, देश में कुल 600 हेक्टेयर बटन खुम्ब क्षेत्र में से, एनबीएस 5 किस्म 2023 में लगभग 2.8% क्षेत्र को कवर किया।

- For NBS 5, the Net Present Value (NPV) was Rs. 25.91 crores (2012-2023) with an Internal Rate of Returns (IRR) as 30% and a Benefit Cost Ratio of 41.21 during 2012-23.
- The Producer Surplus was Rs. 17.43 crores and consumer surplus was Rs. 13.41 crores for NBS 5 strain of white button mushroom, generating a total economic surplus of Rs. 30.84 crores in India during 2012-2023.
- Factors influencing the technology adoption among mushroom growers were identified using Linear Probability Model (LPM). Factors such as sex, experience, education, and training are significant determinants of technology adoption among growers.
- In terms of mushroom consumption behaviour analysis among 210 respondents in India, majority (90%) of the respondents consumed mushrooms with average per capita annual consumption of 550 grams.
- Majority (45%) of the respondents consumed mushrooms occasionally, while only 2% consumed daily.
- Majority (51%) of the households spent in between Rs. 100 to Rs 500 per month, 34% of the households spent less than Rs. 100/ month, while only 4% of the households spent more than Rs. 1000 on mushroom consumption in a month. Majority (66%) of the respondents preferred eating mushrooms at home than at a restaurant.
- The most preferred place of purchase was local vegetable markets, followed by supermarkets.
 Fresh mushrooms were the most preferred form of consumption.
- The most preferred way to cook mushrooms was as a vegetable curry, followed by stir-frying and soup.

Transfer of Technology

- During 2024, the Directorate organized 66 training programmes which included 42 on-campus, and 24 off-campus for farmers, farmwomen, unemployed youth and entrepreneurs under various component attended by 3383 participants from different parts of the country.
- Among training programmes, 5 were conducted for farmers under Tribal Sub Plan (TSP), 1 under

- एनबीएस 5 के लिए, शुद्ध वर्तमान मूल्य (एनपीवी) 25.91 करोड़ रुपये (2012—2023) था, जिसमें आंतरिक रिटर्न दर (आईआरआर) 30% और 2012—23 के दौरान लाभ लागत अनुपात 41.21 था।
- सफेद बटन खुम्ब की एनबीएस 5 किस्म के लिए उत्पादक अधिशेष 17.43 करोड़ रुपये और उपभोक्ता अधिशेष 13.41 करोड़ रुपये था, जिससे 2012—2023 के दौरान भारत में 30.84 करोड़ रुपये का आर्थिक अधिशेष हुआ।
- खुम्ब उत्पादकों के बीच प्रौद्योगिकी अपनाने को प्रभावित करने वाले कारकों की पहचान रैखिक संभाव्यता मॉडल (एलपीएम) का उपयोग करके की गई। लिंग, अनुभव, शिक्षा और प्रशिक्षण जैसे कारक उत्पादकों के बीच प्रौद्योगिकी अपनाने के महत्वपूर्ण निर्धारक हैं।
- भारत में 210 उत्तरदाताओं के बीच खुम्ब उपभोग व्यवहार विश्लेषण के संदर्भ में, अधिकांश (90%) उत्तरदाताओं ने खुम्ब का उपभोग किया, जिसका औसत प्रति व्यक्ति वार्षिक उपभोग 550 ग्राम था।
- अधिकांश (45%) उत्तरदाताओं ने कभी—कभी खुम्ब का सेवन किया, जबिक केवल 2% ने प्रतिदिन इसका सेवन किया।
- अधिकांश (51%) परिवारों ने प्रति माह 100 से 500 रुपये के बीच खर्च किया, 34% परिवारों ने 100 रुपये प्रति माह से कम खर्च किया, जबिक केवल 4% परिवारों ने एक महीने में खुम्ब की खपत पर 1000 रुपये से अधिक खर्च किया। अधिकांश (66%) उत्तरदाताओं ने रेस्तरां की तुलना में घर पर खुम्ब खाना पसंद किया।
- खरीद का सबसे पसंदीदा स्थान स्थानीय सब्जी बाजार था, उसके बाद सुपरमार्केट थे। ताजे खुम्ब उपभोग का सबसे पसंदीदा रूप थे।
- खुम्ब पकाने का सबसे पसंदीदा तरीका सब्जी करी के रूप
 में था, उसके बाद हलचल—तलना और सूप था।

प्रौद्योगिकी का हस्तांतरण

- 2024 के दौरान निदेशालय ने 65 प्रशिक्षण कार्यक्रम आयोजित किए, जिनमें विभिन्न घटकों के तहत किसानों, कृषक महिलाओं, बेरोजगार युवाओं और उद्यमियों के लिए 42 ऑन—कैंपस और 23 ऑफ—कैंपस शामिल थे, जिनमें देश के विभिन्न हिस्सों से 3383 प्रतिभागियों ने भाग लिया।
- प्रशिक्षण कार्यक्रमों में, जनजातीय उप योजना (टीएसपी) के तहत किसानों के लिए 5, उत्तर—पूर्वी पहाड़ी (एनईएच) क्षेत्र घटक के तहत 1 और अनुसूचित जाति—उप योजना

North-Eastern Hilly (NEH) region component, and 26 on and off campus training programmes were conducted under Scheduled Caste-Sub Plan (SC-SP) component attended by 98, 11 and 2618 participants respectively.

- During 2024, one training on shiitake mushroom cultivation and 6 trainings on cultivation technology of *Cordyceps militaris* were organized and were attended by two and 55 participants respectively.
- Two training programmes on three months hands on training were organized at ICAR-DMR, Solan during 2024 and were attended by 19 participants from different parts of the country.
- One day National Mushroom Mela was organized on 10th September, 2024 in offline mode chaired by Hon'ble Governor of Himachal Pradesh Sh. Shiv Pratap Shukla along with Dr Rajeshwar Singh Chandel, Hon'able Vice Chancellor, UHF, Nauni, Solan, Dr S.K. Singh, DDG (Hort. Sci.), ICAR, New Delhi and Dr. V. P. Sharma. It was attended by more than 1050 participants. In the Mela, 5 progressive mushroom growers from different parts of the country were felicitated with progressive mushroom grower award.
- Under *Mera Gaon Mera Gaurav* (MGMG) teams of the scientists visited the adopted villages regularly and interacted with 150 farmers on different issues including mushroom cultivation.
- During, 2024, 3 exhibitions were organized by the Directorate on National Science Day, National Mushroom Mela and National Kisan Diwas/ Mushroom Day at the campus.
- ICAR-DMR, Solan provided advisory services through emails, telephones and face-to-face interaction on various aspects of mushroom cultivation, training programmes under different components/schemes and marketing during 2024. The various groups of entrepreneurs, farmers, rural youth, students from Universities/colleges and schools who visited the Directorate were shown all the activities related to mushroom cultivation.

(एससी–एसपी) घटक के तहत 26 ऑन और ऑफ कैंपस प्रशिक्षण कार्यक्रम आयोजित किए गए, जिनमें क्रमशः 98, 11 और 2618 प्रतिभागियों ने भाग लिया।

- 2024 के दौरान, शिटाके खुम्ब की खेती पर एक प्रशिक्षण और कॉर्डिसेप्स मिलिटेरिस की खेती तकनीक पर 6 प्रशिक्षण आयोजित किए गए और इनमें क्रमशः दो और 55 प्रतिभागियों ने भाग लिया।
- 2024 के दौरान आईसीएआर—डीएमआर, सोलन में तीन महीने के व्यावहारिक प्रशिक्षण पर दो प्रशिक्षण कार्यक्रम आयोजित किए गए और इनमें देश के विभिन्न हिस्सों से 19 प्रतिभागियों ने भाग लिया।
- 10 सितंबर, 2024 को एक दिवसीय राष्ट्रीय खुम्ब मेला ऑफलाइन मोड में हिमाचल प्रदेश के माननीय राज्यपाल श्री शिव प्रताप शुक्ला की अध्यक्षता में आयोजित किया गया, जिसमें डॉ राजेश्वर सिंह चंदेल, माननीय कुलपति, यूएचएफ, नौनी, सोलन, डॉ एस के सिंह, डीडीजी (बागवानी विज्ञान), आईसीएआर, नई दिल्ली और डॉ वी पी शर्मा भी शामिल हुए। इसमें 1050 से अधिक प्रतिभागियों ने भाग लिया। मेले में देश के विभिन्न हिस्सों से 5 प्रगतिशील खुम्ब उत्पादकों को प्रगतिशील खुम्ब उत्पादक पुरस्कार से सम्मानित किया गया।
- मेरा गांव मेरा गौरव (एमजीएमजी) के तहत वैज्ञानिकों की टीमों ने नियमित रूप से गोद लिए गए गांवों का दौरा किया और खुम्ब की खेती सहित विभिन्न मुद्दों पर 150 किसानों से बातचीत की।
- 2024 के दौरान, निदेशालय द्वारा राष्ट्रीय विज्ञान दिवस, राष्ट्रीय खुम्ब मेला और राष्ट्रीय किसान दिवस/खुम्ब दिवस पर परिसर में 3 प्रदर्शनियाँ आयोजित की गईं।
- आईसीएआर—डीएमआर, सोलन ने 2024 के दौरान खुम्ब की खेती के विभिन्न पहलुओं, विभिन्न घटकों / योजनाओं के तहत प्रशिक्षण कार्यक्रमों और विपणन पर ईमेल, टेलीफोन और आमने—सामने बातचीत के माध्यम से सलाहकार सेवाएँ प्रदान कीं। निदेशालय का दौरा करने वाले उद्यमियों, किसानों, ग्रामीण युवाओं, विश्वविद्यालयों / कॉलेजों और स्कूलों के छात्रों के विभिन्न समूहों को खुम्ब की खेती से संबंधित सभी गतिविधियाँ दिखाई गईं।

1. DMR - An Introduction

1. ख्रुम्ब अनुसंधान निदेशालय - एक परिचय

During last couple of decades, mushroom farming has contributed immensely in the nutritional security and employment generation of the people in the urban and rural areas of the country. Through the exploitation and potential of mushroom wealth available in India, the livelihood status of the people could be uplifted. The Directorate has contributed for the enhancement of mushroom production in the country through strainal development programme of different mushrooms during these years. The mushroom strains were enriched with novel quality traits using various biotechnological approaches. The various diseases like wet bubble and yellow mould have been managed using eco-friendly mushroom cultivation techniques developed by the Direcotrate. The mandate and the scope of the Directorate have been expanded and the research programmes were targeted to extend the shelf life and storage of the mushrooms for longer duration with good quality. The mushroom farming is a remunerative option for the farmers keeping in view the reduction in land holdings and depleting natural resources like water.

As compared to other field and Horticultural crops, mushroom cultivation utilizes vertical space with minimum quantity of water. The available agricultural residue in the country may be utilized for generating wealth from the waste. As there is constant farm income and employment opportunity, the livelihood of the farmers is strengthened from mushroom farming. Keeping in view the importance of the mushroom because of its nutritional and medicinal properties, a systematic research was initiated in India with the establishement of National Centre for Mushroom Research and Training (NCMRT) in 1983 at Solan (H.P.) under the aegis of Indian Council of Agricultural Research (ICAR). After 25 years, with remarkable research achievements in mushroom, it was upgraded to Directorate of Mushroom Research (DMR) in 2008. ICAR-DMR, Solan is the only Institute working exclusively on mushroom research and development in the country. Because of the collaborative efforts of the Scientists of ICAR-DMR, Solan and growers, the mushroom production has reached 3,47,450 tonnes

पिछले कुछ दशकों में, खुम्ब की खेती ने देश के शहरी और ग्रामीण क्षेत्रों में लोगों की पोषण सुरक्षा और रोजगार सृजन में बहुत बड़ा योगदान दिया है। भारत में उपलब्ध खुम्ब संपदा के दोहन और क्षमता के माध्यम से, लोगों की आजीविका की स्थिति को ऊपर उठाया जा सकता है। निदेशालय ने इन वर्षों के दौरान विभिन्न खुम्ब के प्रभेद विकास कार्यक्रम के माध्यम से देश में खुम्ब उत्पादन को बढ़ाने में योगदान दिया है। विभिन्न जैव प्रौद्योगिकी दृष्टिकोणों का उपयोग करके खुम्ब के प्रभेदों को नवीन गुणवत्ता लक्षणों से समृद्ध किया गया। गीले बुलबुले और पीले फफूंद जैसी विभिन्न बीमारियों को निदेशालय द्वारा विकसित पर्यावरण अनुकूल खुम्ब खेती तकनीकों का उपयोग करके प्रबंधित किया गया है। निदेशालय के अधिदेश और दायरे का विस्तार किया गया है और अनुसंधान कार्यक्रमों को अच्छी गुणवत्ता के साथ लंबी अवधि के लिए खुम्ब के शेल्फ जीवन और भंडारण को बढ़ाने के लिए लक्षित किया गया है। भूमि जोत में कमी और पानी जैसे प्राकृतिक संसाधनों को कम करने के मद्देनजर खुम्ब की खेती किसानों के लिए एक लाभदायक विकल्प है।

अन्य खेत और बागवानी फसलों की तुलना में, खुम्ब की खेती न्यूनतम पानी के साथ ऊर्धवाधर स्थान का उपयोग करती है। देश में उपलब्ध कृषि अवशेषों का उपयोग कचरे से धन पैदा करने के लिए किया जा सकता है। चूंकि लगातार कृषि आय और रोजगार के अवसर हैं, इसलिए खुम्ब की खेती से किसानों की आजीविका मजबूत होती है। इसके पोषण और औषधीय गुणों के कारण खुम्ब के महत्व को ध्यान में रखते हुए, भारतीय कृषि अनुसंधान परिषद (ICAR) के तत्वावधान में 1983 में सोलन (हि.प्र.) में राष्ट्रीय खुम्ब अनुसंधान और प्रशिक्षण केंद्र (NCMRT) की स्थापना के साथ भारत में एक व्यवस्थित अनुसंधान शुरू किया गया था। 25 वर्षों के बाद, खुम्ब में उल्लेखनीय अनुसंधान उपलब्धियों के साथ, इसे 2008 में खुम्ब अनुसंधान निदेशालय (DMR) में अपग्रेड किया गया। ICAR-DMR, सोलन देश में खुम्ब अनुसंधान और विकास पर विशेष रूप से काम करने वाला एकमात्र संस्थान है। निदेशालय लगातार किसानों के लिए उपयुक्त क्षेत्र विशेष और कम लागत वाली प्रौद्योगिकियों के विकास में लगा हुआ है। भाकृअनुप-खुम्ब अनुसंधान निदेशालय के वैज्ञानिकों और उत्पादकों के सहयोगात्मक प्रयासों से देश में खुम्ब का उत्पादन 3,47,450 टन तक पहुँच गया है। विकसित प्रौद्योगिकियों को खुम्ब पर अखिल भारतीय समन्वित अनुसंधान

in the country. The Directorate has continuously engaged in developing region specific and low cost technologies suitable to the farmers. The developed technologies are further validated through All India Coordinated Research Project (AICRP) on mushroom, which was also initiated in 1983 with its headquarters at Solan.

Location

ICAR-Directorate of Mushroom Research (DMR) is located in Solan city of Himachal Pradesh, between Chandigarh and Shimla National Highway, endeared as the gateway of the state. The city is famous for its cultural splendor, excellent scenic and picnic spots, numerous temples and seasonal cash vegetable crops. Apart being industrialized, the city is widely polular for mushroom cultivation and bearing the tag of "Mushroom City of India" which was named by the Hon'ble Chief Minister of Himachal Pradesh on 10th September, 1997 during the Indian Mushroom Conference organized jointly by the Directorate and Mushroom Society of India keeping in view the contribution towards research, development and popularization of mushroom.

Infrastructure

ICAR-DMR, Solan has 12 environmentally controlled mushroom cultivation rooms and a poly house alongwith indoor bunkers and bulk chambers. The Directorate has five well equipped laboratories for biotechnology, germplasm conservation, spawn production, plant protection and postharvest technology with modern and latest equipments. The transfer of technology (ToT) section has well sophisticated training unit with a total capacity of more than 250 trainees at a time. Further, the Directorate has a specialized library having collections related to mushroom science supporting research and consultancy in the relevant areas. The library has accessioned 2185 books and 2500 back volumes of journals and it is the only referral library for mushroom literature in the country.

Personnel and Finance

ICAR-DMR, Solan has asanctioned strength of 18 scientists + one Director, 12 technical, 14 administrative and 5 skilled supporting staff. The staff position as on 31.12.2024 was 10 Scientists, 8 technical, 13 administrative and on skilled supporting

परियोजना (एआईसीआरपी) के माध्यम से आगे मान्य किया जाता है, जिसकी शुरुआत भी 1983 में सोलन में मुख्यालय के साथ की गई थी।

स्थान

भाकृअनुप—खुम्ब अनुसंधान निदेशालय (डीएमआर) हिमाचल प्रदेश के सोलन शहर में चंडीगढ़ और शिमला राष्ट्रीय राजमार्ग के बीच स्थित है, जिसे राज्य के प्रवेश द्वार के रूप में जाना जाता है। यह शहर अपने सांस्कृतिक वैभव, उत्कृष्ट दर्शनीय और पिकनिक स्थलों, कई मंदिरों और मौसमी नकदी सब्जियों की फसलों के लिए प्रसिद्ध है। औद्योगीकृत होने के अलावा, शहर खुम्ब की खेती के लिए व्यापक रूप से लोकप्रिय है और "भारत के खुम्ब शहर" का टैग धारण करता है, जिसे हिमाचल प्रदेश के माननीय मुख्यमंत्री द्वारा 10 सितंबर, 1997 को निदेशालय और खुम्ब सोसायटी ऑफ इंडिया खुम्ब के अनुसंधान, विकास और लोकप्रियता में योगदान को ध्यान में रखते हुए संयुक्त रूप से आयोजित भारतीय खुम्ब सम्मेलन के दौरान नामित किया गया था।

आधारभूत संरचना

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन में 12 पर्यावरण नियंत्रित खुम्ब की खेती के कमरे और एक पॉलीहाउस के साथ—साथ इनडोर बंकर और बल्क चैंबर हैं। निदेशालय के पास आधुनिक और नवीनतम उपकरणों के साथ जैव प्रौद्योगिकी, जननद्रव्य संरक्षण, स्पॉन उत्पादन, पौध संरक्षण और कटाई उपरांत प्रौद्योगिकी के लिए पांच अच्छी तरह से सुसज्जित प्रयोगशालाएँ हैं। प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग में एक समय में 250 से अधिक प्रशिक्षुओं की कुल क्षमता के साथ अच्छी तरह से परिष्कृत प्रशिक्षण इकाई है। इसके अलावा, निदेशालय के पास एक विशेष पुस्तकालय है जिसमें प्रासंगिक क्षेत्रों में अनुसंधान और परामर्श का समर्थन करने वाले खुम्ब विज्ञान से संबंधित संग्रह हैं। पुस्तकालय में 2185 पुस्तकें और 2500 पत्रिकाओं के पिछले संस्करणों का परिग्रहण है और यह देश में खुम्ब साहित्य के लिए एकमात्र सम्प्रेषण पुस्तकालय है।

कार्मिक और वित्त

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में 18 वैज्ञानिकों एक निदेशक, 12 तकनीकी, 14 प्रशासनिक और 5 कुशल सहायक कर्मचारियों की स्वीकृत संख्या निर्धारित की है। 31.12.2024 तक कर्मचारियों की संख्या 10 वैज्ञानिक, 8 तकनीकी, 13 प्रशासनिक और कुशल सहायक कर्मचारी थे। वर्ष 2024—25 के लिए निदेशालय का वार्षिक बजट 1209.57 लाख रुपये था जिसका पूरा उपयोग किया जाएगा। निदेशालय ने साहित्य,

staff. The annual budget of the Directorate for the year 2024-25 was Rs1209.57 lakhs which will be fully utilized. The Directorate earned Rs.150.00 lakhs as revenue during the year by the sale of literature, mushroom cultures, spawn, fresh mushrooms, value added products, consultancy, training and other services.

Vision

Mushroom research and development for economic growth, ecological sustainability and nutritional security.

Mission

R&D to undertake basic research, conserve mushroom diversity, develop technologies/varieties to enhance mushroom quality and productivity, utilize agro-wastes/spent musroom substrates and promote secondary agriculture for generating employment, ameliorating poverty and ensuring nutritional security.

Mandate

- 1. Strategic and applied research on collection, conservation, utilization and production of edible and medicinal mushroom.
- 2. Transfer of technology and capacity building of stakeholders for spawn production.
- 3. Co-ordination of network research for validation and evaluation of specific technologies through AICRP on mushroom to enhance productivity.

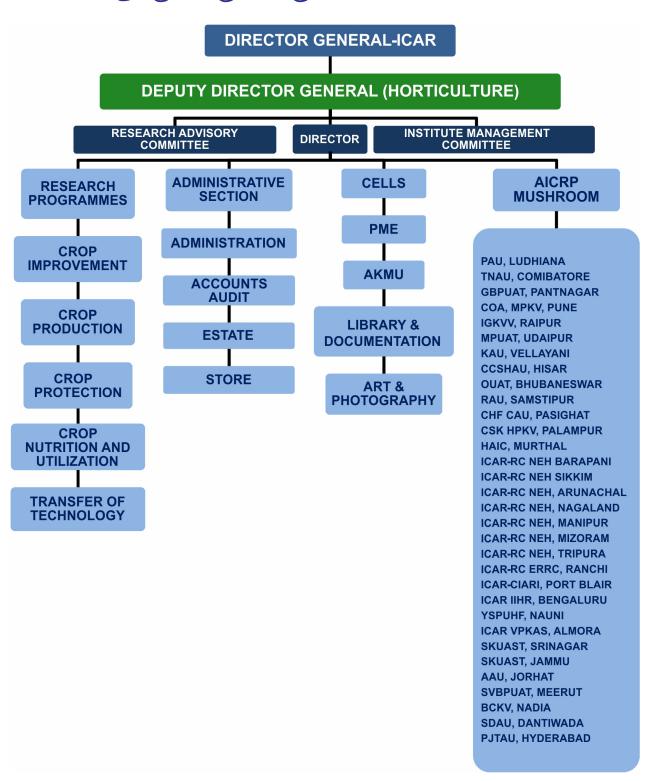
खुम्ब कल्चर, स्पॉन, ताजा खुम्ब, मूल्य वर्धित उत्पादों, परामर्श, प्रशिक्षण और अन्य सेवाओं की बिक्री से वर्ष के दौरान 150.00 लाख रुपये का राजस्व अर्जित किया।

दृष्टिकोण

आर्थिक विकास, पारिस्थितिक स्थिरता और पोषण सुरक्षा के लिए खुम्ब अनुसंधान और विकास।

उद्देश्य

बुनियादी अनुसंधान करने, खुम्ब की विविधता को संरक्षित करने, खुम्ब की गुणवत्ता और उत्पादकता बढ़ाने के लिए प्रौद्योगिकियों/किस्मों का विकास करने, कृषि—कचरे/खर्च किए गए खुम्ब सबस्ट्रेट्स का उपयोग करने और रोजगार पैदा करने, गरीबी में सुधार करने और पोषण सुरक्षा सुनिश्चित करने के लिए माध्यमिक कृषि को बढ़ावा देने के लिए अनुसंधान एवं विकास करना।


अध्यादेश

- खाद्य और औषधीय खुम्ब के संग्रह, संरक्षण, उपयोग और उत्पादन पर रणनीतिक और अनुप्रयुक्त अनुसंधान।
- 2. स्पॉन उत्पादन के लिए प्रौद्योगिकी का हस्तांतरण और हितधारकों की क्षमता निर्माण।
- उत्पादकता बढ़ाने के लिए खुम्ब पर अखिल भारतीय समन्वित अनुसन्धान पिरयोजना के माध्यम से विशिष्ट प्रौद्योगिकियों के सत्यापन और मूल्यांकन के लिए नेटवर्क अनुसंधान का समन्वयन।

ORGANOGRAM OF ICAR-DMR, SOLAN

भाकृञ्जनुप-खुम्ब अनुसंधान निदेशालय संगठन

2. Research Achievements

2. अनुसंधान उपलब्धियाँ

2.1 Mushroom Genetic Resources

2.1 खुम्ब आनुवंशिक संसाधन

Fungal expeditions were conducted in 2024 in the regions that lie within Himachal Pradesh, India. These journeys have resulted in 260 collections in all. About 100 of these specimens were recognized to the species level, while 200 were identified to the genus level. Calvatia cythiformis, Stropharia atroferruginea, Agaricus augustus, Ganoderma lucidum, Clitocybe nuda, Agaricus sp. Cordyceps miltaris, Cordyceps sp., Cyclocybe aegeita, Morchella sp. are few of these species that are very intriguing. 11 species, including Calvatia cythiformis, Stropharia atroferruginea, Agaricus augustus, Ganoderma lucidum, Clitocybe nuda, Agaricus sp. Cordyceps militaris, Cordyceps sp., Cyclocybe aegerita, Morchella sp. have been cultured and each specimen has been deposited in the ICAR-Directorate of Mushroom Research's herbarium in Chambaghat Solan, HP.

The following lists the macroscopic and microscopic analyses of six specimens:

1. Calvatia cyathiformis

Fruiting bodies are brain or skull shaped, may be egg or pear shaped, whitish to brownish, smooth skin initially, wrinkled, crumbled on maturity, and attached to soil with rhizomorphs. Spores 3-6 μ m, globose, ornamented, inamyloid. Pileal layer formed of brownish globes to irregular elements. Growing solitary or in groups in grassy field, open woods (Fig. 2.2.1). The specimen was collected from Lower Chail Solan.

2. Stropharia atroferruginea

Fruiting bodies are reddish brown to wine red in colour with convex to flat cap having hanging partial veil remnants along margin. Gills adnexed, crowded, creamish to greyish initially, changes to purplish grey on maturity. Stipe cylindrical to slightly bulbous yellowish stipe, covered with fine hairs and often with cogwheel and fine grooved yellowish annulus on upper

2024 में भारत के हिमाचल प्रदेश के भीतर स्थित क्षेत्रों में फंगल अभियान आयोजित किए गए थे। इन यात्राओं के परिणामस्वरूप कुल 260 संग्रह हुए हैं। इनमें से लगभग 100 नम्नों को प्रजाति के स्तर पर पहचाना गया, जबकि 200 को वंश के स्तर पर पहचाना गया। कैल्वेटिया साइथिफॉर्मिस, स्ट्रोफारिया एट्रोफेरुगिनिया, एगेरिकस ऑगस्टस, गैनोडर्मा ल्यूसिडम, विलटोसाइबे न्यूडा, एगेरिकस स्पीशीज, कॉर्डिसेप्स मिलिटेरिस, कॉर्डिसेप्स स्पीशीज, साइक्लोसाइबे एगेता, मोर्चेला स्पीशीज इनमें से कुछ प्रजातियां हैं जो बहुत ही दिलचस्प हैं। 11 प्रजातियां, जिनमें *केल्वेटिया साइथिफॉर्मिस, स्ट्रोफारिया* एट्रोफेरुगिनिया, एगेरिकस ऑगस्टस, गैनोडर्मा ल्यूसिडम, विलटोसाइबे न्यूडा, एगेरिकस स्पीशीज, कॉर्डिसेप्स मिलिटेरिस, कॉर्डिसेप्स स्पीशीज, साइक्लोसाइबे एगेरिटा, मोर्चेला स्पीशीज शामिल हैं, को संवर्धित किया गया है और प्रत्येक नमूने को हिमाचल प्रदेश के चंबाघाट सोलन में भाकुअनुप–खुम्ब अनुसंधान निदेशालय के हर्बेरियम में जमा किया गया है।

निम्नलिखित छह नमूनों के स्थूल और सूक्ष्म विश्लेषणों को सूचीबद्ध करता है:

1. कैल्वेटिया साइथिफॉर्मिस

फलन मस्तिष्क या खोपड़ी के आकार के होते हैं, अंडे या नाशपाती के आकार के हो सकते हैं, सफेद से भूरे रंग के, शुरू में चिकनी त्वचा, झुर्रीदार, परिपक्व होने पर उखड़ जाती है, और राइजोमॉर्फ के साथ मिट्टी से जुड़ी होती है। बीजाणु 3–6 माइक्रोन, गोलाकार, अलंकृत, इनमाइलॉयड। भूरे रंग के गोले से लेकर अनियमित तत्वों तक की पाइली परत। घास के मैदान, खुले जंगल में अकेले या समूहों में उगता है (चित्र 2.2.1)। नमूना लोअर चैल सोलन से एकत्र किया गया था।

2. स्ट्रोफेरिया एट्रोफेरुगिनिया

फलन लाल भूरे से वाइन लाल रंग के होते हैं, जिनके किनारे पर लटकते हुए आंशिक आवरण के अवशेष होते हैं। गिल्स जुड़े हुए, समूह वाले, शुरू में क्रीमी से भूरे रंग के, परिपक्व होने पर बैंगनी भूरे रंग में बदल जाते हैं। डंठल बेलनाकार से लेकर थोड़ा बल्बनुमा पीले रंग का डंठल, महीन बालों से ढका हुआ और अक्सर डंठल के ऊपरी हिस्से पर कोगव्हील और बारीक खांचेदार पीले रंग का वलय होता है। बीजाणू 9–12 x

Fig. 2.1.1. A. Fruiting bodies of Calvatia cyathiformis in natural habitat; B. Basidiospores; C. Pileal elements चित्र 2.1.1. ए. प्राकृतिक आवास में कैल्वेटिया साइथिफोर्मिस के फलन; बी. बेसिडियोस्पोर्स; सी. पाइलल तत्व

Fig. 2.1.2. A. Fruiting bodies of Stropharia atroferruginea in natural habitat; B. Basidiospores; C. Basidia with basidiospore चित्र 2.1.2. ए. प्राकृतिक आवास में स्ट्रोफैरिया एट्रोफेरुगिनिया के फल निकाय; बी. बेसिडियोस्पोर्स; सी. बेसिडियोस्पोर के साथ बेसिडिया

portion of stipe. Spores 9-12 x 6-8 μ m, dark brown, ellipsoid to oblong with central germpore. Basidia 16-25 x 7-10 μ m, clavate, tetrasporic. Cystidia present. Pileipellis a trichoderm of branched hyphae, up to 8 μ m elements. Growing scattered on soil in dense *Quercus* forest (Fig. 2.1.2). The specimen was collected from Shrinagar, Kandaghat.

3. Cordyceps militaris Fr.

Fruiting bodies are club shaped, up to 8 cm high, orange coloured, minute beads like powdery granules attached to upper fertile rounded portion. Head covered with stroma, inside stroma perithecia present. Inner texture pale orange. Perithecia superficial to partially embedded in loosely interwoven cells. Ascospores initially segmented into long thread like structures, breaking into elliptical segments, individual. Ascospores $2.5\times1.2~\mu\text{m}$, long, filiform with septation, inamyloid, thin walled. Asci $300\text{-}500\times3.5\text{-}5~\mu\text{m}$ long, cylindrical with capitate apex. Clamp connections absent. Growing scattered or in caespitose manner on dead pupae burried in soil (Fig. 2.1.3). The specimen was collected from Chail, Solan.

6—8 माइक्रोमीटर, गहरे भूरे रंग के, दीर्घवृत्ताकार से आयताकार, केंद्रीय जर्मपोर के साथ। बेसिडिया 16—25 x 7—10 माइक्रोमीटर, क्लैवेट, टेट्रास्पोरिक। सिस्टिडिया मौजूद होते हैं। पिलीपेलिस शाखित हाइफे का एक ट्राइकोर्डर्म है, जो 8 माइक्रोमीटर तक के तत्वों का होता है। घने क्वेरकस जंगल में मिट्टी पर बिखरे हुए उगते हैं (चित्र 2.1.2)। नमूना श्रीनगर, कंडाघाट से एकत्र किया गया था।

3. कॉर्डिसेप्स मिलिटेरिस फ्र.

फलन क्लब के आकार के, 8 सेमी तक ऊंचे, नारंगी रंग के, ऊपरी उपजाऊ गोल भाग से जुड़े पाउडर जैसे छोटे मोती होते हैं। सिर स्ट्रोमा से ढका होता है, स्ट्रोमा के अंदर पेरिथेसिया मौजूद होता है। आंतरिक बनावट हल्के नारंगी रंग की होती है। पेरिथेसिया सतही से लेकर आंशिक रूप से शिथिल रूप से आपस में जुड़ी कोशिकाओं में समाहित होता है। एस्कोस्पोर्स शुरू में लंबे धागे जैसी संरचनाओं में विभाजित होते हैं, जो अण्डाकार खंडों में टूट जाते हैं, अलग—अलग होते हैं। एस्कोस्पोर्स 2.5 x 1.2 माइक्रोन, लंबे, सेप्टेशन के साथ तंतुमय, इनमाइलॉयड, पतली दीवार वाले। एसकाई 300—500 x 3.5—5 माइक्रोन लंबे, कैपिटेट एपेक्स के साथ बेलनाकार। क्लैंप कनेक्शन अनुपस्थित। मिट्टी में दबे मृत प्यूपा पर बिखरे हुए या कैस्पिटोज तरीके से बढ़ते हैं (चित्र 2.1.3)। नमूना चैल, सोलन से एकत्र किया गया था।

Fig. 2.1.3. A. Fruiting bodies of Cordyceps militaris Fr. in natural habitat; B. Perithcia; C. Ascospores चित्र 2.1.3. ए. कॉर्डिसेप्स मिलिटेरिस फ्र. के फलन प्राकृतिक आवास में; बी पेरिथसिया; सी. एस्कोस्पोर्स

4. Helvella compressa (Snyder) N.S. Weber

Fruiting bodies are greyish to greyish black. Pileus saddle shaped, bilobed, with a narrow gap separation, initially inrolled, upper surface fertile, greyish brown, smooth, dry; lower surface pale grey, hairy, flesh thin. Stipe up to 10 cm long, 1 cm thick, more or less equal, compressed to furrowed, stuffed then hollow, white, with minutely hairy covering. Ascospores 18.20×11.5 14 $\,\mu\text{m}$, oblong, inamyloid, smooth, large monoguttulate. Asci clavate to cylindrical, 8 spored, operculate, inamyloid, thin walled. Growing solitary to scattered, or even in clusters to gregariously growing on the ground in coniferous forest in temperate areas (Fig. 2.1.4). The specimen was collected from Chail, Solan.

5. Omphalotus olearis (DC.) Sing

Fruiting bodies are yellowish, orange to golden yellow, cap convex to flabelliform with depressed centre. Lamellae decurrent to adnexed, yellowish to golden yellow attached to solid yellowish stipe. Spores subglobose to sublacymoid, smooth, inamyloid. Cystidia absent. Pileipellis a cutis of cylindrical elements

4. हेल्वेला कम्प्रेसा (स्नाइडर) एन.एस. वेबर

फलन भूरे से भूरे काले रंग के होते हैं। पाइलस काठी के आकार का, दो पालियों वाला, एक संकीर्ण अंतराल के साथ, शुरू में मुड़ा हुआ, ऊपरी सतह उपजाऊ, भूरा भूरा, चिकना, सूखाय निचली सतह हल्का भूरा, बालों वाला, मांस पतला। इंटल 10 सेमी तक लंबा, 1 सेमी मोटा, कमोबेश बराबर, संकुचित से खांचेदार, भरा हुआ फिर खोखला, सफेद, बारीक बालों वाले आवरण के साथ। एस्कोस्पोर्स 18.20 x 11.5—14 माइक्रोन, आयताकार, इनमाइलॉयड, चिकना, बड़ा मोनोगुटुलेट। एसकाई क्लैवेट से बेलनाकार, 8 बीजाणुयुक्त, ऑपरक्यूलेट, इनमाइलॉयड, पतली दीवार वाला। समशीतोष्ण क्षेत्रों में शंकुधारी वन में जमीन पर अकेले से बिखरे हुए या यहां तक कि समूहों में या झुंड में उगते हैं (चित्र 2.1.4)। नमूना चैल, सोलन से एकत्र किया गया था।

5. ओम्फालोटस ओलेरिस (डीसी.) सिंग

फलन पीले, नारंगी से सुनहरे पीले रंग के होते हैं, टोपी उत्तल से लेकर चपटी होती है और बीच में दबा हुआ होता है। लैमेली डिकरंट से एडनेक्स्ड, पीले से सुनहरे पीले रंग के ठोस पीले रंग के डंठल से जुड़े होते हैं। बीजाणु सबग्लोबोज से सबलैसिमॉइड, चिकने, इनमाइलॉइड होते हैं। सिस्टिडिया

Fig. 2.1.4. A. Fruiting bodies of Helvella compressa in natural habitat; B. Ascospores चित्र 2.1.4. ए. प्राकृतिक आवास में हेल्वेला कम्प्रेसा के फल निकाय; बी. एस्कोस्पोर्स

Fig.2.1.5. A. Fruiting bodies of Omphalotus olearis in natural habitat; B. basidiospores; C. Basidia चित्र 2.1.5. ए. प्राकृतिक आवास में ओम्फालोटस ओलेरिस के फलन; बी बेसिडियोस्पोर्स; सी. बासिडिया

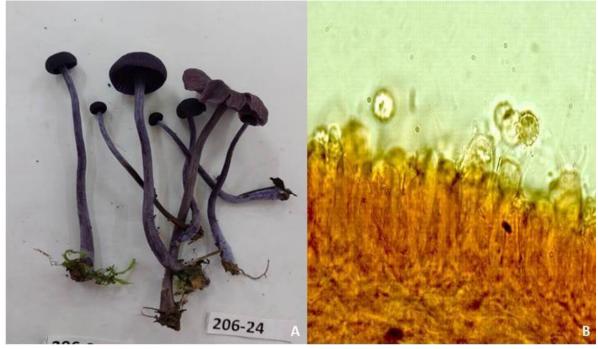


Fig.2.1.6. A. Fruiting bodies of Laccaria amethystina in natural habitat; B. Basidia with basidiospores चित्र 2.1.6. ए. प्राकृतिक आवास में लैकेरिया एमेथिस्टिना के फल निकाय; बी. बेसिडियोस्पोर्स के साथ बेसिडिया

up to $10\,\mu m$ wide. Growing scattered, or even in clusters to gregariously growing on the woody tree in coniferous forest in temperate areas (Fig. 2.1.5). The specimen was collected from Chail, Solan.

6. Laccaria amethystina Cooke

Fruiting bodies are purplish, cap convex to plain, purple to greyish purple, covered with fine appressed scales, margin inrolled. Lamellae adnexed, purple, attached to purplish solid stipe, covered with coarsely hairy scales. Basidiospores 7.5 \times 10 μ m, globose, ornamented, spines up to 3 μ m long, inamyloid. Basidia 28.64 \times 8.5-14 μ m,clavate, tetrasporic,sterigmata up to 3 μ m long. Cheilocystidia 22.60 \times 4.12 μ m, cylindric to clavate. Pileipellis a cutis of bunches of cylindrical to clavate elements up to 20 μ m wide. Clamp connections present. Growing solitary, scattered or gregariously on soil in coniferous forest (Fig. 2.1.6). The specimen was collected from Chail, Solan.

अनुपस्थित। पिलीपेलिस 10 माइक्रोन तक चौड़े बेलनाकार तत्वों का एक कटिस है। बिखरे हुए, या यहां तक कि समूहों में भी समशीतोष्ण क्षेत्रों में शंकुधारी जंगल में लकड़ी के पेड़ पर झुंड में उगते हैं (चित्र 2.1.5)। नमूना चैल, सोलन से एकत्र किया गया था।

6. लैकेरिया एमेथिस्टिना कुक

फलन बैंगनी रंग के होते हैं, टोपी समतल से उत्तल, बैंगनी से भूरे बैंगनी रंग के, बारीक दबाए गए स्केलस से ढके होते हैं, मार्जिन अंदर की ओर मुड़ा हुआ होता है। लैमेली संलग्न, बैंगनी, बैंगनी ठोस डंठल से जुड़ी होती है, मोटे बालों वाले स्केलस से ढकी होती है। बेसिडियोस्पोर्स 7.5 × 10 माइक्रोन, गोलाकार, अलंकृत, 3 माइक्रोन तक लंबे स्पाइन, इनमाइलॉयड। बेसिडिया 28.64 × 8.5—14 माइक्रोन, क्लैवेट, टेट्रास्पोरिक, स्टेरिग्माटा 3 माइक्रोन तक लंबे। चेइलोसिस्टिडिया 22.60 × 4.12 माइक्रोन, बेलनाकार से क्लैवेट। पिलीपेलिस 20 माइक्रोन तक चौड़े बेलनाकार से लेकर क्लैवेट तत्वों के गुच्छों का एक कटिस है। क्लैंप कनेक्शन मौजूद हैं। शंकुधारी वन में मिट्टी पर अकेले, बिखरे हुए या झुंड में उगते हैं (चित्र 2.1.6)। नमूना चैल, सोलन से एकत्र किया गया था।

2.2 Crop Improvement 2.2 फसल सुधार

Genetic improvement of button mushroom

Development of disease resistant strains in button mushroom

A. A total of 15 wild Agaricus germplasm from Maharshtra, Kerala, Himachal Pradesh, Bihar, Punjab, Rajasthan, Kashmir and Tamil Nadu were obtained. The strains were DMRO-833, DMRO-1078, DMRO-1083, DMRX-29, DMRX-55, DMRX-56, DMRX-199, DMRX-200, DMRX-386, DMRX-1859, DMRX-2027, DMRX-2183, DMRX-2190, DMRX-2197, DMRX-2297. ITS 5.8S rDNA from all the strains were amplified and sent for sequencing (Fig. 2.2.1).

बटन खुम्ब का आनुवंशिक सुधार

1. बटन खुम्ब में रोग प्रतिरोधी उपभेदों का विकास

ए. महाराष्ट्र, केरल, हिमाचल प्रदेश, बिहार, पंजाब, राजस्थान, कश्मीर और तिमलनाडु से कुल 15 जंगली एगारिकस जर्मप्लाज्म प्राप्त किए गए। ये उपभेद DMRO—833, DMRO—1078, DMRO—1083, DMRO—29, DMRO—55, DMRO—56, DMRO—199, DMRO—200, DMRO—386, DMRO—1859, DMRO—2027, DMRO—2183, DMRO—2190, DMRO—2197, DMRO—2297 थे। सभी उपभेदों से ITS 5.8S rDNA को प्रवर्धित किया गया और अनुक्रमण के लिए भेजा गया (चित्र 2.2.1)।

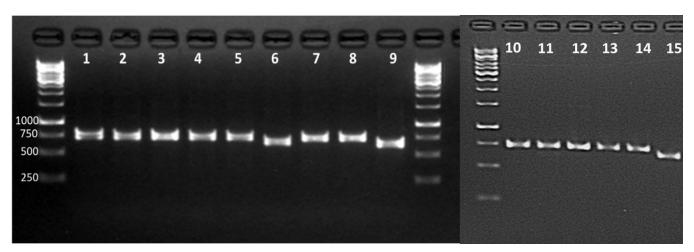


Fig. 2.2.1. ITS 5.8rDNA amplifications of 15 strains of Agaricus spp. चित्र 2.2.1. एगेरिकस स्पीशीज के 15 उपभेदों के आईटीएस 5.8rDNA प्रवर्धन

- B. A total of 110 strains of A. bisporus were evaluated for disease resistance against wet bubble disease and a total of six strains showed resistance to the disease. DNA from 180 strains of *Agaricus bisporus* was done and ITS amplified to confirm the identity of the accession. A total 17 SSR markers associated with disease resistance gene were amplified in 180 strains of *Agaricus bisporus*. 02 NBS domain primers have been used to amplify the NBS-LRR region in 180 strains of button mushroom for temperature tolerance (Fig. 2.2.2, Fig. 2.2.3, Table 2.1 and Table 2.2). The molecular data will be corroborated with the production trial data for
- बी. ए. बाईस्पोरस के कुल 110 उपभेदों का मूल्यांकन गीले बुलबुले रोग के विरुद्ध रोग प्रतिरोधक क्षमता के लिए किया गया और कुल छह उपभेदों ने रोग के प्रति प्रतिरोधक क्षमता दिखाई। एगेरिकस बाईस्पोरस के 180 उपभेदों से डीएनए लिया गया और अभिगम की पहचान की पुष्टि करने के लिए ITS को प्रवर्धित किया गया। एगेरिकस बाईस्पोरस के 180 उपभेदों में रोग प्रतिरोधक जीन से जुड़े कुल 17 SSR मार्करों को प्रवर्धित किया गया। तापमान सहिष्णुता के लिए बटन खुम्ब के 180 उपभेदों में NBS-LRR क्षेत्र को प्रवर्धित करने के लिए 02 NBS डोमेन प्राइमर का उपयोग किया गया है (चित्र 2.2.2, चित्र 2.2.3, तालिका 2.1 और तालिका

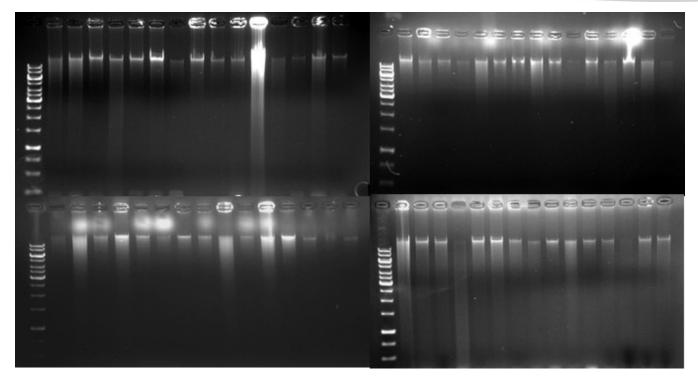


Fig. 2.2.2. Some of the DNA isolated from strains of Agaricus bisporus चित्र 2.2.2. एगेरिकस बाईस्पोरस की प्रजातियों से पृथक किये गए कुछ डी.एन.ए.

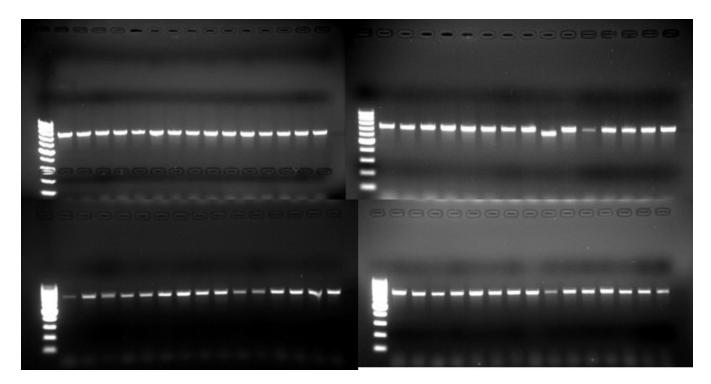


Fig.2.2.3. Some of the ITS DNA amplified from strains of Agaricus bisporus चित्र 2.2.3. एगेरिकस बाईस्पोरस की प्रजातियों से प्रवर्धित कुछ आईटीएस डीएनए

Table 2.1. Yield potential and disease appearance in some strains of button mushroom तालिका 2.1. बटन खुम्ब की कुछ प्रजातियों में उपज क्षमता और रोग उपस्थिति

Strains	BE %	No. of mycogone infected fruit bodies
A-8	10.51	0
A-18	7.26	0
A-20	13.94	2
A-26	10.41	0
A-34	10.05	0
A-55	7.88	0
A-117	7.23	0
A-123	11.26	0
Control	11.42	02

Table 2.2. List of SSR primers reported to be associated with disease resistant gene in *A. bisporus* तालिका 2.2. *ए. बाईस्पोरस* में रोग प्रतिरोधी जीन से जुड़े बताए गए एसएसआर प्राइमरों की सूची

Name of primer	SSR motif	Forward primer	Reverse primer
AbSSR05	(GATGAG)6	CTCTGGGATATGGACGAGGA	CCTCTTCACCTTGACCCTCA
AbSSR08	(TGG)8	GTAATGCTCCCGCTGTTGAT	TCCGCTGTTCTTCCAACTCT
AbSSR10	(CCA)8	GAAGAATCACGGGTGAAGGA	GAGGGCGATGTGACAGTTTT
AbSSR14	(TACC)6	GGCAATCGGAAAGAACAAAA	GCAGAGAACCATCCTCAACG
AbSSR15	(TA)6	GACTGCCTGATTGACGGATT	TCCGACTCCGACATCCTATC
AbSSR17	(CA)6	GGACGAACTTATGCCGTGTT	GGCACAGCCTGAGAGAGAAG
AbSSR18	(GA)7	CTCGAGTCGACGAAGGAAAC	TCCTCGGTTTCGACTGTACC
AbSSR28	(TC)12	TGTCTGGTTTTGCTCACGTC	TCAGCACACTTAATCGCACA
AbSSR47	(CA)8	CATCGGAATCTGAGCTGTCA	TGTGTCAAAAGTGGGTCCAA
AbSSR52	(CAT)6	TGGCTCTTTACAGCCTTGGT	TGCAGATGTGGTAGGAGTTTTG
AbSSR75	(CAA)7	CGTCCAACATCAACGTCAAC	GTGTACATCCCCTCGTCGTC
AbSSR85	(CGT)5	GACTGTTGACGTTTCGGGTT	CAACGATGACCCGTTTTCTT
AbSSR87	(CCT)6	CAGTCGCACTCGAAATCGTA	TTGTTGAGTGAGGCATCGAG
AbSSR89	(CAT)7	GATAGCTCCTGGTCACCGTC	CTGGCTTCAAGAAGCGTACC
AbSSR111	(GAG)12	TGTCGATTGCGTCTTCTTTG	CGCCTCGTTTCTCTACTTCG
AbSSR112	(CAC)5	TCACCCTCACTCAAACTCCC	TCTCATCCGGTTCAACAACA
AbSSR159	(GAA)6	CGACCCATCATCAACTTCCT	AACGAGGGAAAGGTCGATTT

identification of molecular marker for disease resistance and temperature tolerance (Fig. 2.2.4, Fig. 2.2.5 and Fig. 2.2.6).

2.2)। रोग प्रतिरोधक क्षमता और तापमान सहिष्णुता के लिए आणविक मार्कर की पहचान के लिए आणविक डेटा को उत्पादन परीक्षण डेटा के साथ पुष्टि की जाएगी (चित्र 2.2.4 और चित्र 2.2.5)।

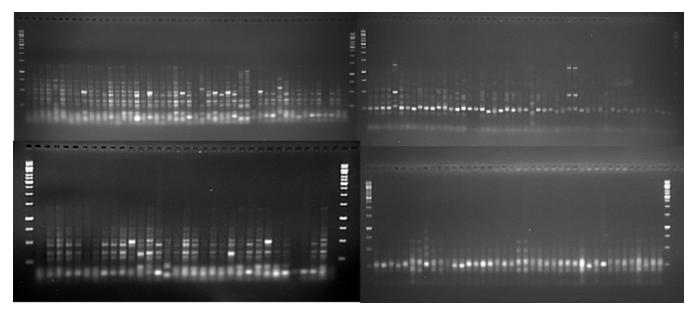


Fig.2.2.4. Some of the amplified SSR from strains of Agaricus bisporus चित्र 2.2.4. एगोरिकस बाईसपोरस के कुछ प्रवर्धित एसएसआर

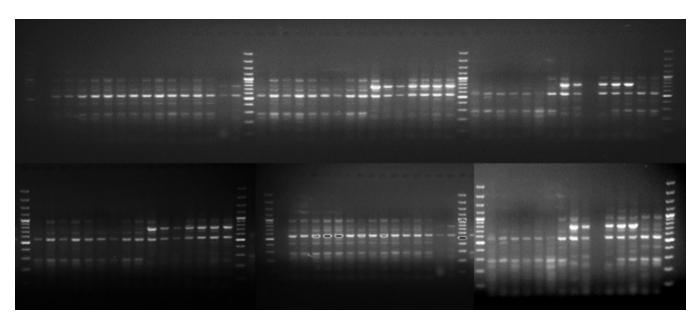


Fig. 2.2.5. NBS-LRR domain amplified from strains of Agaricus bisporus चित्र 2.2.5. एनबीएस-एलआरआर डोमेन को एगेरिकस बाईस्पोरस के उपभेदों से प्रवर्धित किया गया

C. Identification of Termitomyces sp.

A total 7 cultures of *Termitomyces* were taken from ICAR-DMR, Solan Culture bank. DNA isolations and ITS amplifications were done. The amplified products were sequenced and identified using NCBI BLAST. The cultures were DMRX-427, DMRX-74, DMRX-591, DMRX-1084, DMRX-1131, DMRX-1698, DMRX-2130, and DMRX-2285 (Fig. 2.2.6). Three cultures could be identified as *Termitomyces*.

सी. टर्मिटोमाइसेस प्रजाति की पहचान

आईसीएआर—डीएमआर, सोलन कल्चर बैंक से टर्मिटोमाइसेस की कुल 7 कल्चर ली गईं। डीएनए आइसोलेशन और आईटीएस एम्पलीफिकेशन किए गए, प्रवर्धित उत्पादों को अनुक्रमित किया गया और एनसीबीआई ब्लास्ट का उपयोग करके पहचाना गया। ये कल्चर डीएमआरएक्स—427, डीएमआरएक्स—74, डीएम आरएक्स—591, डीएमआरएक्स—1084, डीएमआरएक्स—1131, डीएमआरएक्स—1698, डीएमआरएक्स—2130 और डीएम आरएक्स—2285 थे (चित्र 2.2.6)। तीन कल्चर को टर्मिटोमाइसेस के रूप में पहचाना जा सका।

Fig. 2.2.6. ITS amplification of Termitomyces cultures चित्र 2.2.6. टर्मिटोमाइसेस संस्कृतियों का आईटीएस प्रवर्धन

D. Development of temperature tolerant strains in button mushroom

Optimum temperature for mycelial growth of *A. bisporus* mycelium is 25°C while fruiting temperature is 16°C. Button mushroom is the most popular mushroom cultivated in India and because of the tropical to subtropical climatic conditions in the country, heavy expenditure is incurred on refrigeration. Thus, strains growing at a higher temperature will cut down to cost of production. A total of 150 strains of *Agaricus bisporus* have been tested for temperature tolerance under in vitro condition in Petri plates at 29 and 33 °C with 25 °C as control. A total of 18 strains were identified, which could grow at 33°C temperature. The strains were A-1, A-4, A-5, A-8, A-20, A-22, A-23,

डी. बटन खुम्ब में तापमान सहनशील उपभेदों का विकास

ए. बाईस्पोरस माइसीलियम के माइसेलियम विकास के लिए इष्टतम तापमान 25°C है जबिक फलने का तापमान 16°C है। बटन खुम्ब भारत में उगाई जाने वाली सबसे लोकप्रिय खुम्ब है और देश में उष्णकटिबंधीय से उपोष्णकटिबंधीय जलवायु परिस्थितियों के कारण, प्रशीतन पर भारी खर्च होता है। इस प्रकार, उच्च तापमान पर उगने वाले उपभेदों से उत्पादन की लागत में कमी आएगी। 25°C नियंत्रण के साथ 29 और 33°C पर पेट्री प्लेटों में इन—विट्रो स्थिति के तहत तापमान सहनशीलता के लिए एगेरिकस बाईस्पोरस के कुल 150 उपभेदों का परीक्षण किया गया है। कुल 18 उपभेदों की पहचान की गई, जो 33°C तापमान पर उग सकते हैं। ये उपभेद A—1, A—4, A—5, A—8, A—20, A—22, A—23, A—30, A—34, A—51, A—60, A—72,

A-30, A-34, A-51, A-60, A-72, A-74, A-96, A-114, A-117, A-123, A-149 (Table 2.3 and Fig. 2.2.7). The molecular data will be corroborated with the mycelial growth and production trial data for identification of molecular marker for temperature tolerance strains. The identified strains can be used as breeding lines for development of temperature tolerant hybrids.

A-74, A-96, A-114, A-117, A-123, A-149 (तालिका 2.3 और चित्र 2.2.7) थे। तापमान सहनशील उपभेदों के लिए आणविक मार्कर की पहचान के लिए आणविक डेटा को माइसेलियल वृद्धि और उत्पादन परीक्षण डेटा के साथ पुष्टि की जाएगी। पहचाने गए उपभेदों का उपयोग तापमान सहनशील संकर के विकास के लिए प्रजनन लाइनों के रूप में किया जा सकता है।

Table 2.3. Mycelial growth rate of the strains showing good growth at 33°C तालिका 2.3. 33°C पर अच्छी वृद्धि दिखाने वाले उपभेदों की माइसेलियल वृद्धि दर

Strains	Average growth rate (cm/day)					
	25° C (Dia in mm)	29° C (Dia in mm)	33° C (Dia in mm)			
A-1	0.39	0.25	0.11			
A-4	0.24	0.34	0.09			
A-5	0.22	0.29	0.24			
A-8	0.42	0.17	0.07			
A-20	0.43	0.27	0.12			
A-22	0.44	0.32	0.14			
A-23	0.42	0.34	0.13			
A-30	0.41	0.34	0.07			
A-34	0.31	0.31	0.22			
A-51	0.35	0.26	0.13			
A-60	0.36	0.29	0.15			
A-72	0.31	0.19	0.16			
A-74	0.38	0.21	0.13			
A-96	0.41	0.39	0.18			
A-114	0.68	0.56	0.32			
A-117	0.50	0.47	0.39			
A-123	0.47	0.41	0.36			
A-149	0.45	0.41	0.42			

Fig.2.2.7. Growth of some strains of Agaricus bisporus at 33°C चित्र 2.2.7. 33°C पर एगेरिकस बाईसपोरस की कुछ प्रजातियों की वृद्धि

E. Hybridization of SSIs and yield evaluation

- 1. Using 7 SSI of NBS-1, 22 of NBS-5 and 32 from eleven different strains of button mushroom were used for hybrids development. A total of 456 hybrids were developed.
- 2. Out of a total of 456 crosses developed, a total of 142 crosses proved to be true hybrids with varied yield and quality (Table 2.4 and Fig. 2.2.8). All the 142 crosses were evaluated for yield and quality parameters. Some of the high yielders are listed below. Out of the high yielding hybrids, 10 hybrids were selected for further trials.

Table 2.4. Yield potential of Some of the selected hybrids तालिका 2.4. कुछ चयनित संकरों की उपज क्षमता

ई. एसएसआई का संकरण और उपज मूल्यांकन

- संकर विकास के लिए एनबीएस-1 के 7 एसएसआई, एनबीएस-5 के 22 और बटन खुम्ब के ग्यारह अलग-अलग उपभेदों से 32 का उपयोग किया गया। कुल 456 संकर विकसित किए गए।
- 2. विकसित किए गए कुल 456 क्रॉस में से, कुल 142 क्रॉस अलग—अलग उपज और गुणवत्ता के साथ सच्चे संकर साबित हुए (तालिका 2.4 और चित्र 2.2.8)। सभी 142 क्रॉस का उपज और गुणवत्ता मापदंडों के लिए मूल्यांकन किया गया। कुछ उच्च उपज देने वाले संकर नीचे सूचीबद्ध हैं। उच्च उपज देने वाले संकरों में से 10 संकर आगे के परीक्षणों के लिए चुने गए।

Hybrid		BE (%)	Hybrid		BE (%)
Н	1	16.83	Н	91	8.93
Н	6	9.72	Н	92	8.98
Н	19	10.64	Н	93	11.56
Н	20	10.49	Н	94	11.65
Н	21	10.73	Н	95	9.50
Н	22	11.64	Н	97	10.93
Н	26	14.26	Н	98	9.57
Н	33	9.42	Н	100	9.29
Н	54	12.99	Н	102	9.39
Н	55	9.52	Н	136	12.46
Н	59	9.93	Н	138	9.04
Н	61	9.19	Н	143	9.73
Н	62	10.49	Н	187	11.83
Н	70	10.84	Н	190	8.77
Н	72	9.85	Н	228	9.67
Н	77	8.68	Н	229	10.02
Н	79	12.67	Н	232	11.24
Н	80	10.20		NBS-5	8.93
Н	85	9.90		U3	8.66
Н	90	11.80			

Fig. 2.2.8. Yield evaluation trial of hybrids चित्र 2.2.8. संकर किस्मों की उपज मृत्यांकन परीक्षण

Genetic improvement of Oyster mushroom

Development and evaluation of the hybrids from the pre breeding lines of oyster mushroom

Out of 36 crosses, eight hybrids were developed using SSIs of the DMRP-26, DMRP-363 and DMRP-136. Out of these crosses, eight hybrids were developed and evaluated (Fig. 2.2.9). Preliminary screening of these hybrids revealed maximum yield in one hybrid (53% B.E).

ढींगरी खुम्ब का अनुवांशिक सुधार

ढींगरी खुम्ब की पूर्व प्रजनन वंशावली से संकरों का विकास और मूल्यांकन

36 क्रॉस में से, DMRP—26, DMRP—363 और DMRP—136 के SSI का उपयोग करके आठ संकर विकसित किए गए। इन क्रॉस में से, आठ संकर विकसित किए गए और उनका मूल्यांकन किया गया (चित्र 2.2.9)। इन संकरों की प्रारंभिक जांच से एक संकर में अधिकतम उपज (53% बी.ई.) का पता चला।

Fig. 2.2.9. Cultivation of different hybrids of oyster mushroom चित्र 2.2.9. ढींगरी खुम्ब के विभिन्न संकर किस्मों की खेती

Genetic improvement of *Flammulina* mushroom Morpho-molecular characterization *Flammulina* elastica

Morphological details

Pileus 2.34 cm in size. Shape, convex to applnate or uplifted in matured specimens, surface smooth, greasy, somewhat pitted, colour yellowish brown in centre, surface much viscid, marigin light yellow to creamish yellow, translucently sulcate forming two contrasting zones, striations up to 0.5 cm long. Lamellae adnate shortly decurrent, close, 0.3 -1 cm broad, colour cream to yellowish, edges smooth to wavy, 3-4 tiers. Stipe 8.73 cm long, central, equal, mostly tapering upwards and few tapering downwards, upper part cream to yellowish white mid part golden yellow to orange yellow basal part orange brown to golden brown, surface pubescent hairy near lower portion, twisted, wiry, somewhat ribbed in few specimens, hollow stipe, yellowish on exposure. Taste mild.

पलेमुलिना प्रजाति का अनुवांशिक सुधार *पलेमुलिना इलास्टिका* के मॉर्फो—आणविक लक्षण वर्णन

रूपात्मक विवरण

पाइलस का आकार 2.34 सेमी. आकार, परिपक्व नमूनों में उत्तल से लेकर ऊपर की ओर या ऊपर की ओर उठा हुआ, सतह चिकनी, चिकना, कुछ हद तक गड़ुदार, बीच में रंग पीला भूरा, सतह बहुत चिपचिपा, किनारा हल्का पीला से क्रीम जैसा पीला, पारदर्शी रूप से दो विपरीत क्षेत्र बनाते हुए, 0.5 सेमी तक लंबी धारियाँ। लैमेली एडनेट, थोड़े से अधोवर्ती, बंद, 0.3—1 सेमी चौड़ा, रंग क्रीम से लेकर पीला, किनारे चिकने से लेकर लहरदार, 3—4 स्तर। डंठल 8.73 सेमी लंबा, मध्य, बराबर, अधिकतर ऊपर की ओर पतला होता हुआ और कुछ नीचे की ओर पतला होता हुआ, ऊपरी भाग क्रीम से लेकर पीले सफेद, मध्य भाग सुनहरा पीला से नारंगी पीला, आधार भाग नारंगी भूरा से लेकर सुनहरा भूरा, सतह रोमिल निचले भाग के पास रोएँदार, मुड़ी हुई, तारदार, कुछ नमूनों में कुछ हद तक धारीदार, खोखला डंठल, देखने पर पीला। स्वाद हल्का।

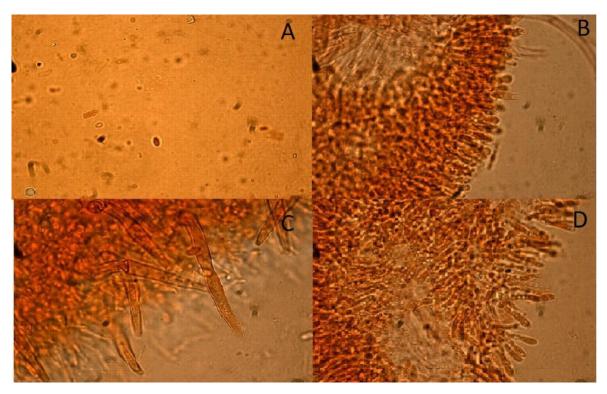


Fig.2.2.10. Spore of Flammulina elastica चित्र.2.2.10. पलैमुलिना इलास्टिका के बीजाणु

Basidiospores 8.5-11.2(12) x 4.3-5.2, spores with suprahilar depression. Basidia 25.5-35.78 x 7.2-9.2 μ m, tetrasporic, sterigmata up to 4 μ m long. Pleurocystidia scattered, 63-70.3 x 13-23.8 μ m in size. Cheilocystida 20-88.63 x 20.41-23.00 μ m in size, numerous in ceaspitose manner. Pilepellis typical trichoderm, not golden brown, pileocystidia 67-135.2 x 7-11.8 μ m in size, branched ixohyphadia, Clamp connections are present throughout. Stipitiellis a trichoderm of caulocystidia, abundant, fusiform to lanceolate golden brown, thick walled up to 15 μ m long. The similar spore ratio was reported in another study with spore ratio around 2.5-3 (Fig.2.2.10).

Molecular identification

The strain was molecularly identified nuclear ribosomal ITS DNA after Sanger sequencing. The sequence of mushroom sample obtained was subjected to BLAST comparisons against NCBI database. The sequence was deposited in NCBI Gene Bank under accession no. OP250115.1. The sequence also showed close relation with the sequences named Flammulina elastica, Flammulina velutipes, Flammulina filiformis, Flammulina rossica and Flammulina ononidis. The Phylogeny was constructed to identify the species and it was found that the sequence belongs to Flammulina elastica. The phylogenic tree was divided in to four clusters i.e. Flammulina elastica, Flammulina velutipes/ filiformis, F.rossica and F.ononidis clade (Fig.2.2.11). F. onoidis was selected as outgroup. The analysis involved 28 nucleotide sequences. There was a total of 962 positions in the final dataset. The tree with the highest log likelihood (-2211.76). Flammulina velutipes and F. elastica were completely separable.

बेसिडियोस्पोर 8.5—11.2(12) x 4.3—5.2, सुप्राहिलर डिप्रेशन वाले बीजाणु । बेसिडिया 25.5—35.78 x 7.2—9.2 µm, टेट्रास्पोरिक, स्टेरिग्माटा 4 µm तक लंबे। प्लुरोसिस्टिडिया बिखरे हुए, 63—70.3 x 13—23.8 µm आकार के। चेइलोसिस्टिडा 20—88.63 x 20.41—23.00 µm आकार के, सीस्पिटोस तरीके से बहुतायत में। पिलेपेलिस विशिष्ट ट्राइकोर्डर्म, सुनहरे भूरे रंग के नहीं, पिलियोसिस्टिडिया 67—135.2 x 7—11.8 µm आकार के, शाखित इक्सोहाइफैडिया, क्लेंप कनेक्शन पूरे में मौजूद हैं। स्टिपिटिएली, कौलोसिस्टिडिया का एक ट्राइकोर्डर्म है, जो प्रचुर मात्रा में, पयूसीफॉर्म से लेकर लांसोलेट सुनहरे भूरे रंग का, 15 µm तक लंबा मोटी दीवार वाला होता है। इसी तरह के बीजाणु अनुपात की रिपोर्ट एक अन्य अध्ययन में की गई थी जिसमें बीजाणु अनुपात लगभग 2.5—3 था (चित्र 2.2.10)।

आणविक पहचान

सेंगर अनुक्रमण के बाद स्ट्रेन की आणविक रूप से पहचान परमाणु राइबोसोमल आईटीएस डीएनए से की गई। प्राप्त खुम्ब के नमुने के अनुक्रम को NCBI डेटाबेस के खिलाफ BLAST तुलना के अधीन किया गया था। अनुक्रम को NCBI Gene बैंक में एक्सेस नंबर OP250115.1 के तहत जमा किया गया था। अनुक्रम ने *फ्लैमुलिना इलास्टिका, फ्लैमुलिना वेलुटिप्स, फ्लैमुलिना* फिलिफॉर्मिस, फ्लैमुलिना रोसिका और फ्लैमुलिना ओनोनिडिस नामक अनुक्रमों के साथ भी घनिष्ठ संबंध दिखाया। प्रजातियों की पहचान करने के लिए फाइलोजेनी का निर्माण किया गया और यह पाया गया कि अनुक्रम फ्लैमुलिना इलास्टिका से संबंधि ात है। फाइलोजेनिक पेड़ को चार समूहों में विभाजित किया गया था यानी पलैमुलिना इलास्टिका, पलैमुलिना वेलुटिप्स, फिलिफॉर्मिस, फ्लैमुलिना रोस्सिका और फ्लैमुलिना ओनोनिडिस क्लेड (चित्र.2.2.11)। फ्लैमृलिना ओनोनिडिस को आउटग्रुप के रूप में चुना गया था। विश्लेषण में 28 न्यूविलयोटाइड अनुक्रम शामिल थे। अंतिम डेटासेट में कुल 962 स्थान थे। सबसे अधिक लॉग संभावना वाला पेड़ (-2211.76)। पलेमुलिना वेलुटिप्स और एफ. इलास्टिका पूरी तरह से अलग थे।

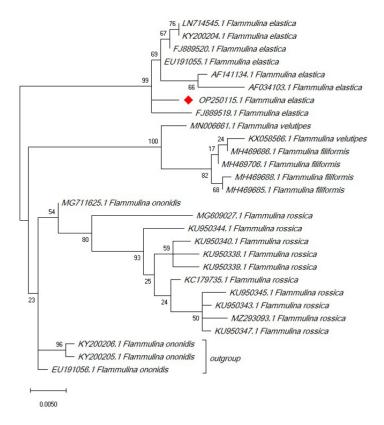


Fig.2.2.11. Phylogenetic tree of F. elastica using maximum likelihood. Red square indicated specimen is DMRX-773 used in the study

चित्र 2.2.11. अधिकतम संभावना का उपयोग करते हुए फ्लैमुलिना इलास्टिका का फाइलोजेनेटिक वृक्ष। अध्ययन में प्रयुक्त लाल वर्ग संकेतित नमूना DMRX-773 है

Cultivation, nutritional profiling of bioactive compounds of Flammulina elastica

Flammulina elastica was cultivated on wheat straw supplemented with 19% wheat bran and 1% calcium carbonate on autoclaved substrate at 121°C for 90 minutes at 22 psi pressure. The primodial formation was completed in 36 days and fruit bodies development took 51 days after spawning. The average pileus diameter was 2.34 cm, Stipe length 8.73 cm, stipe breadth 0.66 cm and average fruit body weight 1.34 g (Fig.2.2.12). The biological efficiency of the F.elastica in one flushe was found 18.61% and dry weight of mushroom was 8.56 g.

The proximate composition analysis of *Flammulina elastica* fruit bodies on dry weight basis revealed that total carbohydrates are the major constituents (51.38 %). *F. elastica* also showed (24.5 % of protein), (12.2 %

पलैमुलिना इलास्टिका के जैवसक्रिय यौगिकों की खेती, पोषण संबंधी रूपरेखा

पलेमुलिना इलास्टिका को 19% गेहूं के चोकर और 1% कैल्शियम कार्बोनेट के साथ ऑटोक्लेव्ड सब्सट्रेट पर 22 psi दबाव पर 90 मिनट के लिए 121 डिग्री सेल्सियस पर गेहूं के भूसे पर उगाया गया था। प्राइमोडियल गठन 36 दिनों में पूरा हुआ और स्पॉनिंग के बाद फल निकायों का विकास 51 दिनों में हुआ। औसत पिलस व्यास 2.34 सेमी, स्टाइप लंबाई 8.73 सेमी, स्टाइप चौड़ाई 0.66 सेमी और औसत फलन का वजन 1. 34 ग्राम था (चित्र 2.2.12)। एक फलश में फ्लेमुलिना इलास्टिका की जैविक दक्षता 18.61% पाई गई और खुम्ब का सूखा वजन 8.56 ग्राम था।

सूखे वजन के आधार पर *फ्लेमुलिना इलास्टिका* के फल निकायों के निकटतम संरचना विश्लेषण से पता चला कि कुल कार्बोहाइड्रेट प्रमुख घटक (51.38%) हैं। *एफ. इलास्टिका* में (24.5% प्रोटीन), (12.2% वसा, (8.36% राख) और 12 प्रतिशत

Fig. 2.2.12. Fruit body production of F. elastica on wheat straw supplemented with wheat bran (left) and Fruit body of DMRX-773 of F. elastica चित्र 2.2.12. गेहूं के भूसे पर एफ. इलास्टिका का फल शरीर उत्पादन (बाएं) और एफ. इलास्टिका के

डीएमआरएक्स-773 का फल शरीर

of fat, (8.36 % of ash) and 12 percent of crude fibres. The energy value of $\it F.~elastica$ fruit bodies were calculated to be 379.56 kcal per 100 g. Studies on bioactive compounds of $\it F.~elastica$ showed the presence of phenolics 51.38 mg/g in GAE (Gallic acid equivalent). The $\it β$ glucan which is an important medicinal compound was found about 47.30% and total and alpha glucan was 70.89 and 23.59% respectively. Strain DMRX -773 showed 65.55% DPPH scavenging activity.

SSIs isolation and hybrid development in the Flammulina

Cultivation trial was performed for the parental strains (DMRO-1204; DMRO-400 and DMRO-1212) of *Flammulina* for spore print. Further, SSIs were isolated from these parental strains and fast growing SSIs were identified based on the culture growth. A total of 76 crosses were attempted using different SSIs of the parental strains (DMRO-1204, DMRO-400 & DMRO-1212). Out of 76 crosses, 29 hybrids confirmed through presence of clamp connection.

कच्चे फाइबर भी पाए गए। एफ. इलास्टिका के फल निकायों का ऊर्जा मूल्य 379.56 किलो कैलोरी प्रति 100 ग्राम के रूप में परिकलित किया गया। एफ. इलास्टिका के जैवसक्रिय यौगिकों पर किए गए अध्ययनों से पता चला कि GAE (गैलिक एसिड समतुल्य) में 51.38 mg/g फेनोलिक्स मौजूद हैं। β ग्लूकेन जो एक महत्वपूर्ण औषधीय यौगिक है, लगभग 47.30% पाया गया और कुल और अल्फा ग्लूकेन क्रमशः 70.89 और 23.59% थे। स्ट्रेन DMRX—773 ने 65.55% DPPH स्कैवेंजिंग गतिविधि दिखाई।

फ्लैमुलिना में एसएसआई अलगाव और संकर विकास

बीजाणु प्रिंट के लिए फ्लेमुलिना के पैतृक उपभेदों (DMRO-1204; DMRO-400 और DMRO-1212) के लिए खेती का परीक्षण किया गया। इसके अलावा, इन पैतृक उपभेदों से SSI को अलग किया गया और कल्चर विकास के आधार पर तेजी से बढ़ने वाले SSI की पहचान की गई। पैतृक उपभेदों (DMRO-1204, DMRO-400 और DMRO-1212) के विभिन्न SSI का उपयोग करके कुल 76 क्रॉस का प्रयास किया गया। 76 क्रॉस में से, क्लैंप कनेक्शन की उपस्थिति के माध्यम से 29 संकर की पृष्टि की गई।

Genetic improvement of Milky mushroom

Cultivation trial of the fifty-five germpalsms of the culture bank was performed using tunnel pasteurized wheat straw as substrate. Twenty two strains were not reached to complete spawn run or fruiting stage. Overall, fruiting was observed in the thirty-three strains of milky mushroom. Maximum yield was observed in the DMRO-299 (71.38%) followed by DMRO-454 (62.67%) strain. While minimum yield was recorded in the DMRO-687 (9.75%) strain. Average fruit body weight was maximum in the DMRO-298 (67.27 g) followed by DMRO-318 (62.17 g). On the other hand minimum average fruit body weight was recorded in the DMRO-454 (25.45 g). Further, preliminary sensory analysis of the different strains of the milky mushroom identified low and high pungency/aroma strain (Fig. 2.2.13).

मिल्की खुम्ब का आनुवंशिक सुधार

सुरंग पाश्चुरीकृत गेहूं के भूसे को सब्सट्रेट के रूप में उपयोग करके कल्चर बैंक के 55 जर्मपलास्म की खेती का परीक्षण किया गया। 22 उपभेद स्पॉन रन या फलने की अवस्था तक नहीं पहुँच पाए। कुल मिलाकर, मिल्की खुम्ब के तैंतीस उपभेदों में फलने की अवस्था देखी गई। अधिकतम उपज DMRO—299 (71.38%) में देखी गई, उसके बाद DMRO—454 (62.67%) स्ट्रेन में। जबिक न्यूनतम उपज DMRO—687 (9.75%) स्ट्रेन में दर्ज की गई। औसत फल शरीर का वजन DMRO—298 (67.27 ग्राम) में अधिकतम था, उसके बाद DMRO—318 (62.17 ग्राम) था। दूसरी ओर, न्यूनतम औसत फल शरीर का वजन DMRO—454 (25.45 ग्राम) में दर्ज किया गया। इसके अलावा, दूधिया खुम्ब के विभिन्न स्ट्रेन के प्रारंभिक संवेदी विश्लेषण ने कम और उच्च तीखेपन / सुगंध स्ट्रेन की पहचान की (चित्र 2.2.13)।

Fig.2.2.13. Evaluation of the different strains of the milky mushroom चित्र 2.2.13. दूधिया खुम्ब के विभिन्न प्रकारों का मूल्यांकन

2.3 Crop Production

2.3 फसल उत्पादन

Refinement of cultivation technologies in Button Mushroom

A. Identification of standard casing soil for button mushroom cultivation

Based on the studies on physico-chemical parameters of standard casing soil for button mushroom i.e. peat moss, all the raw material used for casing soil in our country were analyzed for those parameters such as pH, EC (ms/cm), BD (g/cm³), PD(g/cm³), Porosity (%), Nitrogen (%), Carbon (%) and C:N ratio. Different combinations were prepared so as to achieve the physico-chemical parameters of the combination near to the standard casing soil mixture. In total, 25 combinations were evaluated for yield performance and eight were selected for further experimentations. The yield performance of all the selected combination is given in Table 2.5 and Fig. 2.3.1. Highest yield was obtained in Coir pith with 10% lime powder.

बटन खुम्ब की खेती की तकनीकों का परिशोधन

ए. बटन खुम्ब की खेती के लिए मानक आवरण मिट्टी की पहचान

बटन खुम्ब के लिए मानक आवरण मिट्टी यानी पीट मॉस के भौतिक—रासायनिक मापदंडों पर किए गए अध्ययनों के आधार पर, हमारे देश में आवरण मिट्टी के लिए उपयोग किए जाने वाले सभी कच्चे माल का पीएच, ईसी (एमएस/सेमी), बीडी (जी/सेमी), पीडी (जी/सेमी), पोरोसिटी (%), नाइट्रोजन (%), कार्बन (%) और सी:एन अनुपात जैसे मापदंडों के लिए विश्लेषण किया गया। मानक आवरण मिट्टी मिश्रण के करीब संयोजन के भौतिक—रासायनिक मापदंडों को प्राप्त करने के लिए विभिन्न संयोजन तैयार किए गए थे। कुल मिलाकर, उपज प्रदर्शन के लिए 25 संयोजनों का मूल्यांकन किया गया और आठ को आगे के प्रयोगों के लिए चुना गया। सभी चयनित संयोजनों का उपज प्रदर्शन तालिका 2.5 और चित्र 2.3.1 में दिया गया है। 10% चूना पाउडर के साथ कॉयर पिथ में सबसे अधिक उपज प्राप्त हुई।

Fig. 2.3.1. Yield performance in different casing soil formulations चित्र 2.3.1. विभिन्न आवरण मिट्टी के मिश्रणों में उपज प्रदर्शन

Table 2.5. Yield performance of eight casing soil combinations तालिका 2.5. आठ आवरण मिट्टी संयोजनों का उपज प्रदर्शन

Treatments	BE (%)
Coir pith + Lime (90+10)	16.92
Coir pith + FYM (80+20)	13.06
Coir pith + FYM (50+50)	12.14
Coir pith + FYM (20+80)	9.04
Coir pith + FYM (10+90)	7.89
Coir pith + Soil (80+20)	15.33
Coir pith + Soil (70+30)	14.99
Coir pith + SMS (70+30)	14.48

B. Cultivation Trials on Termitomyces

The cultivation trial used liquid spawn for inoculation in the substrate. A total of two substrate combinations were tried in the first experiment on *Termitomyces* mushroom. The solid substrate inoculated with liquid inoculum was incubated at 22-25°C for 35 days with 500-600 ppm CO₂ concentration, shifted to cropping rooms, cased with cocopeat and temperature was maintained with diurnal variation of 26-28°C and 15°C (Table 2.6, Table 2.7 and Fig. 2.3.2, Fig. 2.3.3). The spawn run bags showed rhizomorph formation but fruit body initiation has not been achieved till now.

बी. टर्मिटोमाइसिस पर खेती के परीक्षण

खेती के परीक्षण में सब्सट्रेट में टीका लगाने के लिए तरल स्पॉन का इस्तेमाल किया गया। टर्मिटोमाइसिस खुम्ब पर पहले प्रयोग में कुल दो सब्सट्रेट संयोजनों की कोशिश की गई। तरल इनोकुलम के साथ टीका लगाए गए ठोस सब्सट्रेट को 500—600 पीपीएम CO2 सांद्रता के साथ 35 दिनों के लिए 22—25 डिग्री सेल्सियस पर इनक्यूबेट किया गया, फसल कक्षों में स्थानांतरित किया गया, कोकोपीट के साथ कवर किया गया और तापमान को 26—28 डिग्री सेल्सियस और 15 डिग्री सेल्सियस (तालिका 2.6, तालिका 2.7 और चित्र 2.3.2, चित्र 2.3.3) के दैनिक परिवर्तन के साथ बनाए रखा गया। स्पॉन रन बैग ने राइजोमॉर्फ गठन दिखाया लेकिन फल शरीर की शुरुआत अभी तक हासिल नहीं हुई है।

Table 2.6. Media composition for preparation of liquid spawn of *Termitomyces* cultures तालिका 2.6. टर्मिटोमाइसिस संस्कृतियों के तरल स्पॉन की तैयारी के लिए मीडिया संरचना

Ingredients	Quantity/litre	Ingredients	Quantity/litre
Glucose	30 g	Yeast Extract	1 g
KH ₂ PO ₄	0.5 g	K ₂ HPO ₄	0.5 g
MgSO ₄	0.5 g	NH ₄ Cl	4.0 g

Table 2.7. Substrate used for cultivation trial of *Termitomyces* mushroom तालिका 2.7. टर्मिटोमाइसेस खुम्ब की खेती के परीक्षण के लिए प्रयुक्त सब्सट्रेट

Substrate 1	Proportion	Substrate 2	Proportion
Saw dust	20%	Saw dust	30%
Wheat straw	20%	Wheat straw	10%
Wheat bran	20%	Wheat bran	20%
Corn flour	10%	Corn flour	10%
CaCO ₃	1%	CaCO ₃	1%
Cotton seed waste	29%	Cotton seed waste	29%

Fig. 2.3.2. Spawn run stage of Termitomyces mushroom चित्र 2.3.2. टर्मिटोमाइसेस खुम्ब का स्पॉन रन चरण

Fig. 2.3.3. Rhizomorph formation in Termitomyces mushroom चित्र 2.3.3. टर्मिटोमाइसीज खुम्ब में राइजोमॉर्फ गठन

Cultivation of *Trametes versicolor* a highly medicinal mushroom in India

Trametes versicolor – also known as Coriolus versicolor and Polyporus versicolor – is a common polypore mushroom found throughout the world. Meaning 'of several colors', versicolor accurately describes this fungus that displays a unique blend of markings *T. versicolor* is a white-rot fungus which

भारत में अत्यधिक औषधीय खुम्ब ट्रैमेटेस वर्सीकलर की खेती

ट्रैमेटेस वर्सीकलर — जिसे कोरिओलस वर्सीकलर और पॉलीपोरस वर्सीकलर के नाम से भी जाना जाता है — दुनिया भर में पाया जाने वाला एक आम पॉलीपोर खुम्ब है। 'कई रंगों का' अर्थ, वर्सीकलर इस कवक का सटीक वर्णन करता है जो चिह्नों का एक अनूठा मिश्रण प्रदर्शित करता है टी. वर्सीकलर एक सफेद—सड़ांध कवक है जो लकड़ी जैसे लिग्नोसेल्यूलोसिक

degrades lignin from lignocellulosic materials, such as wood. Trametes versicolor contains polysaccharides under basic research, including the protein-bound PSP and β -1,3 and β -1,4 glucans. The lipid fraction contains the lanostane-type tetracyclic triterpenoid sterol ergosta-7,22, dien-3 β -ol as well as fungisterol and β sitosterol. Polysaccharide-K (PSK or krestin), extracted from T. versicolor, is considered safe for use as an adjuvant therapy for cancer treatment in Japan where it is known as kawaratake (roof tile mushroom) and approved for clinical use. Cultivation of this mushroom was done on saw dust and wheat straw substrates as a basal medium. Spawning was done @ 3% on dry weight basis. Spawn run was completed in 35-40 days at 24-25 ° C. Pinning started after 18-20 days of bag opening (Fig. 2.3.4). Presently crop is in fruiting stage and BE will be calculated after the termination of the crop.

पदार्थों से लिग्निन को नष्ट करता है। ट्रेमेटेस वर्सीकलर में ब्नियादी शोध के तहत पॉलीसेकेराइड होते हैं, जिनमें प्रोटीन–बाउंड पीएसपी और β–1,3 और β–1,4 ग्लूकेन शामिल हैं। लिपिड अंश में लैनोस्टेन-प्रकार टेट्रासाइक्लिक ट्राइटरपेनोइड स्टेरोल एर्गोस्टा-7,22, डायन-3β-ऑल के साथ-साथ फांगिस्टरोल और β-सिटोस्टेरोल होते हैं। टी. वर्सीकलर से निकाले गए पॉलीसैकेराइड-के (पीएसके या क्रेस्टिन) को जापान में कैंसर के उपचार के लिए सहायक चिकित्सा के रूप में उपयोग के लिए स्रक्षित माना जाता है, जहाँ इसे कावाराटेक (रूफ टाइल खुम्ब) के रूप में जाना जाता है और इसे नैदानिक उपयोग के लिए अनुमोदित किया गया है। इस खुम्ब की खेती चूरा और गेहूं के भूसे के सब्सट्रेट पर बेसल माध्यम के रूप में की गई थी। सूखे वजन के आधार पर 3% की दर से स्पॉनिंग की गई। 24-25 डिग्री सेल्सियस पर 35-40 दिनों में स्पॉन रन पूरा हो गया। बैग खोलने के 18-20 दिनों के बाद पिनिंग शुरू हुई (चित्र 2.3.4)। वर्तमान में फसल फलने की अवस्था में है और फसल की समाप्ति के बाद BE की गणना की जाएगी।

Fig. 2.3.4. Fruiting bodies of Trametes versicolor चित्र 2.3.4. ट्रेमेटेस वर्सीकोलर के फल निकाय

2.4 Crop Protection 2.4 फसल सुरक्षा

Studies on seasonal abundance of mushroom flies

Seasonal abundance of mushroom flies was recorded using light trap. Data was recorded at weekly intervals. Monthly average data revealed that maximum population of flies (208) was recorded in the month of July followed by October and September (Fig. 2.4.1). Minimum population was recorded in the month of June. From November onwards decline in population was recorded in subsequent months.

खुम्ब मक्खियों की मौसमी बहुतायत पर अध्ययन

लाइट ट्रैप का उपयोग करके खुम्ब मक्खियों की मौसमी बहुतायत दर्ज की गई। साप्ताहिक अंतराल पर डेटा दर्ज किया गया। मासिक औसत डेटा से पता चला कि मक्खियों की अधिकतम आबादी (208) जुलाई के महीने में दर्ज की गई, उसके बाद अक्टूबर और सितम्बर (चित्र 2.4.1) में दर्ज की गई। जून के महीने में न्यूनतम आबादी दर्ज की गई। नवंबर के महीने के बाद से बाद के महीनों में आबादी में गिरावट दर्ज की गई।

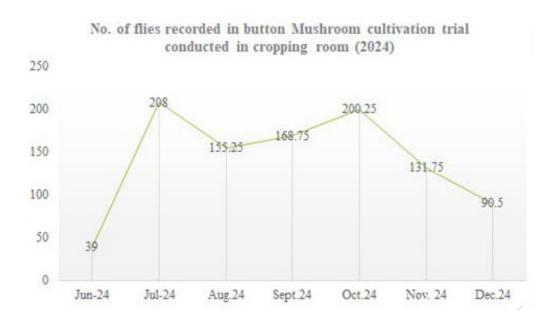


Fig. 2.4.1. Studies on seasonal abundance of mushroom flies चित्र 2.4.1. खुम्ब मिखयों की मौसमी बहुतायत पर अध्ययन

Occurrence of diseases and competitor moulds in mushroom cultivation

Occurrence of 9 diseases and competitor moulds of mushrooms was recorded at commercial mushroom farms. Mummy disease of button mushroom (*Pseudomonas* spp) manifested bulging at the base along with fibrous mycelium around it. Stipe of the infected fruit body found stretched out and curved slightly (Fig. 2.4.2). In total 35.00% average incidence

खुम्ब की खेती में बीमारियों और प्रतिस्पर्धी फफूंदों की

वाणिज्यिक खुम्ब फार्मों में खुम्ब की 9 बीमारियों और प्रतिस्पर्धी फफूंदों की घटना दर्ज की गई। बटन खुम्ब (स्यूडोमोनास स्पीशीज) की ममी बीमारी के कारण आधार पर उभार और उसके चारों ओर रेशेदार माइसीलियम दिखाई दिया। संक्रमित फल शरीर की स्टिप फैली हुई और थोड़ी मुड़ी हुई पाई गई (चित्र 2.4.2)। कुल मिलाकर ममी रोग की 35.00% औसत

of Mummy disease was recorded. At one farm 40 percent cultivation bags of button mushroom were found showing unusual symptoms like deformed fruit bodies, leathery texture and stunted growth (Fig. 2.4.3). Observed symptoms showed resemblance with virus like symptoms. Therefore samples were lyophilized for further studies using virus specific markers. Wet bubble disease (Mycogone perniciosa) was recorded the most commonly occurring disease in mushroom cultivation (Fig. 2.4.4) with 65-70% incidence. Infected fruit bodies showed sclerodermoid mass formation and thickened stipe symptoms. Green mould (*Trichoderm* spp) was also identified as common problem in cultivated mushroom with 50-60 % incidence. It manifested symptoms like cottony white mycelium, green colonies and cap spotting (Fig. 2.4.5). Cob web of oyster (Cladobotryum sp.) was also observed with 55-65% incidence on oyster crop. It produced symptoms like patches of mycelium, wet rot, powdery spore, cap spotting and pink pigmentation in mycelium (Fig. 2.4.6).

Cob web was also noticed in shiitake mushroom (Fig. 2.4.7) with 5-7% incidence. Causal organism in shiitake mushroom was identified as Cladobotryum dendroides based on the microscopic characters of spore i.e. basal hilum. However, in case of cob web of oyster mushroom, basal hilum like out growth was recorded at both the ends of spores which is an indication of new species of Cladobotryum. Therefore, both the cultures are required to be confirmed through molecular markers. Brown plaster mould (Populospora byssina) was recorded common competitor mould with 55-65% incidence. This mould showed white mycelial mat in compost bags/beds and on casing soil and later turns to brown colour (Fig. 2.4.8). Olive green mould (Chaetomium spp) was recorded as another production lowering mould with 30-40% incidence. Infected compost produced odd smell from growing bags and olive green patches on the surface of bags (Fig. 2.4.9). In some places lips thick mould (Sporendonema purpurescens) was also noticed with 100% incidence. This mould showed white crystallinelike growth and as the spore of the mould mature, the colour changes from white to pink (Fig. 2.4.10).

घटना दर्ज की गई। एक फार्म में बटन खुम्ब की 40 प्रतिशत खेती की थैलियों में असामान्य लक्षण पाए गए जैसे कि विकृत फल शरीर, चमड़े जैसी बनावट और रुकी हुई वृद्धि (चित्र 2.4. 3)। देखे गए लक्षण वायरस जैसे लक्षणों से मिलते जुलते थे। इसलिए वायरस विशिष्ट मार्करों का उपयोग करके आगे के अध ययन के लिए नम्नों को लाइओफिलाइज किया गया। खुम्ब की खेती में सबसे आम बीमारी वेट बबल डिजीज (माइकोगोन पेर्निसियोसा) दर्ज की गई (चित्र 2.4.4) जिसमें 65-70% मामले सामने आए। संक्रमित फल निकायों में स्क्लेरोडमीइड द्रव्यमान गठन और मोटी डंठल के लक्षण दिखाई दिए। ग्रीन मोल्ड (ट्राइकोडर्मा स्पीशीज) की पहचान भी खेती की गई खुम्ब में 50-60% मामलों में आम समस्या के रूप में की गई। इसने कॉटनी व्हाइट माइसीलियम, ग्रीन कॉलोनियों और कैप स्पॉटिंग (चित्र 2.4.5) जैसे लक्षण दिखाए। ढींगरी की फसल पर 55–65% मामलों में ढींगरी (क्लैडोबोट्रियम एसपी) का कोब वेब भी देखा गया। इसने माइसीलियम के पैच, गीली सडांध, पाउडरी बीजाणू, कैप स्पॉटिंग और माइसीलियम में गुलाबी रंगद्रव्य (चित्र 2.4.6) जैसे लक्षण पैदा किए।

शिटाके खुम्ब में कोब वेब भी देखा गया (चित्र 2.4.7) जिसमें 5-7% घटना हुई। शिटाके खुम्ब में कारण जीव की पहचान बीजाणु के सूक्ष्म लक्षणों यानी बेसल हिलम के आधार पर क्लैडोबोट्रियम डेंड्रोइड्स के रूप में की गई। हालांकि, ढींगरी खुम्ब के कोब वेब के मामले में, बीजाणुओं के दोनों सिरों पर बेसल हिलम जैसी वृद्धि दर्ज की गई जो क्लैडोबोट्टियम की नई प्रजातियों का संकेत है। इसलिए, दोनों कल्चरस की पृष्टि आणविक मार्करों के माध्यम से की जानी चाहिए। ब्राउन प्लास्टर मोल्ड (पॉपलोरपोरा बाइसिना) को 55-65% घटना के साथ आम प्रतिस्पर्धी मोल्ड दर्ज किया गया। इस मोल्ड ने खाद बैग / बेड और आवरण मिट्टी में सफेद माइसेलियल मैट दिखाया और बाद में भूरे रंग में बदल गया (चित्र 2.4.8)। जैतून हरा मोल्ड (चेटोमियम स्पीशीज) को 30-40% घटना के साथ एक और उत्पादन कम करने वाले मोल्ड के रूप में दर्ज किया गया। संक्रमित खाद से बैगों की सतह पर अजीब सी गंध और जैतून के हरे रंग के धब्बे दिखाई दिए (चित्र 2.4.9)। कुछ स्थानों पर लिपथिक फफ्रंद (स्पोरेंडोनेमा पर्पूरेसेंस) भी 100% प्रकोप के साथ देखी गई। इस फफूंद में सफेद क्रिस्टलीय जैसी वृद्धि दिखाई दी और जैसे-जैसे फफूंद के बीजाणु परिपक्व होते हैं, इसका रंग सफेद से गुलाबी हो जाता है (चित्र 2.4.10)।

Fig. 2.4.2. Mummy disease of button mushroom चित्र 2.4.2. बटन खुम्ब का ममी रोग

Fig. 2.4.3. Button mushroom malformation चित्र 2.4.3. बटन खुम्ब विकृति

Fig. 2.4.4. Wet bubble disease चित्र 2.4.4. गीला बुलबुला रोग

Fig. 2.4.5. *Green mould* चित्र 2.4.5. *हरा फफूंद*

Fig. 2.4.6. Cob web of oyster चित्र 2.4.6. ढींगरी में काब वेब

Fig. 2.4.7. Cob web of Shiitake चित्र 2.4.7. शिटाके में काब वेब

Fig. 2.4.8. *Brown plaster mould* चित्र **2.4.8.** मूरा प्लास्टर मोल्ड

Fig. 2.4.9. *Olive green mould* चित्र **2.4.9. जैतून हरा मोल्ड**

Fig. 2.4.10. *Lips thick mould* चित्र **2.4.10**. लिपथिक मोल्ड

Screening of oyster species for viral diseases

Five oyster species namely *Pleurotus ostreatus*, *P. ostreatus* var Florida, *P. pulmonarius*, *P. citrinopileatus* and *P. djamor* were evaluated for their agronomic traits and diseases appearance. Out of five, in two (*P. ostreatus* and *P. ostreatus* var Florida) virus like symptoms including young fruit bodies with long stipe and funnel shaped or morning glory shaped basiodiocarps were recorded (S2 to S-5). S-1 *P. Oestratus* var Florida was healthy with flat fruit bodies without any curling of margin (Fig. 2.4.11).

Cultures were raised from symptomatic fruit bodies for further studies. Virus suspected cultures of oyster mushrooms namely *Pleurotus ostreatus* and P. *ostreatus* var. Florida were evaluated for their growth on Potato dextrose Agar media. Results (Table 2.8) showed that suspected cultures registered slow diametric mycelial growth (40.85 to 43.75 mm) as compared to healthy samples (61.88 mm) after 7 days of incubation.

वायरल रोगों के लिए ढींगरी की प्रजातियों की जांच

पांच ढींगरी प्रजातियों अर्थात् प्लुरोटस ऑस्ट्रेटस, पी. ऑस्ट्रेटस वर फ्लोरिडा, पी. पल्मोनेरियस, पी. सिट्रिनोपिलेटस और पी. जामोर का उनके कृषि संबंधी लक्षणों और रोगों की उपस्थिति के लिए मूल्यांकन किया गया। पांच में से, दो (पी. ऑस्ट्रेटस और पी. ऑस्ट्रेटस वर फ्लोरिडा) में वायरस जैसे लक्षण पाए गए, जिनमें लंबे डंठल और फनल के आकार या मॉर्निंग ग्लोरी के आकार के बेसियोडियोकार्प्स के साथ युवा फल निकाय शामिल थे (एस2 से एस–5)। एस–1 पी. ऑस्ट्रेटस वर फ्लोरिडा स्वस्थ था, जिसके फल निकाय सपाट थे और किनारे पर कोई कर्लिंग नहीं थी (चित्र 2.4.11)।

आगे के अध्ययन के लिए लक्षणयुक्त फल निकायों से कल्चर तैयार किए गए। ढींगरी खुम्ब जैसे प्लुरोटस ऑस्ट्रेटस और पी. ऑस्ट्रेटस वर फ्लोरिडा के वायरस संदिग्ध कल्चर का आलू डेक्सट्रोज अगर मीडिया पर उनकी वृद्धि के लिए मूल्यांकन किया गया। परिणाम (तालिका 2.8) से पता चला कि संदिग्ध कल्चर ने 7 दिनों के ऊष्मायन के बाद स्वस्थ नमूनों (61.88 मिमी) की तुलना में धीमी डायमेट्रिक माइसेलियल वृद्धि (40.85 से 43.75 मिमी) दर्ज की।

S-1 Healthy

S-2 Suspected

S-3 Suspected

S-4 Suspected

S-5 Suspected

Laboratory examination

Fig. 2.4.11. Virus like symptoms on Pleurotus spp. चित्र 2.4.11. प्लूरोटस प्रजाति पर वायरस जैसे लक्षण

Table 2.8. Growth test for healthy and virus suspected samples तालिका 2.8. स्वस्थ और वायरस संदिग्ध नमूनों के लिए वृद्धि परीक्षण

S. No.	Diametric mycelial growth (mm) after 7 days	Colour change
S-1	61.88	No
S-2	43.75	Yellowish
S-3	43.09	Yellowish
S-4	40.85	Yellowish
S-5	41.96	Yellowish
CD _{0.05}	2.55	-

Biological control of pathogens

22 bacterial isolates evaluated against *Mycogone permiciosa* (wet bubble disease), cob web disease (*Cladobotryum* sp) and *g*reen mould (*Trichoderma* sp) under *in vitro*. Effective isolates were identified by 16S rRNA sequencing. *Pseudomonas aeruginosa* B22 identified effective against *M. permiciosa* (wet bubble disease) under *in vitro* conditions. *Bacillus proteolyticus* B15 and *Pseudomonas putida* B16 found effective against *Cladobotryum* sp showed >90% growth inhibition. However, none of the isolates found effective against *Trichoderma* sp (Table 2.9 and Fig. 2.4.12).

रोगजनकों का जैविक नियंत्रण

22 जीवाणु आइसोलेट्स का माइकोगोन परिनिसियोसा (गीला बुलबुला रोग), कोब वेब रोग (क्लैडोबोट्रियम एसपी) और ग्रीन मोल्ड (ट्राइकोडमी एसपी) के खिलाफ इन—विट्रो के तहत मूल्यांकन किया गया। 16S rRNA अनुक्रमण द्वारा प्रभावी आइसोलेट्स की पहचान की गई। इन—विट्रो स्थितियों के तहत स्यूडोमोनास एरुगिनोसा B22 को एम. परिनिसियोसा (गीला बुलबुला रोग) के खिलाफ प्रभावी पाया गया। क्लैडोबोट्रियम एसपी के खिलाफ प्रभावी पाए गए बैसिलस प्रोटियोलिटिकस B15 और स्यूडोमोनास पुटिडा B16 ने >90% वृद्धि अवरोध दिखाया। हालाँकि, ट्राइकोडमी एसपी (तालिका 2.9 और चित्र 2.4.12) के खिलाफ कोई भी आइसोलेट्स प्रभावी नहीं पाया

Table 2.9. Effect of bacterial isolates on inhibition of various diseases of mushroom तालिका 2.9. खुम्ब के विभिन्न रोगों के अवरोध पर जीवाणु पृथक्करण का प्रभाव

Isolates	Per cent inhibition									
	M. permiciosa	<i>Cladobotryum</i> sp	Trichoderma sp							
B-1	78.89	0.00	1.11							
B-2	36.30	0.00	1.11							
B-3	16.30	0.00	0.00							
B-4	28.15	0.00	0.00							
B-5	30.37	0.00	0.00							
B-6	25.93	0.00	0.00							
B-7	27.04	0.00	0.00							
B-8	61.48	0.00	0.74							
B-9	39.26	0.00	0.00							
B-10	20.00	0.00	0.00							
B-11	15.19	0.00	0.00							
B-12	28.89	0.00	0.00							

Isolates		Per cent inhibition								
	M. permiciosa	<i>Cladobotryum</i> sp	Trichoderma sp							
B-13	28.15	0.00	0.00							
B-14	15.56	0.00	0.00							
B-15	53.46	94.44	0.00							
B-16	76.67	0.00	0.74							
B-17	8.15	0.00	0.00							
B-18	18.52	0.00	0.00							
B-19	9.26	0.00	0.00							
B-20	6.67	0.00	0.00							
B-21	73.70	0.00	1.11							
B-22	87.41	94.44	1.85							
Control	0.00	0.00	0.00							

Fig. 2.4.12. Antagonistic activities of bacterial isolates against mushroom pathogens चित्र 2.4.12. खुम्ब रोगजनकों के विरुद्ध जीवाणुओं की विरोधी गतिविधियाँ

P. putida (B-16)

2.5 Post Harvest Technology 2.5 कटाई उपरान्त प्रौद्योगिकी

Development of vegan meat analogue from mushrooms

Fourteen strains from 8 different mushrooms (*Pleurotus*, Button, *Hericium*, Shiitake, Paddy straw, Milky, *Laetiporus* and *Auricularia*) were screened on solid (Malt Extract Agar) as well as Malt Extract broth for their suitability for vegan meat (Table 2.10).

खुम्ब से शाकाहारी मांस एनालॉग का विकास

शाकाहारी मांस के लिए उनकी उपयुक्तता के लिए 8 अलग—अलग खुम्बों (*प्लुरोटस*, बटन, *हेरिशियम*, शिटाके, पराली, मिल्की, *लेटिपोरस* और *ऑरिकुलेरियो*) के चौदह उपभेदों को ठोस (माल्ट एक्सट्रैक्ट एगर) के साथ—साथ माल्ट एक्सट्रैक्ट ब्रॉथ पर जांचा गया (तालिका 2.10)।

Table 2.10. Screening of different strains of mushroom for mycelial growth तालिका 2.10. मायसेलियल वृद्धि के लिए खुम्ब की विभिन्न किस्मों की स्क्रीनिंग

S.No.	Strain	S.No.	Strain
1.	DMRP-135 (<i>Pleurotus eryngii</i>)	8.	DMRO-985 (<i>Calocybe indica</i>)
2.	DMRP-136 (<i>P. ostreatus</i> var. Florida)	9.	DMR-1072 (<i>Volvariella volvacea</i>)
3.	DMRP-115 (<i>P. ostreatus</i>)	10.	DMRP-356 (<i>Lentinula edodes</i>)
4.	DMRP-112 (<i>P. sajor-caju</i>)	11.	DMRA-1 (<i>Agaricus bisporus</i>)
5.	DMRP-116 (<i>P. citranopileatus</i>)	12.	DMRX-779 (<i>Hericium erinaceus</i>)
6.	DMRP-392 (<i>P. sajor-caju</i>)	13.	L-2 (<i>Laetiporus</i> sp.)
7.	DMRP-205 (<i>P. djamor</i>)	14.	DMRO-106 (<i>Auricularia polytricha</i>)

On the basis of growth rate of mycelium (90mm/6 days), average mycelial biomass of 16.52 g/L and thickness of 6.84µm on solid media (MEA) *Pleurotus ostreatus* var Florida was selected for its suitability to develop vegan meat analogue. Microscopic studies were performed to compare the mycelial structure of each strain used in the study. Maximum mycelial thickness was observed in case of *Volvariella volvacea* (14.02 µm) followed by *Lentinula edodes* (8.8 µm) and *Pleurotus ostreatus* var florida (6.84 µm) while *Pleurotus citranopileatus* was found to have minimum mycelial thickness (3.62 µm) (Table 2.11 and Table 2.12).

मायसेलियम की वृद्धि दर (90मिमी/6 दिन), औसत मायसेलियल बायोमास 16.52 ग्राम/लीटर और ठोस मीडिया (एमईए) पर 6.84 μm की मोटाई के आधार पर प्लुरोटस ओस्ट्रेटस वैरा. फ्लोरिडा को शाकाहारी मांस एनालॉग विकसित करने के लिए इसकी उपयुक्तता के लिए चुना गया था। अध्ययन में प्रयुक्त प्रत्येक स्ट्रेन की मायसेलियल संरचना की तुलना करने के लिए सूक्ष्म अध्ययन किए गए। वोल्वेरीला वोल्वेसिया (14.02 μm) के मामले में अधिकतम मायसेलियल मोटाई देखी गई, इसके बाद लेंटिनुला एडोड्स (8.8 μm) और प्लुरोटस ओस्ट्रीटस वैरा. फ्लोरिडा (6.84 μm) थे, जबिक प्लुरोटस सिट्रानोपिलीटस में न्यूनतम मायसेलियल मोटाई (3.62 μm) पाई गई (तालिका 2.11 और तालिका 2.12)।

Table 2.11. Average growth rate of different strains on solid media तालिका 2.11. ठोस मीडिया पर विभिन्न उपभेदों की औसत वृद्धि दर

S. No.	Strain	Average mycelial growth rate on MEA (cm)								
		2 days	4 days	6 days	8 days	10 days	12 days	14 days	16 days	
1.	DMRP-135 (<i>Pleurotus eryngii</i>)	1.53	3.33	5.10	5.10	7.03	8.07	9.00	9.00	
2.	DMRP-136 (<i>P. ostreatus</i> var. Florida)	3.63	7.13	9.00	9.00	9.00	9.00	9.00	9.00	

S. No.	Strain	Average mycelial growth rate on MEA (cm)							
		2 days	4 days	6 days	8 days	10 days	12 days	14 days	16 days
3.	DMRP-115 (<i>P. ostreatus</i>)	2.77	6.20	7.33	7.33	9.00	9.00	9.00	9.00
4.	DMRP-112 (<i>P. sajor-caju</i>)	3.40	7.20	9.00	9.00	9.00	9.00	9.00	9.00
5.	DMRP-116 (<i>P. citranopileatus</i>)	2.93	6.37	7.40	7.40	8.93	9.00	9.00	9.00
6.	DMRP-392 (<i>P. sajor-caju</i>)	3.53	7.30	9.00	9.00	9.00	9.00	9.00	9.00
7.	DMRP-205 (<i>P. djamor</i>)	2.97	7.50	9.00	9.00	9.00	9.00	9.00	9.00
8.	DMRO-985 (<i>Calocybe indica</i>)	1.43	4.43	6.10	6.10	8.03	9.00	9.00	9.00
9.	DMR-1072 (<i>Volvariella volvacea</i>)	2.40	8.90	9.00	9.00	9.00	9.00	9.00	9.00
10.	DMRP-356 (<i>Lentinula edodes</i>)	1.87	4.40	5.30	5.30	7.30	9.00	9.00	9.00
11.	DMRA-1 (<i>Agaricus bisporus</i>)	1.53	3.07	3.50	3.50	4.47	5.53	6.33	6.90
12.	DMRX-779 (<i>Hericium erinaceus</i>)	0	0.00	1.03	1.03	3.43	4.87	5.97	6.60
13.	L-2 (<i>Laetiporus</i> sp.)	1.20	2.17	5.13	5.13	7.00	8.37	9.00	9.00
14.	DMRO-106 (Auricularia polytricha)	1.53	3.47	5.40	5.40	5.90	7.07	8.73	9.00
	C.D. (0.05%)	0.338	0.372	0.575	0.373	0.620	0.687	0.856	1.049

Table 2.12. Average wet and dry weight of mycelium with microscopic diameter तालिका 2.12. सूक्ष्म व्यास के साथ माइसेलियम का औसत गीला और सूखा वजन

				
S.No.	Strain	Mycelial wet weight (g/lt)	Mycelial dried weight (g/lt)	Mycelial diameter (μm)
1.	DMRP-135 (<i>Pleurotus eryngii</i>)	15.72	1.96	4.72
2.	DMRP-136 (<i>P. ostreatus</i> var. Florida)	16.52	2.48	6.84
3.	DMRP-115 (<i>P. ostreatus</i>)	4.52	0.40	4.41
4.	DMRP-112 (<i>P. sajor-caju</i>)	13.36	1.64	5.74
5.	DMRP-116 (<i>P. citranopileatus</i>)	17.00	1.40	3.62
6.	DMRP-392 (<i>P. sajor-caju</i>)	8.12	0.48	5.43
7.	DMRP-205 (<i>P. djamor</i>)	9.52	0.80	6.17
8.	DMRO-985 (<i>Calocybe indica</i>)	0.20	0.04	3.79
9.	DMR-1072 (Volvariella volvacea)	5.24	0.64	14.02
10.	DMRP-356 (<i>Lentinula edodes</i>)	0.68	0.08	8.60
11.	DMRA-1 (<i>Agaricus bisporus</i>)	1.20	0.20	5.81
12.	DMRX-779 (<i>Hericium erinaceus</i>)	1.32	0.24	5.82
13.	L-2 (<i>Laetiporus</i> sp.)	1.56	0.36	5.32
14.	DMRO-106 (Auricularia polytricha)	6.12	0.48	5.62
	C.D. (0.05%)	0.807	0.220	2.012

Linear mycelial growth in different substrates

To record the linear mycelial growth of *Pleurotus* ostreatus var. Florida, two different substrates—wheat straw and sawdust, used alone or in combination—were tested along with various supplements including soybean powder, brown rice, and wheat bran. Out of

विभिन्न सबस्ट्रेट्स में रैखिक मायसेलियल वृद्धि

प्लुरोटस ओस्ट्रीटस वैरा. फ्लोरिडा संस्करण की रैखिक मायसेलियल वृद्धि को रिकॉर्ड करने के लिए दो अलग—अलग सबस्ट्रेट्स—गेहूं का भूसा और लकड़ी का बुरादा, अकेले या संयोजन में—सोयाबीन पाउडर, ब्राउन चावल और गेहूं की भूसी

15 different combinations tried, wheat straw + soybean supplement showed the fastest linear mycelial growth of 8.6 cm / 7 days as compared to other treatments (Table 2.13 and Fig. 2.5.1).

सिंहत विभिन्न पूरकों के साथ परीक्षण किया गया। आजमाए गए 15 अलग—अलग संयोजनों में से, गेहूं के भूसे + सोयाबीन के पूरक ने अन्य उपचारों की तुलना में 8.6 सेमी / 7 दिन की सबसे तेज रैखिक मायसेलियल वृद्धि देखी (तालिका 2.13 और चित्र 2.5.1)।

Table 2.13. Linear mycelial growth rate in different substrates and supplements combinations तालिका 2.13. विभिन्न सबस्ट्रेट्स और पूरक संयोजनों में रैखिक मायसेलियल वृद्धि दर

S. No.	Treatment	Aver	age mycelial growth o	on solid substrate (d	cm)
		2 days	4 days	6 days	8 days
1.	WS+SB	1.63	3.00	5.07	8.60
2.	WS+CORN	1.47	2.90	4.50	7.63
3.	WS+BR	1.40	2.40	4.17	7.30
4.	WS+WB	1.57	2.80	4.53	8.13
5.	SD+SB	0.27	0.90	1.57	2.97
6.	SD+CORN	0.30	1.50	1.60	2.23
7.	SD+BR	0.33	0.63	1.13	1.63
8.	SD+WB	0.27	0.70	1.13	1.77
9.	WS+SD+SB	0.73	1.30	2.30	4.50
10.	WS+SD +CORN	0.60	1.17	2.17	3.30
11.	WS+SD +BR	0.70	1.27	2.30	3.53
12.	WS+SD +WB	0.77	1.40	2.30	3.70
13.	WS	1.10	2.63	4.30	7.87
14.	SD	0.07	0.67	1.20	1.57
15.	WS+SD	0.67	1.20	1.93	3.17
	C.D. (0.05%)	0.43	NS	NS	0.70

WS=WHEAT STRAW, SD=SAWDUST, WS+SD @ 50:50, SB=SOYBEAN POWDER, BR=BROWN RICE POWDER, WB=WHEAT BRAN (SUPPLEMENT WAS ADDED @5% W/W OF THE SUBSTRATE)

WHEAT STRAW+ SUPPLEMENT

SAW DUST+ SUPPLEMENT

COMBINATION+ SUPPLEMENT

Fig. 2.5.1. Growth of mycelium on different substrate combinations चित्र 2.5.1. विभिन्न सब्सट्रेट संयोजनों पर माइसेलियम की वृद्धि

The wheat straw + soybean supplemented solid substrate combination was used to grow aerial mycelium in a closed transparent chamber having a temperature of 25°C, RH (>90%) and $\rm CO_2$ concentration of 5-7%. From this combination 16g fresh aerial mycelium per kg of substrate was obtained (Fig. 2.5.2). However, due to low yield of dried mycelium from this method, liquid edible media was preferred for bulk mycelium production.

गेहूं के भूसे + सोयाबीन के पूरक युक्त ठोस सब्सट्रेट संयोजन का उपयोग 25°C, आरएच (>90%) तापमान और 5—7% CO2 सांद्रता वाले एक बंद पारदर्शी कक्ष में एरियल मायसेलियम उगाने के लिए किया गया था। इस संयोजन से प्रति किलोग्राम सब्सट्रेट 16 ग्राम ताजा एरियल मायसेलियम प्राप्त हुआ (चित्र 2.5.2)। हालाँकि, इस विधि से सूखे मायसेलियम की कम उपज के कारण, थोक मायसेलियम उत्पादन के लिए तरल खाद्य मीडिया को प्राथमिकता दी गई थी।

Fig. 2.5.2. Growth of mycelium on wheat straw + soybean supplemented solid substrate in a closed transparent chamber

चित्र 2.5.2. एक बंद पारदर्शी कक्ष में गेहूं के भूसे + सोयाबीन के पूरक ठोस सब्सट्रेट पर माइसेलियम की वृद्धि

Optimization of fermentation media and conditions for production of mushroom mycelium using RSM design

The response surface methodology (RSM) was used for the optimization of pH, temperature and edible media for the growth of selected strain of mushroom for vegan meat production. Total 25 combinations with pH values (6, 7 and 8), temperature (20, 25 and 30°C) and edible media (Corn broth, Soybean broth, Wheat broth, Brown rice broth @ 1:10 w/v) were used to optimize the growth of the selected strain. Soybean broth with pH 6 and temperature 30°C was selected as the most suitable edible media for the growth of the selected mushroom mycelium for vegan meat production.

आरएसएम डिजाइन का उपयोग करके खुम्ब माइसेलियम के उत्पादन के लिए किण्वन मीडिया और स्थितियों का अनुकूलन

शाकाहारी मांस उत्पादन के लिए मशरूम की चयनित नस्ल की वृद्धि के लिए पीएच, तापमान और खाद्य मीडिया के अनुकूलन के लिए रिस्पॉन्स सरफेस पद्धित (आरएसएम) का उपयोग किया गया था। चयनित प्रजाति के विकास को अनुकूलित करने के लिए पीएच मान (6, 7 और 8), तापमान (20, 25 और 30°C) और खाद्य मीडिया (कॉर्न ब्रॉथ, सोयाबीन ब्रॉथ, गेहूं ब्रॉथ, ब्राउन चावल ब्रॉथ @1:10 w/v) के साथ कुल 25 संयोजनों का उपयोग किया गया था। पीएच 6 और तापमान 30°C के साथ सोयाबीन ब्रॉथ को शाकाहारी मांस उत्पादन के लिए चयनित खुम्ब मायसेलियम के विकास के लिए सबसे उपयुक्त खाद्य माध्यम के रूप में चूना गया था।

Standardization of different formulations for vegan meat analogue production

Different treatment combinations were tried for the development of formulations for vegan meat analogue production. Out of 13 treatments T_{12} and T_{13} were found acceptable on the basis of sensory evaluation (Table 2.14).

शाकाहारी मांस एनालॉग उत्पादन के लिए विभिन्न फॉर्मूलेशन का मानकीकरण

शाकाहारी मांस एनालॉग उत्पादन के लिए फॉर्मूलेशन के विकास के लिए विभिन्न उपचार संयोजनों का प्रयास किया गया। 13 उपचारों में से T_{12} और T_{12} को संवेदी मूल्यांकन के आधार पर स्वीकार्य पाया गया (तालिका 2.14)।

Table 2.14. Treatment combination for the development of formulation for vegan meat तालिका 2.14. शाकाहारी मांस के लिए फॉर्मूलेशन के विकास के लिए उपचार संयोजन

S.No.	Ingredient						Tre	atmen	t					
		T ₁ %	T ₂ % (w/w)	T ₃ % (w/w)	T ₄ % (w/w)	T ₅ % (w/w)	T ₆ % (w/w)	T ₇ % (w/w)	T _s % (w/w)	T ₉ % (w/w)	T ₁₀ % (w/w)	T ₁₁ %	T ₁₂ % (w/w)	T ₁₃ %
1.	Mycelium	87.43	76.34	93.02	71.40	79.68	80.99	90.65	68.55	55.17	44.12	80.00	83.00	90.00
2.	Gluten	12.57	0.00	-	20.40	17.07	8.53	4.77	0.00	-	-	3.00	2.00	1.00
3.	Soya chunk	-	14.68	-	-	-	-	-	8.06	13.79	-	4.00	4.00	2.00
4.	Methylcellulose	-	0.76	1.16	0.40	0.57	0.85	0.95	0.60	-	-	1.00	1.00	1.00
5.	Salt	-	1.47	2.33	-	-	0.64	0.72	0.60	-	-	0.50	0.50	-
6.	Garlic powder	-	0.29	-	-	-	-	-	-	-	-	0.30	0.30	-
7.	Onion powder	-	0.29	-	-	-	-	-	-	-	-	0.30	0.30	-
8.	Corn starch	-	1.47	-	-	-	-	-	2.02	3.45	-	2.00	2.00	2.00
9.	Fat	-	4.70	-	1.20	1.82	1.53	1.72	-	-	11.76	3.00	3.00	2.00
10.	MPH (Mushrrom protein hydrolysate)	-	-	-	1.50	0.85	1.07	1.19	-	-	-	0.90	0.90	0.50
11.	Psyllium husk	-	-	1.16	-	-	-	-	-	-	-	-	-	-
12.	Oyster powder	-	-	2.33	-	-	-	-	-	-	-	-	-	-
13.	Soy Protein Isolate	-	-	-	5.10	-	6.39	-	-	-	-	5.00	3.00	1.50
14.	Mushroom paneer	-	-	-	-	-	-	-	20.16	27.59	22.06	-	-	-
15.	Tofu	-	-	-	-		-	-			22.06	-	-	-
	Total	100	100	100	100	100	100	100	100	100	100	100	100	100

Proximate comparison of the vegan meat analogue with actual meat (chicken)

The vegan meat analogue prepared from the mycelium of mushroom was compared with the chicken kebab. The proximate analysis of the products has been given in Table 2.15.

वास्तविक मांस (चिकन) के साथ शाकाहारी मांस एनालॉग की निकटतम तुलना

खुम्ब के माइसेलियम से तैयार शाकाहारी मांस एनालॉग की तुलना चिकन कबाब से की गई थी। उत्पादों का निकटतम विश्लेषण तालिका 2.15 में दिया गया है।

Table 2.15. Comparison of the proximate value of vegan meat analogue with chicken kebab तालिका 2.15. चिकन कबाब के साथ शाकाहारी माँस एनालॉग के अनुमानित मूल्य की तुलना

S.No.	Parameter (FWB)	Vegan kebab (FWB)	Chicken kebab (FWB)				
1.	Moisture content (%)	59.70	53.53				
2.	Fat (%)	7.60	3.10				
3.	Crude fibre (%)	5.57	0.00				
4.	Protein (%)	4.52	35.78				
5.	Ash (%)	4.78	5.18				
6.	Antioxidant activity (%)	44.60	22.82				

Impact of steeping solutions on shelf life and quality of oyster mushrooms

The study on the effect of steeping solutions on the shelf life and quality of oyster mushrooms revealed a significant extension in shelf life, with mushrooms steeped in solutions lasting up to 25 days at room temperature compared to just 2 days for the control group. Among the various steeping solutions tried, no significant difference in quality was observed, but the lowest electrolyte leakage was found in the steeping solution containing 1% common salt, 0.2% citric acid, 0.2% acetic acid and 0.05% potassium metabisulphite. Additionally, there was no noticeable color change, offflavor, or sliminess in the mushrooms up to the 25th day of storage. The color values and browning index (BI) of the mushrooms remained stable throughout storage, with the steeped samples showing the best results in terms of color retention and reduced browning (Fig. 2.5.3).

ढींगरी खुम्ब की भंडारण अवधि और गुणवत्ता पर स्टीपिंग घोलों का प्रभाव

ढींगरी खुम्ब की भंडारण अवधि और गुणवत्ता पर स्टीपिंग घोलों के प्रभाव पर किए गए अध्ययन से शेल्फ जीवन में एक महत्वपूर्ण विस्तार का पता चला, नियंत्रण में केवल 2 दिनों की तुलना में कमरे के तापमान पर स्टीपिंग घोलों में डूबे हुए खुम्ब 25 दिनों तक चले। विभिन्न स्टीपिंग घोलों में, गुणवत्ता में कोई महत्वपूर्ण अंतर नहीं देखा गया, लेकिन 1% साधारण नमक, 0. 2% साइट्रिक एसिड, 0.2% एसिटिक एसिड और 0.05% पोटेशियम मेटाबाइसल्फाइट युक्त स्टीपिंग घोल में सबसे कम इलेक्ट्रोलाइट लीकेज पाया गया। इसके अतिरिक्त, भंडारण के 25वें दिन तक खुम्ब में कोई उल्लेखनीय रंग परिवर्तन, स्वाद में कमी या चिपचिपापन नहीं था। खुम्ब का रंग मान और भूरापन सूचकांक (बीआई) पूरे भंडारण के दौरान स्थिर रहा, डूबे हुए नमूनों ने रंग बनाए रखने और भूरापन कम करने के मामले में सर्वोत्तम परिणाम दिखाए (चित्र 2.5.3)।

Fig. 2.5.3. Oyster mushrooms (Pleurotus ostreatus var. Florida) after steeping in various solutions on 25th day of storage at room temperature

चित्र 2.5.3. कमरे के तापमान पर भंडारण के 25वें दिन विभिन्न घोलों में डुबाने के बाद ढींगरी खुम्ब (प्लुरोटस ओस्ट्रीटस वैरा. फ्लोरिडा)

Impact of edible coatings on shelf life and quality of button mushrooms

The study evaluated the effectiveness of various polysaccharide and lipid-based edible coatings in extending the shelf life and quality of button mushrooms stored at 4°C. Polysaccharide-based coatings included carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, xanthan gum, gum tragacanth, gum acacia, guar gum, carageenan gum, gum ghatti, pectin, and chitosan. Lipid-based coatings tested were beeswax and sunflower oil. These coatings were assessed for their ability to reduce weight loss, browning, and electrolyte leakage, as well as maintaining firmness, sensory properties, and freshness during storage. Among polysaccharide coatings, gum ghatti and chitosan performed best, reducing weight loss, browning, and electrolyte leakage while maintaining firmness and sensory attributes without sliminess or off-flavor up to 6 days. Coating with hydroxypropyl methyl cellulose also showed promising results in preserving firmness and color. Among lipid-based coatings, sunflower oil and beeswax were found effective, with sunflower oil excelling in reducing weight loss and browning index while maintaining sensory quality. Gum ghatti and sunflower oil emerged as the most effective coatings overall, extending shelf life and maintaining quality by preserving texture, appearance, and freshness of mushrooms. This highlights their potential for commercial use in post-harvest management.

Investigation of pre-harvest sprays of antimicrobial agents on shelf life and quality of white button mushroom

The investigation of preharvest sprays of antimicrobials on the shelf life and quality of white button mushrooms (strain A-15) revealed that potassium metabisulphite (KMS), ethylenediamine tetraacetic acid (EDTA), and electrolyzed water (EW)

बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर खाद्य लेप का प्रभाव

अध्ययन में 4 डिग्री सेल्सियस पर संग्रहीत बटन खुम्ब की भंडारण अवधि और गुणवत्ता बढ़ाने में विभिन्न पॉलीसेकेराइड और लिपिड-आधारित खाद्य लेप की प्रभावशीलता का मूल्यांकन किया गया। पॉलीसेकेराइड-आधारित लेप में कार्बोक्सिमिथाइल सेलुलोज, मिथाइल सेलुलोज, हाइड्रॉक्सीप्रोपाइल मिथाइल सेलुलोज, जैंथन गम, गम ट्रैगैकैंथ, गोंद बबूल, ग्वार गम, कैरागीनन गम, गम घट्टी, पेक्टिन और काइटोसन शामिल थे। परीक्षण किए गए लिपिड-आधारित लेप मोम और सूरजमुखी तेल थे। इन लेप का मूल्यांकन वजन घटाने, भूरापन और इलेक्ट्रोलाइट रिसाव को कम करने की क्षमता के साथ-साथ भंडारण के दौरान दृढ़ता, संवेदी गुणों और ताजगी बनाए रखने के लिए किया गया था। पॉलीसेकेराइड लेप में, गम घट्टी और काइटोसन ने सबसे अच्छा प्रदर्शन किया, जिससे वजन घटाने, भूरेपन और इलेक्ट्रोलाइट रिसाव को कम किया गया, जबकि 6 दिनों तक बिना पतलापन या खराब स्वाद के दृढ़ता और संवेदी विशेषताओं को बनाए रखा गया। हाइड्रॉक्सीप्रोपाइल मिथाइल सेलुलोज के साथ लेप ने दृढ़ता और रंग को संरक्षित करने में भी आशाजनक परिणाम दिखाए। लिपिड-आधारित लेप में, सूरजमुखी तेल और मोम प्रभावी पाए गए, सूरजमुखी तेल संवेदी गुणवत्ता बनाए रखते हुए वजन घटाने और ब्राउनिंग इंडेक्स को कम करने में उत्कृष्ट है। गम घट्टी और सूरजमुखी तेल समग्र रूप से सबसे प्रभावी लेप के रूप में उभरे हैं, जो खुम्ब की बनावट, उपस्थिति और ताजगी को संरक्षित करके शेल्फ जीवन को बढ़ाते हैं और गुणवत्ता बनाए रखते हैं। यह फसल कटाई के बाद प्रबंधन में व्यावसायिक उपयोग की उनकी क्षमता को उजागर करता है।

सफेद बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर रोगाणुरोधी एजेंटों के फसल-पूर्व स्प्रे की जांच

सफेद बटन खुम्ब (स्ट्रेन ए—15) की भंदर्ण अवधि और गुणवत्ता पर रोगाणुरोधकों के फसल पूर्व स्प्रे की जांच से पता चला कि पोटेशियम मेटाबाइसल्फाइट (केएमएस), एथिलीनडायमाइन टेट्राएसिटिक एसिड (ईडीटीए), और sprays were most effective in enhancing the shelf life and preserving the quality of mushrooms stored at 25°C. Among the treatments, KMS at 0.05% resulted in reduced decay, minimal weight loss, delayed cap opening, and improved firmness, maintaining a slightly better color. EDTA at 0.03% also showed promising results, though it had a slightly higher weight loss than KMS treatments. Electrolyzed water at 30 minutes was equally effective in preserving quality, with reduced electrolyte leakage and slower decay. In contrast, treatments with salicylic acid and Thyme and Cinnamon essential oils exhibited poorer performance, with higher decay rates, increased weight loss, and undesirable offflavors, especially at higher concentrations. These results highlight the potential of KMS, EDTA, and electrolyzed water as effective preharvest treatments for extending the shelf life and maintaining the quality of white button mushrooms (Fig. 2.5.4).

इलेक्ट्रोलाइज्ड वॉटर (ईडब्ल्यू) स्प्रे शेल्फ लाइफ को बढ़ाने और 25 डिग्री सेल्सियस पर संग्रहीत खुम्ब की गुणवत्ता को संरक्षित करने में सबसे प्रभावी थे। उपचारों में, 0.05% पर केएमएस के परिणामस्वरूप क्षय कम हुआ, न्यूनतम वजन घटा, टोपी खुलने में देरी हुई, और दृढ़ता में सुधार हुआ, जिससे रंग थोड़ा बेहतर बना रहा। 0.03% पर ईडीटीए ने भी आशाजनक परिणाम दिखाए, हालांकि केएमएस उपचारों की तुलना में इसका वजन थोड़ा अधिक कम हुआ। 30 मिनट पर इलेक्ट्रोलाइज्ड पानी कम इलेक्ट्रोलाइट रिसाव और धीमी गति से क्षय के साथ, गुणवत्ता बनाए रखने में समान रूप से प्रभावी था। इसके विपरीत. सैलिसिलिक एसिड और थाइम और दालचीनी एसेंशियल ऑयलों के साथ उपचार ने उच्च क्षय दर, वजन घटाने में वृद्धि और अवांछित ऑफ-फ्लेवर, विशेष रूप से उच्च सांद्रता पर खराब प्रदर्शन दिखाया। ये परिणाम भंडारण अवधि को बढाने और सफेद बटन खुम्ब की गुणवत्ता बनाए रखने के लिए प्रभावी फसल पूर्व उपचार के रूप में केएमएस, ईडीटीए और इलेक्ट्रोलाइज्ड पानी की क्षमता को उजागर करते हैं (चित्र 2.5. 4) |

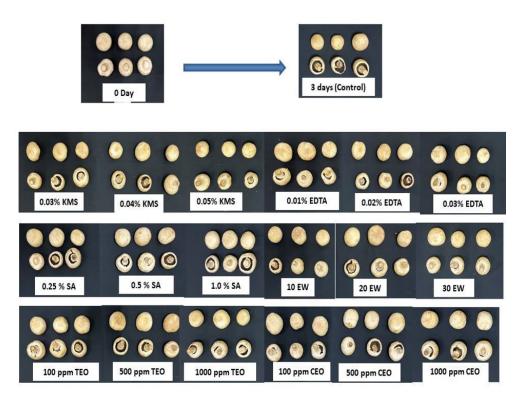


Fig. 2.5.4. Effect of pre harvest sprays of antimicrobial agents on shelf life and quality of white button mushroom (on Day 3 at 25°C)

चित्र 2.5.4. सफेद बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर रोगाणुरोधी एजेंटों के फसल पूर्व स्प्रे का प्रभाव (तीसरे दिन 25 डिग्री सेल्सियस पर)

Investigation of post-harvest sprays of antimicrobial agents on shelf life and quality of white button mushroom

The postharvest sprays of antimicrobial agents on white button mushrooms revealed that potassium metabisulphite (KMS) at 0.05% and EDTA at 0.03% were the most effective in preserving shelf life and quality. These treatments minimized weight loss, reduced decay, delayed cap opening, and significantly lowered electrolyte leakage during storage at 25°C. Electrolyzed water (EW) at 30 minutes showed moderate effectiveness, improving color retention and reducing decay loss. However, salicylic acid (SA) at higher concentrations (1.0%) was found to be ineffective, causing high decay and a negative impact on the overall quality of the mushrooms. These results emphasize the potential of KMS and EDTA as reliable postharvest treatments for extending the shelf life and maintaining the quality of white button mushrooms (Fig.2.5.5).

सफेद बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर रोगाणुरोधी एजेंटों के कटाई के बाद के स्प्रे की जांच

सफंद बटन खुम्ब पर रोगाणुरोधी एजेंटों के कटाई के बाद के स्प्रे से पता चला कि 0.05% पर पोटेशियम मेटाबाइसल्फाइट (KMS) और 0.03% पर EDTA शेल्फ जीवन और गुणवत्ता को संरक्षित करने में सबसे प्रभावी थे। इन उपचारों से वजन कम हुआ, क्षय कम हुआ, टोपी खुलने में देरी हुई और 25 डिग्री सेल्सियस पर भंडारण के दौरान इलेक्ट्रोलाइट रिसाव काफी कम हो गया। 30 मिनट पर इलेक्ट्रोलाइण्ड पानी (ईडब्ल्यू) ने मध्यम प्रभावशीलता दिखाई, रंग प्रतिधारण में सुधार किया और क्षय हानि को कम किया। हालाँकि, उच्च सांद्रता (1.0%) पर सेलिसिलिक एसिड (एसए) अप्रभावी पाया गया, जिससे उच्च क्षय हुआ और खुम्ब की समग्र गुणवत्ता पर नकारात्मक प्रभाव पड़ा। ये परिणाम सफेद बटन खुम्ब की भंडारण अवधि बढ़ाने और गुणवत्ता बनाए रखने के लिए विश्वसनीय कटाई उपरांत उपचार के रूप में केएमएस और ईडीटीए की क्षमता पर जोर देते हैं (चित्र 2.5.5)।

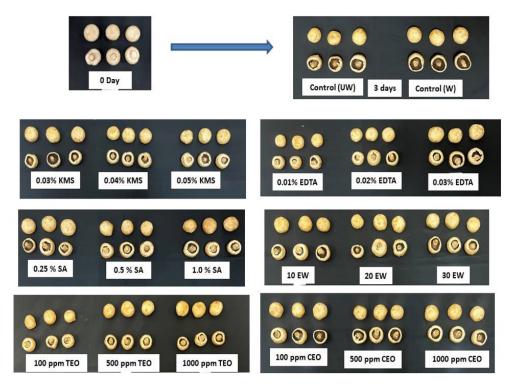


Fig. 2.5.5. Effect of post-harvest sprays of antimicrobial agents on shelf life and quality of white button mushroom (on Day 3 at 25°C)

चित्र 2.5.5. सफोद बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर रोगाणुरोधी एजेंटों के कटाई के बाद के स्प्रे का प्रभाव (तीसरे दिन 25 डिग्री सेल्सियस पर)

Study of the effect of post-harvest UV-C treatment on shelf life and quality of white button mushrooms

Post-harvest UV-C light (200-280 nm) treatment effectively improved the quality of white button mushrooms (strain A-15). The treatment significantly reduced decay loss, maintained better firmness, and delayed cap opening, resulting in improved sensory attributes. A 30-minute UV-C exposure notably reduced total surface microflora while avoiding sliminess and off-flavor during storage at 25°C for up to 2 days. UV-C treated mushroom samples showed superior firmness and color retention, with sensory scores markedly higher than the control. However, prolonged exposure (45 minutes) led to accelerated color changes and increased surface microflora, indicating that excessive treatment may have undesirable effects. These results demonstrate the potential of UV-C treatment for maintaining the postharvest quality of white button mushrooms (Fig. 2.5.6).

सफेद बटन खुम्ब की भंडारण अवधि और गुणवत्ता पर कटाई के बाद यूवी—सी उपचार के प्रभाव का अध्ययन

कटाई के बाद यूवी-सी प्रकाश (200-280 nm) उपचार से सफेद बटन खुम्ब (स्ट्रेन ए-15) की गुणवत्ता में प्रभावी ढंग से सुधार हुआ। उपचार ने क्षय हानि को काफी कम कर दिया, बेहतर दुढता बनाए रखी, और टोपी खुलने में देरी हुई, जिसके परिणामस्वरूप संवेदी विशेषताओं में सुधार हुआ। 30 मिनट के यूवी-सी एक्सपोजर ने कूल सतह माइक्रोफ्लोरा को उल्लेखनीय रूप से कम कर दिया, जबकि 2 दिनों तक 25 डिग्री सेल्सियस पर भंडारण के दौरान पतलेपन और स्वाद की कमी से बचा गया। यूवी-सी उपचारित खुम्ब के नमूनों में बेहतर दृढ़ता और रंग प्रतिधारण दिखाई दिया, जिसमें संवेदी स्कोर नियंत्रण से काफी अधिक था। हालाँकि, लंबे समय तक एक्सपोजर (45 मिनट) के कारण रंग में तेजी से बदलाव आया और सतह के माइक्रोफ्लोरा में वृद्धि हुई, यह दर्शाता है कि अत्यधिक उपचार के अवांछनीय प्रभाव हो सकते हैं। ये परिणाम सफेद बटन खुम्ब की कटाई के बाद की गुणवत्ता को बनाए रखने के लिए यूवी-सी उपचार की क्षमता को प्रदर्शित करते हैं (चित्र 2.5.6)।

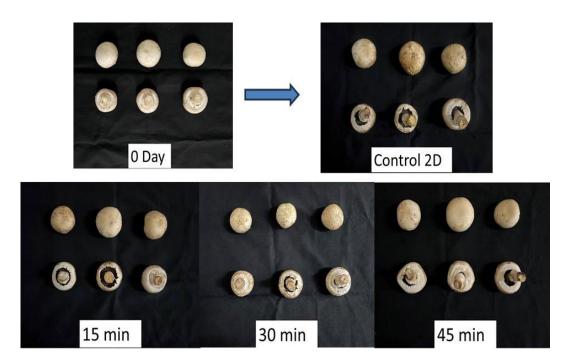


Fig. 2.5.6. Effect of post-harvest sprays of UVC treatments on shelf life and quality of white button mushroom (on Day 2 at 25°C)

चित्र 2.5.6. सफेद बटन खुम्ब की शेल्फ लाइफ और गुणवत्ता पर यूवीसी उपचार के कटाई के बाद के स्प्रे का प्रभाव (दूसरे दिन 25 डिग्री सेल्सियस पर)

Vitamin D extraction and estimation protocol

Efforts have been made to standardize the protocols for the accurate estimation of vitamin D, content in mushrooms. Two distinct approaches were evaluated viz. Extraction with (Methanol + Dichloromethane) and extraction with (Choline Chloride + Glycerol). First approach involved extraction of vitamin D using methanol as the primary solvent. Second approach included the use of choline chloride + glycerol mixture as an extraction solvent, followed by hot water and n-hexane purification steps for enhanced specificity and separation of vitamin D₂ (Ergocalciferol). To validate these protocols, identical mushroom samples were analyzed through both methods and the results were cross-verified by outsourcing the analysis to external laboratories. From the validation results, it was concluded that the second approach, involving choline chloride + glycerol based extraction with hot water and n-hexane purification, was more accurate and reliable in isolating vitamin D₂ content in powdered mushroom samples (Fig. 2.5.7). Consequently, all subsequent research and development studies were undertaken based on this protocol.

विटामिन डी निष्कर्षण और आकलन प्रोटोकॉल

खुम्ब में विटामिन डी़ सामग्री के सटीक अनुमान के लिए प्रोटोकॉल को मानकीकृत करने का प्रयास किया गया है। दो अलग–अलग दृष्टिकोणों का मूल्यांकन किया गया। (मेथनॉल + डाइक्लोरोमेथेन) के साथ निष्कर्षण और (कोलीन क्लोराइड + ग्लिसरॉल) के साथ निष्कर्षण। पहले दुष्टिकोण में प्राथमिक विलायक के रूप में मेथनॉल का उपयोग करके विटामिन डी का निष्कर्षण शामिल था। दूसरे दृष्टिकोण में निष्कर्षण विलायक के रूप में कोलीन क्लोराइड ग्लिसरॉल मिश्रण का उपयोग शामिल था, इसके बाद विटामिन डी 2 (एर्गोकैल्सीफेरोल) की विशिष्टता और पृथक्करण के लिए गर्म पानी और एन-हेक्सेन शुद्धिकरण कदम शामिल थे। इन प्रोटोकॉल को मान्य करने के लिए, समान खुम्ब नमूनों का दोनों तरीकों से विश्लेषण किया गया और बाहरी प्रयोगशालाओं में विश्लेषण को आउटसोर्स करके परिणामों को क्रॉस-सत्यापित किया गया। सत्यापन परिणामों से, यह निष्कर्ष निकाला गया कि दूसरा दृष्टिकोण, जिसमें गर्म पानी और एन-हेक्सेन शुद्धि के साथ कोलीन क्लोराइड. ग्लिसरॉल आधारित निष्कर्षण शामिल था, पाउडर खुम्ब नमूनों में विटामिन डी 2 को अलग करने में अधिक सटीक और विश्वसनीय था (चित्र 2.5.7)। परिणामस्वरूप, बाद के सभी अनुसंधान और विकास अध्ययन इस प्रोटोकॉल के आधार पर किए गए।

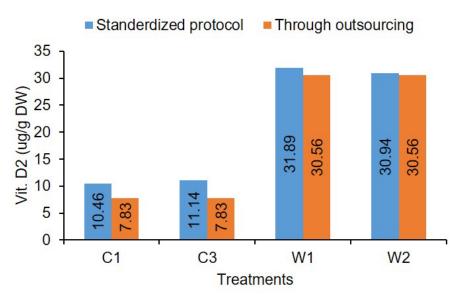


Fig. 2.5.7. Vitamin D_2 content in UVC treated and control button mushroom samples (C-Control, W-whole fruit bodies UVC treated)

चित्र. 2.5.7. यूवीसी उपचारित और नियंत्रण बटन खुम्ब के नमूनों में विटामिन डी की मात्रा (C-नियंत्रण, W-यूवीसी उपचारित मशरूम)

Effect of UVC exposure on vitamin D₂ content and chromatic properties of white button mushroom (A-15)

Upon exposure of white button mushroom to UVC radiation, it was observed that there was noticeable loss of whiteness in mushroom fruit bodies. However, retention of whiteness was seen in the mushrooms placed at closer distance (20 cm) with the UV lamp (Fig. 2.5.8). Also overall color difference between control and UV treated mushroom samples was measured. Maximum color difference was recorded for 60 min exposure time as compared to 30 min and 90 min duration (Fig.2.5.9).

Vitamin D_2 (Ergocalciferol) content in white button mushroom (Strain: A15) treated with UVC radiation for (T1 – 30 min, T2 – 60 min and T3 – 90 min) at the exposure height of 20 cm was determined. Analysis revealed the enhancement of vitamin D_2 content in treated samples by 1.46 times, 1.69 times and 2.29 times after the exposure for 30 min, 60 min and 90 min respectively (Fig.2.5.10).

सफेद बटन खुम्ब (ए—15) के विटामिन डी2 और रंग गुणों पर यूवीसी एक्सपोजर का प्रभाव

सफेद बटन खुम्ब के यूवीसी विकिरण के संपर्क में आने पर, यह देखा गया कि खुम्ब के फलों के शरीर में सफेदी का काफी नुकसान हुआ था। हालाँकि, यूवी लैंप के करीब (20 सेमी) दूरी पर रखे गए खुम्ब में सफेदी बरकरार देखी गई (चित्र 2.5.8)। इसके अलावा नियंत्रण और यूवी उपचारित खुम्ब के नमूनों के बीच समग्र रंग अंतर को भी मापा गया। 30 मिनट और 90 मिनट की अविध की तुलना में 60 मिनट के एक्सपोजर समय के लिए अधिकतम रंग अंतर दर्ज किया गया (चित्र 2.5.9)।

सफेद बटन खुम्ब (स्ट्रेनः ए15) में विटामिन डी2 (एर्गोकैल्सीफेरोल) की मात्रा 20 सेमी की एक्सपोजर ऊंचाई पर (T1 — 30 मिनट, T2 — 60 मिनट और T3 — 90 मिनट) के लिए यूवीसी विकिरण से उपचारित की गई थी। विश्लेषण से पता चला कि 30 मिनट, 60 मिनट और 90 मिनट के एक्सपोजर के बाद उपचारित नमूनों में विटामिन डी2 की मात्रा क्रमशः 1.46 गुना, 1.69 गुना और 2.29 गुना बढ़ गई (चित्र 2.5.10)।

UVC - 30 W, Exposure distance D1 - 35 cm, D2-20 cm, Time - T1-30, T2-60 and T3-90 min

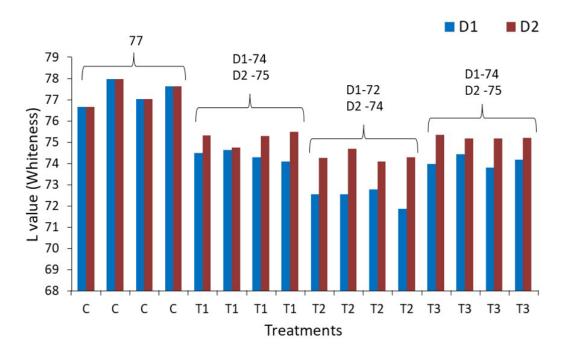


Fig. 2.5.8. Effect of UVC exposure time on whiteness of white button mushroom चित्र 2.5.8. सफेद बटन खुम्ब की सफेदी पर यूवीसी एक्सपोजर समय का प्रभाव

UVC - 30 W, Exposure distance D1 - 35 cm, D2-20 cm, Time - T1-30, T2-60 and T3-90 min

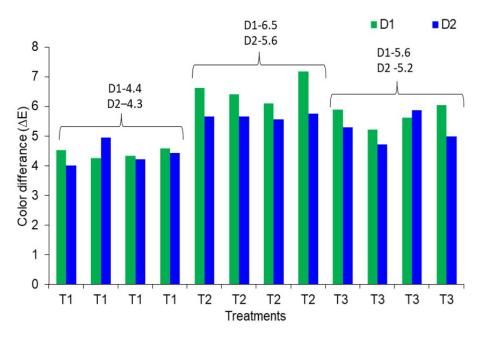


Fig. 2.5.9. Color difference values of UVC treated white button mushroom (Strain: A15) चित्र 2.5.9. UVC उपचारित सफेद बटन खुम्ब का रंग अंतर मान (स्ट्रेन: A15)

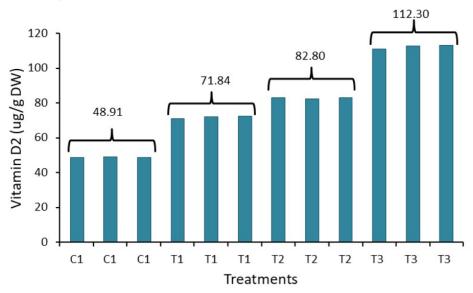


Fig. 2.5.10. Effect of UVC exposure on Vitamin D_2 content in white button mushroom चित्र. 2.5.10. सफेद बटन खुम्ब में विटामिन डी $_2$ पर यूवीसी एक्सपोजर का प्रभाव

Quantification of bioactive compounds in Trametes versicolor, Cordyceps militaris and Hericium erinaceus

The total polysaccharides was found higher in Trametes (70.28 mg/g DW) followed by Hericium (42.22 mg/g DW) and Cordyceps (39.69 mg/g DW). The highest total phenolic content were recorded in Cordyceps (30.85 mg TAE/g DW) followed by Hericium (11.92 mg TAE/g DW) and Trametes (9.04 mg TAE/g DW). Total flavonoid content was found higher in Cordyceps (0.434 mg CE/g DW) as compared to Hericium (0.282 mg CE/g DW) and Trametes (0.250 mg CE/g DW). Based on DPPH free radical scavenging activity, Cordyceps showed strong antioxidant activity with IC_{50} of 10.49 μ g/mL when compared with Trametes (IC_{50} of 21.10 μ g/mL) and Hericium (23.72 μ g/mL).

Synthesis and characterization of silver nanoparticles from *Trametes versicolor*

An experiment was conducted to synthesize silver nanoparticles (AgNPs) from medicinal mushroom *Trametes versicolor.* The dried powder of *Trametes* was used to prepare aqueous extract. When aqueous extract of different concentrations was mixed with 1mM AgNO_{3,} the colorless reaction solution turned to dark brown (Fig. 2.5.11). This change of color is due to the

ट्रैमेटेस वर्सिकलर, कॉर्डिसेप्स मिलिटेरिस और हेरिशियम एरीनेसियस में बायोएक्टिव यौगिकों की मात्रा

कुल पॉलीसेकेराइड ट्रैमेटेस (70.28 मिलीग्राम / जी डीडब्ल्यू) में अधिक पाया गया, उसके बाद हेरिशियम (42.22 मिलीग्राम / जी डीडब्ल्यू) और कॉर्डिसेप्स (39.69 मिलीग्राम / जी डीडब्ल्यू) में । सबसे अधिक कुल फेनोलिक सामग्री कॉर्डिसेप्स (30.85 मिलीग्राम टीएई / जी डीडब्ल्यू) में दर्ज की गई, उसके बाद हेरिशियम (11.92 मिलीग्राम टीएई / जी डीडब्ल्यू) और ट्रैमेटेस (9.04 मिलीग्राम टीएई / जी डीडब्ल्यू) में दर्ज की गई। हेरिशियम (0.282 मिलीग्राम सीई / जी डीडब्ल्यू) और ट्रैमेटेस (0.250 मिलीग्राम सीई / जी डीडब्ल्यू) की तुलना में कॉर्डिसेप्स (0.434 मिलीग्राम सीई / जी डीडब्ल्यू) में कुल फ्लेवोनोइड सामग्री अधिक पाई गई। डीपीपीएच फ्री रेडिकल स्केवेजिंग गतिविधि के आधार पर, ट्रैमेटेस (21.10 μg/mL का IC₅₀) और हेरिशियम (23.72 μg/mL) की तुलना में कॉर्डिसेप्स ने 10.49 μg/mL के IC₅₀ के साथ मजबूत एंटीऑक्सीडेंट गतिविधि दिखाई।

ट्रैमेटेस वर्सिकलर से चांदी के नैनोपार्टिकल्स का संश्लेषण और लक्षण वर्णन

औषधीय खुम्ब ट्रैमेटेस वर्सिकलर से सिल्वर नैनोकणों (AgNPs) को संश्लेषित करने के लिए एक प्रयोग किया गया था। ट्रैमेटेस के सूखे पाउडर का उपयोग जलीय अर्क तैयार करने के लिए किया गया था। जब विभिन्न सांद्रता के जलीय अर्क को 1mM AgNO₃ के साथ मिलाया गया, तो रंगहीन घोल गहरे भूरे रंग में बदल गया (चित्र 2.5.11)। रंग का यह परिवर्तन

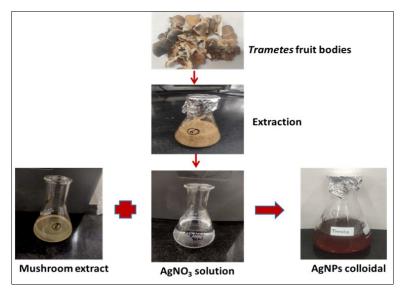


Fig. 2.5.11. AgNPs synthesis using Trametes versicolor चित्र 2.5.11. ट्रैमेटेस वर्सिकलर का उपयोग करके AgNPs संश्लेषण

formation of silver nanoparticles of varying shape and size. The formation of AgNPs was further characterized by UV-Vis spectrophotometry and it was affirmed that the strong absorbance peak of AgNPs reaction mixture was obtained at $^{\sim}$ 423 nm. However, no absorbance peak was observed for control sample indicating the absence of its role in reduction of AgNO $_3$ to AgNPs (Fig.2.5.12).

अलग—अलग आकार और आकार के चांदी के नैनोकणों के निर्माण के कारण होता है। AgNPs के गठन को आगे UV-Vis स्पेक्ट्रोफोटोमेट्री द्वारा चित्रित किया गया था और यह पुष्टि की गई थी कि AgNPs प्रतिक्रिया मिश्रण का सबसे अधिक अवशोषण शिखर $\sim 423~\rm nm$ पर प्राप्त किया गया था। हालाँकि, नियंत्रण नमूने के लिए कोई अवशोषण शिखर नहीं देखा गया जो $AgNO_3$ को AgNPs में परिवर्तित करने में इसकी भूमिका की अनुपस्थिति को दर्शाता है (चित्र 2.5.12)।

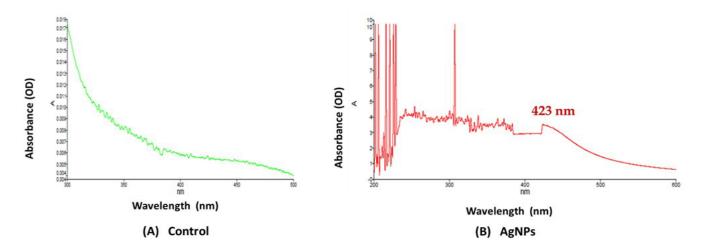


Fig. 2.5.12. AgNPs synthesis was confirmed by UV-Vis spectrum (A) Control: No peak formed at 423nm (B) AgNPs: Peak formed at 423nm चित्र. 2.5.12. AgNPs संश्लेषण की पुष्टि UV-Vis स्पेक्ट्रम द्वारा की गई (A) नियंत्रणः 423nm पर कोई पीक नहीं बनी (B) AgNPs: 423nm पर पीक बनी

2.6 Other Research Activities

2.5 अन्य अनुसंधान गतिविधियाँ

Impact assessment of selected technologies developed by ICAR-DMR

ESM (Economic Surplus Model) Estimation of impact of NBS 5 variety of button mushroom

1.1. White button mushroom (NBS 5) production

Table 2.16 gives the NBS 5 variety production and its share in total button mushroom production over last decade (2015-2023). The maximum share (5%) was in the year 2018. However, the share is declining significantly and now is merely 1.7%, showing the stagnation in technology adoption.

भाकृअनुप—खुम्ब अनुसन्धान निदेशालय द्वारा विकसित चयनित प्रौद्योगिकियों का प्रभाव मूल्यांकन

ईएसएम (आर्थिक अधिशेष मॉडल) बटन खुम्ब की एनबीएस 5 किस्म के प्रभाव का अनुमान

1.1. सफेद बटन खुम्ब (एनबीएस 5) का उत्पादन

तालिका 2.16 एनबीएस 5 किस्म का उत्पादन और पिछले दशक (2015—2023) में कुल बटन खुम्ब उत्पादन में इसकी हिस्सेदारी बताती है। सबसे ज्यादा हिस्सेदारी (5%) साल 2018 में थी। हालाँकि, हिस्सेदारी में काफी गिरावट आ रही है और अब यह केवल 1.7% है, जो प्रौद्योगिकी अपनाने में ठहराव को दर्शाता है।

Table 2.16. Total mushroom production (Button mushroom vis-à-vis NBS 5 variety) तालिका 2.16. कुल खम्ब उत्पादन (एनबीएस 5 किस्म की तुलना में बटन खम्ब)

2 3 3 3							
Year	NBS 5 Production (tons)	Total Button mushroom Production (tons)	Adoption rate				
2015	240	96750	0.002				
2016	1766	104490	0.017				
2017	4724	112849	0.042				
2018	6188	121877	0.051				
2019	4628	131627	0.035				
2020	3904	142157	0.027				
2021	5092	153530	0.033				
2022	4352	165812	0.026				
2023	3072	179077	0.017				
Total	33966	1208171	0.028				

1.2. Area coverage in the country

Table 2.17 shows that in 2023-24, out of total 600 ha of button mushroom area, NBS 5 variety covered around 2.8% of the total button area.

1.3. Year wise adoption of NBS 5 variety in India

Fig. 2.6.1 is the graphical representation of adoption of NBS 5 variety of button mushroom over the years. It attained a peak at 2018, but then it started declining after that with 1% adoption at present.

1.2. देश में क्षेत्र कवरेज

तालिका 2.17 से पता चलता है कि 2023—24 में, कुल 600 हेक्टेयर बटन खुम्ब क्षेत्र में से, एनबीएस 5 किस्म ने कुल बटन क्षेत्र का लगभग 2.8% कवर किया।

1.3. भारत में एनबीएस 5 किस्म को वर्षवार अपनाना

चित्र 2.6.1 पिछले कुछ वर्षों में बटन खुम्ब की एनबीएस 5 किरम को अपनाने का चित्रमय प्रतिनिधित्व है। 2018 में यह चरम पर पहुंच गया, लेकिन उसके बाद वर्तमान में 1% के साथ इसमें गिरावट शुरू हो गई।

Table 2.17. Area coverage in the country तालिका 2.17. देश में क्षेत्र कवरेज

S. No.	Particulars (2023-24)	Estimated area (ha)
1.	Average button mushroom area in India	597.70
2.	Area under NBS 5 variety of button mushroom in India	16.80
3.	NBS 5 area in relation to button mushroom in India (%)	2.81%

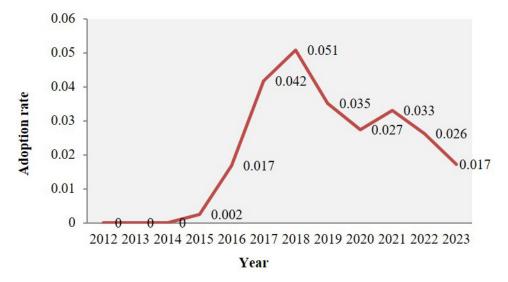


Fig. 2.6.1. Year wise adoption of NBS 5 variety in India चित्र 2.6.1. भारत में एनबीएस 5 किस्म को वर्षवार एडॉप्शन

1.4. Economic impact of NBS 5 using Economic Surplus model

The Net Present Value was calculated at Rs. 25.91 crores (2012-2023) with an Internal Rate of Returns (IRR) as 30% and a Benefit Cost Ratio of 41.21. The Producer Surplus was Rs. 17.43 crores and consumer surplus was Rs. 13.41 crores for NBS 5 strain of white button mushroom, generating a total economic surplus of Rs. 30.84 crores in India (Table 2.18).

1.5. Determinants of technology adoption

Table 2.19 presents the factors influencing the adoption of ZEPT technology among mushroom growers using coefficients from the Linear Probability Model (LPM). The table highlights that sex, experience, mushroom enterprise, and training are significant determinants of adoption. Female growers were 0.27 times more likely than males to adopt the technology.

1.4. आर्थिक अधिशेष मॉडल का उपयोग करके एनबीएस 5 का आर्थिक प्रभाव

25.91 करोड़ (2012—2023) आंतरिक रिटर्न दर (आईआरआर) 30% और लाभ लागत अनुपात 41.21 के साथ शुद्ध वर्तमान मूल्य पर गणना की गई। सफेद बटन खुम्ब की एनबीएस 5 किस्म के लिए निर्माता अधिशेष रु. 17.43 करोड़ और उपभोक्ता अधिशेष रु. 13.41 करोड़ के साथ भारत में 30.84 करोड़ की कुल आर्थिक अधिशेष उत्पन्न हुआ (तालिका 2.18)।

1.5 प्रौद्योगिकी अपनाने के निर्धारक

तालिका 2.19 रैखिक संभाव्यता मॉडल (एलपीएम) से गुणांक का उपयोग करके खुम्ब उत्पादकों के बीच ZEPT प्रौद्योगिकी को अपनाने को प्रभावित करने वाले कारकों को प्रस्तुत करती है। तालिका इस बात पर प्रकाश डालती है कि लिंग, अनुभव, खुम्ब उद्यम और प्रशिक्षण प्रौद्योगिकी अपनाने के महत्वपूर्ण निर्धारक हैं। महिला उत्पादकों द्वारा इस प्रौद्योगिकी को अपनाने

Table 2.18. BCR and ESM analysis of NBS 5 variety तालिका 2.18. एनबीएस 5 किस्म का बीसीआर और ईएसएम विश्लेषण

S.No.	Particulars	Cost benefit analysis (Rs. crores) (2012-2023)			
1.	Net Present Value	25.91			
2.	Net Present Benefit	30.84			
3.	Net Present Cost	0.73			
4.	Internal Rate of Return (%)	30.10			
5.	Benefit Cost Ratio	41.21			
	Distribution of Economic Surplus				
6.	Producer Surplus	17.43			
7.	Consumer Surplus	13.41			
8.	Total Economic Surplus	30.84			

Table 2.19. Factors affecting the adoption of ZEPT composting technology (Linear Probability Model) तालिका 2.19. ZEPT कंपोस्टिंग तकनीक (रैखिक संभाव्यता मॉडल) को अपनाने को प्रभावित करने वाले कारक

Variables	Coefficient (s.e.)	t	P value	95	% CI
HH size	-0.039 (0.032)	-1.210	0.234	-0.103	0.026
Social group (Base: General)					
OBC	0.012 (0.129)	0.100	0.924	-0.250	0.275
SC/ST	0.046 (0.126)	0.370	0.716	-0.210	0.303
Sex (Base: Male)	0.266* (0.123)	2.160	0.039	0.014	0.518
Education (years)	0.054** (0.018)	3.010	0.005	0.017	0.091
Dependents	0.007 (0.031)	0.230	0.818	-0.055	0.070
Major occupation (Base: Farming)					
Mushroom	0.344* (0.138)	2.500	0.018	-0.248	0.382
Others	0.067 (0.154)	0.440	0.666		
Training	0.278* (0.117)	2.370	0.024	0.038	0.517
constant	0.031 (0.215)	0.140	0.887	-0.408	0.469
п	40				
R-squared	0.73				
Adjusted R-squared	0.65				

^{***} p< 0.001, ** p<0.01, * p<0.05 level of significance. Figures in the parentheses are respective standard errors

An increase in education level significantly raised the likelihood of adoption by 0.05 times. Highly educated farmers are typically more market-oriented and more inclined to adopt new technologies, as supported by prior studies (Fernandez-Cornejo *et al.*, 1994; Fernandez-Cornejo *et al.*, 2007; Isgin *et al.*, 2008). Additionally, growers relying on mushroom farming as

की संभावना पुरुषों की तुलना में 0.27 गुना अधिक थी। शिक्षा स्तर में वृद्धि से अपनाने की संभावना 0.05 गुना बढ़ गई। उच्च शिक्षित किसान आमतौर पर अधिक बाजार—उन्मुख होते हैं और नई प्रौद्योगिकियों को अपनाने के लिए अधिक इच्छुक होते हैं, जैसा कि पूर्व अध्ययनों द्वारा समर्थित है। इसके अतिरिक्त, अपने प्राथमिक आय स्रोत के रूप में खुम्ब की खेती पर निर्भर रहने

their primary income source were 0.33 times more likely to adopt the technology compared to those with agriculture as their main source. Lastly, farmers who attended training sessions on mushroom cultivation were 0.28 times more likely to adopt ZEPT technology.

2. Mushroom consumption behaviour analysis

2.1. Mushroom consumption pattern

The mushroom consumption pattern was studied for 210 respondents selected using snowball sampling technique. Firstly, it was determined that 90% of the respondents consumed mushroom. Mushroom consumption frequency is shown in Fig. 2.6.2, majority (45%) of the respondents consumed mushrooms occasionally, 24% consumed mushroom once a week, 20% consumed once in a month, while <1% of the respondents consumed mushroom daily (Fig. 2.6.2).

It was further determined that the average monthly expenditure of the household on food items was Rs. 14450/ month. However, on mushrooms, majority (51%) of the households spent in between Rs. 100 to Rs 500 per month, 34% of the households spent less than Rs. 100/ month, while only 4% of the households spent more than Rs. 1000 on mushroom consumption in a month (Fig. 2.6.3).

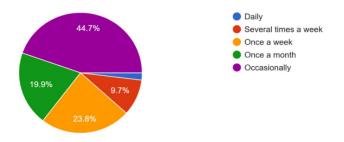


Fig. 2.6.2. Household's mushroom consumption frequency

चित्र. 2.6.2. घरेलू खुम्ब उपभोग की आवृत्ति

2.2. Mushroom consumption preferences

The most preferred place of consumption was at home (66%), while restaurant was preferred by only 17% of the respondents. In terms of purchase location, majority of the respondents preferred local vegetable

वाले उत्पादकों द्वारा प्रौद्योगिकी को अपनाने की संभावना उन लोगों की तुलना में 0.33 गुना अधिक थी, जिनका मुख्य स्रोत कृषि है। अंत में, खुम्ब की खेती पर प्रशिक्षण सत्र में भाग लेने वाले किसानों में ZEPT तकनीक अपनाने की संभावना 0.28 गुना अधिक थी।

2. खुम्ब उपभोग व्यवहार विश्लेषण

2.1. खुम्ब उपभोग पैटर्न

स्नोबॉल सैंपलिंग तकनीक का उपयोग करके चयनित 210 उत्तरदाताओं के लिए खुम्ब उपभोग पैटर्न का अध्ययन किया गया था। सबसे पहले, यह पाया किया गया कि 90% उत्तरदाताओं ने खुम्ब का सेवन किया। खुम्ब की खपत की आवृत्ति चित्र 2. 6.2 में दिखाई गई है, अधिकांश उत्तरदाताओं (45%) ने कभी—कभी खुम्ब का सेवन किया, 24% ने सप्ताह में एक बार खुम्ब का सेवन किया, 20% ने महीने में एक बार खुम्ब का सेवन किया, जबिक केवल <1% उत्तरदाताओं ने नियमित खुम्ब का सेवन किया (चित्र 2.6.2)।

आगे यह निर्धारित किया गया कि खाद्य पदार्थों पर परिवार का औसत मासिक व्यय रु. 14450 / माह. हालाँकि, खुम्ब पर, अधिकांश (51%) परिवारों ने 100 से 500 रुपये प्रति माह रुपये के बीच खर्च किया, 34% परिवार 100 / माह रुपये से कम खर्च करते हैं, जबकि केवल 4% परिवार खुम्ब की खपत पर एक महीने में 1000 रुपये से अधिक खर्च करते हैं (चित्र 2.6.3)।

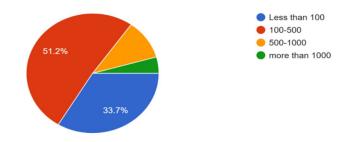


Fig. 2.6.3. Household's average monthly spending on mushroom (INR)

चित्र. 2.6.3. खुम्ब पर परिवार का औसत मासिक खर्च (INR)

2.2. खुम्ब उपभोग प्राथमिकताएँ

उपभोग का सबसे पसंदीदा स्थान घर (66%) था, जबिक रेस्तरां को केवल 17% उत्तरदाताओं ने पसंद किया था। खरीद स्थान के संदर्भ में, अधिकांश उत्तरदाताओं ने खुम्ब खरीदने के market for purchasing mushrooms followed by supermarket (Fig. 2.6.4).

The Fig. 2.6.5 illustrates the consumption preferences for different forms of mushrooms among consumers. The majority of respondents, 91.1% (185 individuals), prefer fresh mushrooms, making it the dominant choice. Dried mushrooms account for 10.3% (21 individuals), while frozen mushrooms are preferred by 5.4% (11 individuals). Canned mushrooms are the least popular, with only 3.9% (8 individuals) opting for them. This indicates a clear preference for fresh mushrooms over processed forms, suggesting that freshness is a key factor influencing mushroom consumption.

लिए सुपरमार्केट के बाद स्थानीय सब्जी बाजार को प्राथमिकता दी (चित्र.2.6.4)।

चित्र 2.6.5 उपभोक्ताओं के बीच खुम्ब के विभिन्न रूपों की खपत की प्राथमिकताओं को दर्शाता है। अधिकांश उत्तरदाता, 91.1% (185 व्यक्ति), ताजा खुम्ब पसंद करते हैं, जो इसे प्रमुख पसंद बनाता है। 10.3% (21 व्यक्ति) सूखे खुम्ब पसंद करते हैं, जबिक फ्रोजेन खुम्ब 5.4% (11 व्यक्ति) पसंद करते हैं। डिब्बाबंद खुम्ब सबसे कम लोकप्रिय हैं, केवल 3.9% (8 व्यक्ति) ही इन्हें चुनते हैं। यह प्रसंस्कृत रूपों की तुलना में ताजा खुम्ब के लिए स्पष्ट प्राथमिकता को इंगित करता है, यह सुझाव देता है कि ताजगी खुम्ब की खपत को प्रभावित करने वाला एक प्रमुख कारक है।

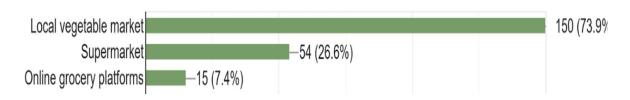


Fig. 2.6.4. Preferred places of purchasing mushrooms चित्र. 2.6.4. खुम्ब खरीदने के पसंदीदा स्थान

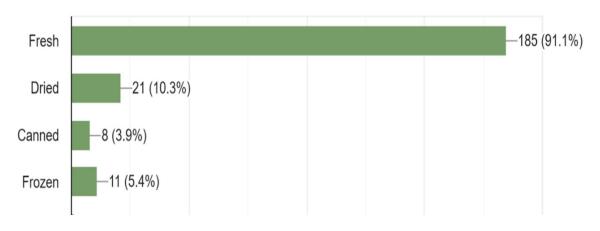


Fig. 2.6.5. Preferred forms in which mushrooms are purchased चित्र. 2.6.5. पसंदीदा रूप जिनमें खुम्ब खरीदे जाते हैं

The Fig. 2.6.6 shows the types of mushrooms typically consumed by the respondents. Button mushroom is the most popular, with 90% reporting their consumption. Oyster mushroom is the second most consumed type, preferred by 31.7%. Paddy straw mushroom follows at 15%, while shiitake mushroom accounts for 10% (6 individuals). This indicates a strong preference for button mushroom, with limited consumption of other types.

चित्र 2.6.6 उत्तरदाताओं द्वारा आमतौर पर खाए जाने वाले खुम्ब के प्रकारों को दर्शाता है। बटन खुम्ब सबसे लोकप्रिय हैं, 90% लोग इसकी खपत बताते हैं। ढींगरी खुम्ब दूसरा सबसे अधिक खाया जाने वाला प्रकार है, जिसे 31.7% लोग पसंद करते हैं। पराली खुम्ब 15% हैं, जबिक शिटाके खुम्ब 10% (6 व्यक्ति) हैं। यह अन्य प्रकार की सीमित खपत के साथ, बटन खुम्ब के लिए एक मजबूत प्राथमिकता को इंगित करता है।

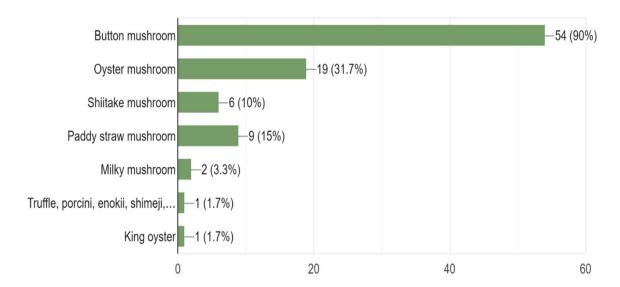


Fig. 2.6.6. Type of mushrooms typically consumed by the respondents चित्र. 2.6.6. उत्तरदाताओं द्वारा आमतौर पर खाए जाने वाले खुम्ब के प्रकार

The Fig. 2.6.7 depicts the preferred ways mushrooms are consumed by respondents. The majority, 81.6%, prefer mushrooms as a vegetable curry, making it the most popular choice. Stir-fried mushrooms are the second most favored method, chosen by 35.8%. Soup is another preferred option, with 23.4% consuming mushrooms this way. Grilled mushrooms account for 16.4%, while salads make up 6.5%. Mushrooms are consumed as appetizers by 4%,

चित्र 2.6.7. उत्तरदाताओं द्वारा खुम्ब का सेवन करने के पसंदीदा तरीकों को दर्शाता है। बहुमत, 81.6%, खुम्ब को सब्जी करी के रूप में पसंद करते हैं, जो इसे सबसे लोकप्रिय विकल्प बनाता है। 35.8% लोगों द्वारा तली हुई खुम्ब दूसरी सबसे पसंदीदा विधि है। सूप एक अन्य पसंदीदा विकल्प है, 23.4% लोग इसी तरह खुम्ब का सेवन करते हैं। ग्रिल्ड खुम्ब की हिस्सेदारी 16.4% है, जबिक सलाद की हिस्सेदारी 6.5% है। 4% लोग खुम्ब का उपयोग ऐपेटाइजर के रूप में करते हैं, केवल

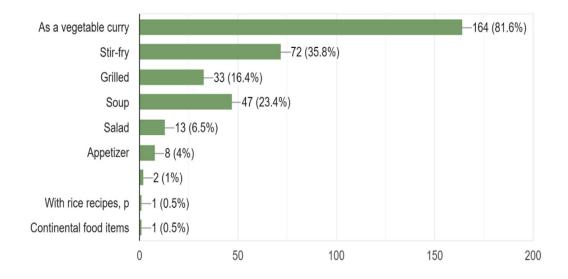


Fig. 2.6.7. Respondents' preferred ways to cook mushrooms चित्र 2.6.7. उत्तरदाताओं द्वारा खुम्ब पकाने के पसंदीदा तरीके

with only 1% incorporating them into rice recipes and 0.5% (1 individual each) using them in continental food items. This highlights the dominance of traditional preparations like curry and stir-fry in mushroom consumption.

Fig. 2.6.8 represents the various sources of information influencing mushroom consumption and awareness of its benefits. The most preferred source, as indicated by 64.7% of respondents (90 people), is self-awareness. Education plays a notable role, with 39.6% (55 respondents) attributing their knowledge to it. Recommendations from friends or family account for 25.9% (36 respondents), while social or mass media influences 23% (32 respondents). This highlights that personal exploration and education are the dominant drivers of mushroom consumption awareness.

1% उन्हें चावल के व्यंजनों में शामिल करते हैं और 0.5% (प्रत्येक 1 व्यक्ति) उन्हें महाद्वीपीय खाद्य पदार्थों में उपयोग करते हैं। यह खुम्ब की खपत में करी और स्टर—फ्राई जैसी पारंपरिक तैयारियों के प्रभुत्व को उजागर करता है।

चित्र 2.6.8 खुम्ब की खपत और इसके लाभों के बारे में जागरूकता को प्रभावित करने वाली जानकारी के विभिन्न स्रोतों को दर्शाता है। सबसे पसंदीदा स्रोत, जैसा कि 64.7% उत्तरदाताओं (90 लोगों) ने संकेत दिया है, स्व—जागरूकता है। शिक्षा एक उल्लेखनीय भूमिका निभाती है, 39.6% (55 उत्तरदाता) अपने ज्ञान का श्रेय इसे देते हैं। मित्रों या परिवार की सिफारिशें 25. 9% (36 उत्तरदाताओं) को प्रभावित करती हैं, जबिक सामाजिक या जनसंचार माध्यम 23% (32 उत्तरदाताओं) को प्रभावित करते हैं। यह इस बात पर प्रकाश डालता है कि व्यक्तिगत अन्वेषण और शिक्षा खुम्ब उपभोग जागरूकता के प्रमुख चालक हैं।

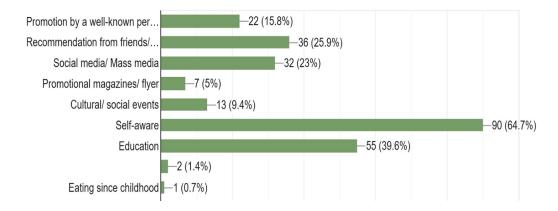


Fig. 2.6.8. Information source for mushroom consumption चित्र. 2.6.8. खुम्ब की खपत और उसके लिए सूचना स्रोत

3. TRANSFER OF TECHNOLOGY

3. प्रौद्योगिकी हश्तांतरण

1. Training programmes

In the year 2024, the Directorate organized total 66 training programmes among which 42 were oncampus, and 24 were off campus training programmes for farmers, farm women, unemployed youth and entrepreneurs under various schemes for various mushrooms (Table 3.1). Among these, 5 training programmes were conducted for farmers under Tribal Sub Plan (TSP), one training was organized under North-Eastern Hilly (NEH) region component, and 26 on and off campus training progammes were conducted under Scheduled Caste- Sub Plan (SC-SP) component. It also includes one training for scientific/technical staff of Krishi Vigyan Kendra (KVKs) and two hands-on three months training programmes. During the reporting year, a total of 3383 participants benefitted from various training programmes conducted by the Directorate.

1. प्रशिक्षण कार्यक्रम

वर्ष 2024 में, निदेशालय ने विभिन्न मशरूमों के लिए विभिन्न योजनाओं के तहत किसानों, कृषक महिलाओं, बेरोजगार युवाओं और उद्यमियों के लिए कुल 66 प्रशिक्षण कार्यक्रम आयोजित किए, जिनमें से 42 ऑन—कैंपस थे, और 24 ऑफ—कैंपस प्रशिक्षण कार्यक्रम थे (तालिका 3.1)। इनमें से, जनजातीय उपयोजना (टीएसपी) के तहत किसानों के लिए 5 प्रशिक्षण कार्यक्रम आयोजित किए गए, एक प्रशिक्षण उत्तर—पूर्वी पहाड़ी (एनईएच) क्षेत्र घटक के तहत आयोजित किया गया, और 26 कार्यक्रम अनुसूचित जाति—उपयोजना (एससी—एसपी) घटक के तहत परिसर में और बाहर प्रशिक्षण आयोजित किए गए। इसमें कृषि विज्ञान केंद्र (केवीके) के वैज्ञानिक / तकनीकी कर्मचारियों के लिए एक प्रशिक्षण और दो प्रेक्टिकल तीन महीने के प्रशिक्षण कार्यक्रम भी शामिल हैं। रिपोर्टिंग वर्ष के दौरान, निदेशालय द्वारा आयोजित विभिन्न प्रशिक्षण कार्यक्रमों से कुल 3383 प्रतिभागियों को लाभ हुआ।

Table 3.1. Training programmes organized by ICAR-DMR, Solan (2024) तालिका 3.1. आईसीएआर—डीएमआर, सोलन द्वारा आयोजित प्रशिक्षण कार्यक्रम (2024)

S. No.	Training	Venue	Date	No. of trainees	Course Coordinator & Co-Coordinator(s)
1.	Trainings on Mushroom Cultivation Technology for Entrepreneurs	ICAR- DMR, Solan	15-20 January	36	Dr. B.L. Attri Dr. Anuradha Srivastava
2.	Three months hands-on training programme	ICAR- DMR, Solan	26 Dec 2023- 22 March 2024	08	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma
3.	Training on spawn production technology	ICAR- DMR, Solan	09-11 January	03	Dr. Manoj Nath Sh. Jeet Ram
4.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	22-24 January	04	Dr. Satish Kumar Smt. Shweta Sharma
5.	Training programme on mushroom cultivation under SC-SP	Jogindernagar, Mandi, H.P.	28 January	60	Dr. Shwet Kamal
6.	Training on spawn production technology	ICAR- DMR, Solan	06-08 February	04	Dr. Manoj Nath Sh. Jeet Ram
7.	Trainings on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	12-16 February	29	Dr. Manoj Nath Dr. Reetu
8.	Training programme on mushroom cultivation	Baijnath, Kangra, under SC-SP	19 February H.P.	150	Dr. Reetu Sh. Guler Rana

S. No.	Training	Venue	Date	No. of trainees	Course Coordinator & Co-Coordinator(s)
9.	Training programme on mushroom cultivation under TSP	ICAR- DMR, Solan	19-23 February	30	Dr. Satish Kumar Dr. Shweta Bijla
10.	Training programme on mushroom cultivation under SC-SP	Chauntra, Mandi, H.P.	20 February	150	Dr. Reetu Sh. Guler Rana
11.	Training programme on mushroom cultivation under NEH	ICAR- DMR, Solan	26-28 February	11	Dr. Satish Kumar Dr. Shweta Bijla
12.	Training programme on mushroom cultivation under TSP	ICAR- DMR, Solan	26-28 February	09	Dr. Satish Kumar Dr. Shweta Bijla
13.	Training programme on mushroom cultivation under SC-SP	Ludhiana, Punjab	04-05 March	100	Dr. Jagdish Goyanka Dr. Sushil Kumar
14.	Training programme on mushroom cultivation under SC-SP	Chauntra, Mandi, H.P.	10 March	220	Dr. B.L. Attri Dr. Anarase Dattatray Sh. Guler Rana Sh. Dharam Dass
15.	Training programme on mushroom cultivation under SC-SP	Chota Bangal, Mandi, H.P.	11 March	100	Dr. B.L. Attri Dr. Anarase Dattatray Sh. Guler Rana Sh. Dharam Dass
16.	Training programme on mushroom cultivation under SC-SP	Jogindernagar, Mandi, H.P.	11 March	80	Dr. B.L. Attri Dr. Anarase Dattatray Sh. Guler Rana Sh. Dharam Dass
17.	Training programme on mushroom cultivation under SC-SP	Nalagarh, Solan, H.P.	11 March	100	Dr. Manoj Nath Sh. Jeet Ram
18.	Training programme on mushroom cultivation under SC-SP	Bhager, Bilaspur, H.P.	12 March	70	Dr. Anil Rao Sh. Jeet Ram
19.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	11-13 March	08	Dr. Satish Kumar Smt. Shweta Sharma
20.	Training on spawn production technology	ICAR- DMR, Solan	12-14 March	14	Dr. Manoj Nath Sh. Jeet Ram
21.	Training programme on mushroom cultivation under SC-SP	Malyawar, Bilaspur, H.P.	16 March	100	Mrs. Shailja Verma Sh. Guler Rana
22.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	18-22 March	54	Dr. Anuradha Srivastava Dr. Anarase Dattatray
23.	Training programme on mushroom cultivation under SC-SP	Kangra, H.P.	20-21 March	150	Sh. Susheel Kumar Sh. Vinay
24.	Training programme on mushroom cultivation under SC-SP	Nichali Bhager, Bilaspur, H.P.	21 March	70	Sh. Guler Rana Sh. Jeet Ram
25.	Three months hands-on training programme	ICAR- DMR, Solan	04 Apr- 05 Jul 2024	11	Dr. Satish Kumar Dr. Shweta Bijla Mrs. Shailja Verma

S. No.	Training	Venue	Date	No. of trainees	Course Coordinator & Co-Coordinator(s)
26.	Training on Mushroom Cultivation Technology for Entrepreneurs	ICAR- DMR, Solan	15-23 April	25	Dr. Anil Rao Dr. Manoj Nath
27.	Training on Shiitake cultivation technology	ICAR- DMR, Solan	16-18 April	02	Dr. Satish Kumar Smt. Shweta Sharma
28.	Training on spawn production technology	ICAR- DMR, Solan	02-04 April	07	Dr. Manoj Nath Sh. Jeet Ram
29.	Training on spawn production technology	ICAR- DMR, Solan	07-09 May	10	Dr. Manoj Nath Sh. Jeet Ram
30.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	13-18 May	36	Dr. Satish Kumar Dr. Shweta Bijla
31.	Training programme on mushroom cultivation under TSP	ICAR- DMR, Solan	07-10 June	09	Dr. Satish Kumar Dr. Shweta Bijla
32.	Training on spawn production technology	ICAR- DMR, Solan	11-13 June	09	Dr. Manoj Nath Sh. Jeet Ram
33.	Training programme on mushroom cultivation under TSP	ICAR- DMR, Solan	14 June	25	Dr. Shweta Bijla
34.	Training programme on mushroom cultivation under SC-SP	Khatnol, Shimla, H.P.	14 June	100	Sh. Susheel Kumar Sh. Jeet Ram
35.	Training on Mushroom Cultivation Technology for Entrepreneurs	ICAR- DMR, Solan	26 Jun-04 Jul	52	Dr. B.L. Attri Dr. Reetu
36.	Training programme on mushroom cultivation under SC-SP	Baag, Mandi, H.P.	27 June	100	Dr. Jagdish Goyanka Mrs. Reeta
37.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	08-10 July	10	Dr. Satish Kumar Smt. Shweta Sharma
38.	Training on spawn production technology	ICAR- DMR, Solan	09-11 July	11	Dr. Manoj Nath Sh. Jeet Ram
39.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	22-27 July	46	Dr. Anuradha Srivastava Dr. Manoj Nath
40.	Training on Mushroom Cultivation Technology for Entrepreneurs	ICAR- DMR, Solan	05-13 August	63	Dr. Shwet Kamal Dr. Jagdish Goyanka
41.	Training programme on mushroom cultivation under SC-SP	Gobindpur, Patiala, Punjab	06 August	100	Dr. Anarase Dattatray Sh. Susheel Kumar
42.	Training on spawn production technology	ICAR- DMR, Solan	27-29 August	08	Dr. Manoj Nath Sh. Jeet Ram
43.	Training programme on mushroom cultivation under SC-SP	Mandi, H.P.	28 August	100	Dr. B.L. Attri Mrs. Reeta
44.	Training programme on mushroom cultivation under SC-SP	Nabha, Patiala, Punjab	05 September	100	Dr. Anarase Dattatray Sh. Susheel Kumar
45.	Training on spawn production technology	ICAR- DMR, Solan	17-19 September	12	Dr. Manoj Nath Sh. Jeet Ram
46.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	18-20 September	09	Dr. Satish Kumar Smt. Shweta Sharma

S. No.	Training	Venue	Date	No. of trainees	Course Coordinator & Co-Coordinator(s)
47.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	18-20 September	42	Dr. Anil Rao Dr. Anarase Dattatray
48.	Training on spawn production technology	ICAR- DMR, Solan	07-09 October	07	Dr. Manoj Nath Sh. Jeet Ram
49.	Training on Mushroom Cultivation Technology for Entrepreneurs	ICAR- DMR, Solan	14-22 October	43	Dr. B.L. Attri Dr. Reetu
50.	Training programme on mushroom cultivation under TSP	ICAR- DMR, Solan	24-25 October	20	Dr. Shweta Bijla
51.	Training programme on mushroom cultivation under SC-SP	ICAR- DMR, Solan	24-25 October	18	Dr. Anuradha Srivastava
52.	Training on mushroom millet products	ICAR- DMR, Solan	25 October	02	Dr. Anuradha Srivastava
53.	Training programme on mushroom cultivation under SC-SP	Murthal, Haryana	11-12 November	50	Dr. Shwet Kamal Dr. Jagdish Goyanka Sh. Guler Rana
54.	Training programme on mushroom cultivation under SC-SP	Shilaru, Shimla, H.P	14 November	100	Dr. Manoj Nath Sh. Jeet Ram
55.	Training on mushroom cultivation technology for KVK's (Scientist/ SMS/ Technical)	ICAR- DMR, Solan	18-20 November	08	Dr. Satish Kumar Dr. Shweta Bijla
56.	Training on spawn production technology	ICAR- DMR, Solan	25-27 November	08	Dr. Manoj Nath Sh. Jeet Ram
57.	Training on Mushroom Cultivation Technology for Small and Marginal Farmers/ Growers	ICAR- DMR, Solan	02-06 December	45	Dr. Anil Rao Dr. Anarase Dattatray
58.	Training programme on mushroom cultivation under SC-SP	Ludhiana, Punjab	03 December	100	Dr. Anarase Dattatray Dr. Sushil Kumar
59.	Training on spawn production technology	ICAR- DMR, Solan	10-12 December	11	Dr. Manoj Nath Sh. Jeet Ram
60.	Training programme on mushroom cultivation under SC-SP	Mundu, Shimla, H.P.	11 December	100	Dr. Anuradha Srivastava Dr. Shweta Bijla
61.	Training programme on mushroom cultivation under SC-SP	Kotlu Brahmana, Shimla, H.P.	12 December	100	Dr. Manoj Nath Sh. Jeet Ram
62.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	16-18 December	13	Dr. Satish Kumar Smt. Shweta Sharma
63.	Training programme on mushroom cultivation under SC-SP	Patiala, Punjab	18 December	100	Dr. B. L. Attri Dr. Jagdish Goyanka
64.	Training on <i>Cordyceps militaris</i> cultivation technology	ICAR- DMR, Solan	19-21 December	11	Dr. Satish Kumar Smt. Shweta Sharma
65.	Training programme on mushroom cultivation under SC-SP	ICAR- DMR, Solan	23 December	100	Dr. Reetu Sh. Guler Rana
66.	Training programme on mushroom cultivation under SC-SP	Gohana, Haryana,	30 December	100	Dr. Shwet Kamal Dr. Jagdish Goyanka

2. Training programmes under TSP and NEH

Under the Tribal Sub Plan (TSP), the Directorate conducted five on-campus training programs, attended by 98 tribal farmers from various regions, including Kafnu, Kinnaur, and Lahaul in Himachal Pradesh. The training covered different aspects of mushroom cultivation through lectures and practical demonstrations. Participants received essential inputs and mushroom cultivation literature to help them start cultivation independently. Additionally, one on-campus training under the NEH (North Eastern and Hilly region) component was organized, with 11 participants from different areas of Arunachal Pradesh. These trainees were also provided with necessary inputs and literature on mushroom cultivation.

3. Training programmes under SC-SP

In 2024, 26 training programs were conducted under the Scheduled Caste-Sub Plan (SC-SP-2024-25) for farmers, farm women, and youth from the Scheduled Caste community (Fig. 3.1). This included one on-campus and 25 off-campus sessions held in Baijnath, Kangra, Gohana (Haryana), Ludhiana (Punjab), Murthal, Patiala, Shimla, and Sundernagar, with a total participation of 2,618 trainees. Essential mushroom cultivation inputs, such as spray pumps and mushroom spawn, along with literature, were distributed. Each training concluded with an interactive feedback session, allowing participants to discuss challenges, which were addressed by scientists to facilitate successful mushroom production.

2. टीएसपी और एनईएच के तहत प्रशिक्षण कार्यक्रम

जनजातीय उपयोजना (टीएसपी) के तहत, निदेशालय ने पांच ऑन—कैंपस प्रशिक्षण कार्यक्रम आयोजित किए, जिसमें हिमाचल प्रदेश के काफनू, किन्नौर और लाहौल सिहत विभिन्न क्षेत्रों के 98 आदिवासी किसानों ने भाग लिया। प्रशिक्षण में व्याख्यान और व्यावहारिक प्रदर्शनों के माध्यम से खुम्ब की खेती के विभिन्न पहलुओं को शामिल किया गया। प्रतिभागियों को स्वतंत्र रूप से खेती शुरू करने में मदद करने के लिए आवश्यक जानकारी और खुम्ब खेती साहित्य प्रदान किया गया। इसके अतिरिक्त, एनईएच (उत्तर पूर्वी और पहाड़ी क्षेत्र) घटक के तहत एक ऑन—कैंपस प्रशिक्षण आयोजित किया गया, जिसमें अरुणाचल प्रदेश के विभिन्न क्षेत्रों से 11 प्रतिभागी शामिल हुए। इन प्रशिक्षुओं को खुम्ब की खेती पर आवश्यक जानकारी और साहित्य भी प्रदान किया गया।

3. एससी-एसपी के तहत प्रशिक्षण कार्यक्रम

2024 में, किसानों, कृषक महिलाओं और अनुसूचित जाति समुदाय के युवाओं के लिए अनुसूचित जाति—उप योजना (एससी—एसपी 2024—25) के तहत 26 प्रशिक्षण कार्यक्रम आयोजित किए गए (चित्र 3.1)। इसमें बैजनाथ, कांगड़ा, गोहाना (हरियाणा), लुधियाना (पंजाब), मुरथल, पटियाला, शिमला और सुंदरनगर में आयोजित एक ऑन—कैंपस और 25 ऑफ—कैंपस सत्र शामिल थे, जिसमें कुल 2,618 प्रशिक्षुओं की भागीदारी थी। आवश्यक खुम्ब खेती इनपुट, जैसे स्प्रे पंप और खुम्ब स्पॉन, साहित्य के साथ वितरित किए गए। प्रत्येक प्रशिक्षण एक इंटरैक्टिव फीडबैक सत्र के साथ संपन्न हुआ, जिससे प्रतिभागियों को चुनौतियों पर चर्चा करने का मौका मिला, जिन्हें सफल खुम्ब उत्पादन की सुविधा के लिए वैज्ञानिकों द्वारा संबोधित किया गया।

Fig. 3.1. Different training programme and demonstration on cultivation of oyster mushroom under SC-SP component

चित्र 3.1. एससी-एसपी घटक के अंतर्गत ऑयस्टर खुम्ब की खेती पर विभिन्न प्रशिक्षण कार्यक्रम एवं प्रदर्शन

4. Individual training programmes

In order to meet the specific needs of the participants, the Directorate organizes specialized training programs on mushroom cultivation technologies. In 2024, a training session on Shiitake mushroom cultivation was conducted, attended by two participants from Delhi. Additionally, six training programs on the cultivation of Cordyceps militaris were held, with 55 participants from various states, including Andhra Pradesh, Bihar, Chhattisgarh, Delhi, Gujarat, Haryana, Himachal Pradesh, Karnataka, Madhya Pradesh, Maharashtra, Punjab, Rajasthan, Uttarakhand, Uttar Pradesh, and West Bengal. This three-day training provides participants with handson experience, relevant literature, and practical demonstrations on Cordyceps militaris cultivation. Given the rising demand for Cordyceps, these training sessions are expected to gain further popularity.

Recognizing the importance of quality spawn in mushroom cultivation, the Directorate also conducts spawn production training. Participants receive handson training and practical demonstrations on the process of quality spawn production, along with video presentations at the beginning of the session. In total, 12 training programs on spawn production technology were conducted, attended by 104 trainees.

4. व्यक्तिगत प्रशिक्षण कार्यक्रम

प्रतिभागियों की विशेष आवश्यकताओं को पूरा करने के लिए, निदेशालय खुम्ब खेती प्रौद्योगिकियों पर विशेष प्रशिक्षण कार्यक्रम आयोजित करता है। 2024 में, शिटाके खुम्ब की खेती पर एक प्रशिक्षण सत्र आयोजित किया गया था, जिसमें दिल्ली के दो प्रतिभागियों ने भाग लिया था। इसके अतिरिक्त, कॉर्डिसेप्स मिलिटेरिस की खेती पर छह प्रशिक्षण कार्यक्रम आयोजित किए गए, जिसमें आंध्र प्रदेश, बिहार, छत्तीसगढ़, दिल्ली, गुजरात, हरियाणा, हिमाचल प्रदेश, कर्नाटक, मध्य प्रदेश, महाराष्ट्र, पंजाब, राजस्थान, उत्तराखंड, उत्तर प्रदेश और पश्चिम बंगाल सहित विभिन्न राज्यों के 55 प्रतिभागियों ने भाग लिया। यह तीन दिवसीय प्रशिक्षण प्रतिभागियों को कॉर्डिसेप्स मिलिटेरिस खेती पर व्यावहारिक अनुभव, प्रासंगिक साहित्य और व्यावहारिक प्रदर्शन प्रदान करता है। कॉर्डिसेप्स की बढ़ती मांग को देखते हुए, इन प्रशिक्षण सत्रों को और अधिक लोकप्रियता मिलने की उम्मीद है।

खुम्ब की खेती में गुणवत्तापूर्ण स्पॉन के महत्व को पहचानते हुए, निदेशालय स्पॉन उत्पादन प्रशिक्षण भी आयोजित करता है। प्रतिभागियों को सत्र की शुरुआत में वीडियो प्रस्तुतियों के साथ—साथ गुणवत्तापूर्ण स्पॉन उत्पादन की प्रक्रिया पर व्यावहारिक अनुभव और व्यावहारिक प्रदर्शन प्राप्त होते हैं। कुल मिलाकर, स्पॉन उत्पादन तकनीक पर 12 प्रशिक्षण कार्यक्रम आयोजित किए गए, जिनमें 104 प्रशिक्षुओं ने भाग लिया।

5. Three months hands-on training programme

The Directorate conducts a three-month handson training program, enabling participants to gain comprehensive experience in all aspects of mushroom cultivation. Practical training is essential as mushroom cultivation is highly technical, particularly in button mushroom compost production, spawn preparation, and crop management practices. Such programs equip potential growers with the necessary skills, fostering a skilled workforce and contributing to the rapid growth of India's mushroom industry. Participants receive firsthand knowledge and practical exposure to cultivating Button and specialty mushrooms. The training covers spawn production, compost and casing soil preparation, farm design, crop management, harvesting, and post-harvest handling of various mushrooms. In 2024, two hands-on training programs were conducted at DMR campus from December 2023 to March 2024 and April 2024 to July 2024. A total of 19 trainees from various states and UTs, including Bihar, Chandigarh, Delhi, Haryana, Karnataka, Madhya Pradesh, Maharashtra, Punjab, Rajasthan, Uttarakhand, and Uttar Pradesh, participated. They were fully trained and encouraged to establish their own units for spawn production, crop production, compost production, and processing unit.

6. National Mushroom Mela-2024

The Directorate organized the 27th National Mushroom Mela 2024 on 10th September. The Hon'ble Governor of Himachal Pradesh Sh. Shiv Pratap Shukla was the Chief Guest of the National Mushroom Mela (Fig. 3.2). The event was chaired by Sh. Shiv Pratap Shukla and Dr Rajeshwar Chandel, Hon'able Vice-Chancellor, UHF Nauni) and Dr. S.K. Singh, DDG (Hort.Sci.), ICAR, New Delhi were the guest of honour. Apart from Dr. V.P. Sharma Director, ICAR-DMR, Solan, Scientists and other staff members, more than 1050 participants including mushroom growers, students, input suppliers, and processors from various states, took part in the event.

As part of the Mela, the Directorate organized an exhibition showcasing different mushroom varieties, new technologies, and value-added products. The Hon'ble Chief Guest, media personnel, and participants visited the exhibition, which also featured stalls from

5. तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम

निदेशालय तीन महीने का व्यावहारिक प्रशिक्षण कार्यक्रम आयोजित करता है, जिससे प्रतिभागियों को खुम्ब की खेती के सभी पहलुओं में व्यापक अनुभव प्राप्त करने में मदद मिलती है। व्यावहारिक प्रशिक्षण आवश्यक है क्योंकि खुम्ब की खेती अत्यधिक तकनीकी है, विशेष रूप से बटन खुम्ब खाद उत्पादन, स्पॉन तैयारी और फसल प्रबंधन प्रथाओं में। ऐसे कार्यक्रम संभावित उत्पादकों को आवश्यक कौशल प्रदान करते हैं, कुशल कार्यबल को बढ़ावा देते हैं और भारत के खुम्ब उद्योग के तेजी से विकास में योगदान करते हैं। प्रतिभागियों को बटन और विशेष खुम्ब की खेती का प्रत्यक्ष ज्ञान और व्यावहारिक अनुभव प्राप्त होता है। प्रशिक्षण में स्पॉन उत्पादन, खाद और आवरण मिट्टी की तैयारी, फार्म डिजाइन, फसल प्रबंधन, कटाई और विभिन्न खुम्ब की कटाई के बाद की देखभाल शामिल है। 2024 में, दिसंबर 2023 से मार्च 2024 और अप्रैल 2024 से जुलाई 2024 तक निदेशालय परिसर में दो व्यावहारिक प्रशिक्षण कार्यक्रम आयोजित किए गए। बिहार, चंडीगढ, दिल्ली, हरियाणा, कर्नाटक, मध्य प्रदेश, महाराष्ट्र, पंजाब, राजस्थान, उत्तराखंड और उत्तर प्रदेश सहित विभिन्न राज्यों और केंद्र शासित प्रदेशों के कुल 19 प्रशिक्षुओं ने भाग लिया। उन्हें स्पॉन उत्पादन, फसल उत्पादन, खाद उत्पादन और प्रसंस्करण के लिए अपनी इकाइयां स्थापित करने के लिए पूरी तरह से प्रशिक्षित और प्रोत्साहित किया गया।

6. राष्ट्रीय खुम्ब मेला-2024

निदेशालय ने 10 सितंबर को 27वें राष्ट्रीय खुम्ब मेला 2024 का आयोजन किया। हिमाचल प्रदेश के माननीय राज्यपाल श्री शिव प्रताप शुक्ला राष्ट्रीय खुम्ब मेले के मुख्य अतिथि थे (चित्र 3.2)। कार्यक्रम की अध्यक्षता श्री शिव प्रताप शुक्ला जबिक डॉ. राजेश्वर चंदेल, माननीय कुलपित, यूएचएफ नौणी) और डॉ. एस. के. सिंह, डीडीजी (बागवानी विज्ञान), आईसीएआर, नई दिल्ली सम्मानित अतिथि थे। इसके अलावा डॉ. वी.पी. शर्मा निदेशक, भाकृअनुप—खुम्ब अनुसन्धान निदेशालय, सोलन, वैज्ञानिकों और अन्य स्टाफ सदस्यों, विभिन्न राज्यों के खुम्ब उत्पादकों, छात्रों, इनपुट आपूर्तिकर्ताओं और प्रोसेसर सहित 1050 से अधिक प्रतिभागियों ने इस कार्यक्रम में भाग लिया।

मेले में, निदेशालय ने विभिन्न खुम्ब किस्मों, नई प्रौद्योगिकियों और मूल्य वर्धित उत्पादों को प्रदर्शित करने वाली एक प्रदर्शनी का आयोजन किया। माननीय मुख्य अतिथि, मीडिया कर्मियों और प्रतिभागियों ने प्रदर्शनी का दौरा किया, जिसमें खुम्ब इनपुट आपूर्तिकर्ताओं, उत्पादकों और पैकेजिंग और मशीनरी विक्रेताओं के स्टॉल भी शामिल थे। उन्नत खुम्ब खेती प्रथाओं के बारे में

Fig. 3.2. Hon'able Governor of Himachal Pradesh Sh. Shiv Pratap Shukla visiting ICAR DMR stall during 27th National Mushroom Mela 2024

चित्र 3.2. हिमाचल प्रदेश के माननीय राज्यपाल श्री शिव प्रताप शुक्ला 27वें राष्ट्रीय खुम्ब मेला 2024 के दौरान आईसी एआर-डीएमआर स्टॉल का दौरा करते हुए

mushroom input suppliers, producers, packaging and machinery vendors. To raise awareness about advanced mushroom cultivation practices, participants were given an exposure farm visit to the Directorate's growing units. Additionally, literature on spawn production, button mushroom cultivation on various substrates, post-harvest management, and disease prevention was distributed. During the event, dignitaries addressed participants on the achievements of DMR, Solan, and key aspects of mushroom cultivation, including the significance of quality spawn, value addition, agricultural residue utilization, innovative mushroom-based products, and spent mushroom substrate management. In the afternoon session, a Kisan Goshthi was conducted, where experts and scientists from the Directorate addressed queries and challenges faced by mushroom growers.

The Directorate also honored five progressive mushroom growers from different states for their innovative cultivation practices and contribution in promoting mushroom farming. These individuals were recognized for encouraging rural youth and women to adopt mushroom cultivation as a sustainable livelihood, thereby fostering economic empowerment of their communities (Fig. 3.3).

Fig. 3.3. Hon'able Governor of Himachal Pradesh Sh. Shiv Pratap Shukla with the award winners during 27th National Mushroom Mela at ICAR-DMR, Solan चित्र 3.3. हिमाचल प्रदेश के माननीय राज्यपाल श्री शिव प्रताप शुक्ला आईसीएआर—डीएमआर, सोलन में 27वें राष्ट्रीय खूम्ब मेले के दौरान प्रस्कार विजेताओं के साथ

जागरूकता बढ़ाने के लिए, प्रतिभागियों को निदेशालय की उत्पादन इकाइयों का निर्देशित फार्म दौरा कराया गया। इसके अतिरिक्त, स्पॉन उत्पादन, विभिन्न सब्सट्रेट्स पर बटन खुम्ब की खेती, कटाई के बाद प्रबंधन और बीमारी की रोकथाम पर साहित्य वितरित किया गया। कार्यक्रम के दौरान, गणमान्य व्यक्तियों ने डीएमआर, सोलन की उपलब्धियों और खुम्ब की खेती के प्रमुख पहलुओं पर प्रतिभागियों को संबोधित किया, जिसमें गुणवत्तापूर्ण स्पॉन, मूल्य संवर्धन, कृषि अवशेषों का उपयोग, नवीन खुम्ब—आधारित उत्पाद और खर्च किए गए खुम्ब सब्सट्रेट प्रबंधन का महत्व शामिल था। दोपहर के सत्र में, एक किसान गोष्ठी आयोजित की गई, जहां निदेशालय के विशेषज्ञों और वैज्ञानिकों ने खुम्ब उत्पादकों के सामने आने वाले प्रश्नों और चुनौतियों का समाधान किया।

निदेशालय ने विभिन्न राज्यों के पांच प्रगतिशील खुम्ब उत्पादकों को उनकी नवीन खेती प्रथाओं और खुम्ब की खेती को बढ़ावा देने में योगदान के लिए सम्मानित किया। इन व्यक्तियों को ग्रामीण युवाओं और महिलाओं को खुम्ब की खेती को स्थायी आजीविका के रूप में अपनाने के लिए प्रोत्साहित करने के लिए सम्मानित किया गया, जिससे उनके समुदायों के आर्थिक सशक्तिकरण को बढ़ावा मिला (चित्र 3.3)।

Achievements of growers awarded with "Progressive Mushroom Grower" award

Sh. Anuj Kumar Saikia from Guwahati (Assam) began cultivating oyster mushrooms in 2013, producing 50 kg per day, and expanded to milky mushroom in 2018 with a daily production of 10 kg. He operates under the registered company "Arihan Enterprise," focusing on mushroom production and value-added products such as mushroom pickles, chutney cookies, biscuits, and powder. Over the years, he has trained more than 5,000 people across the Northeastern region in mushroom cultivation, spawn production, value addition, and marketing. Through the "Sewabikash Foundation," he provides training, technical support, demonstrations, spawn, and marketing assistance to mushroom growers. Additionally,

he collaborates with the Assam Government on the "Assam Project on Forest and Biodiversity Conservation," where he empowers individuals to achieve self-sustainability through mushroom cultivation. His pioneering efforts in the mushroom industry have earned him numerous awards and recognition from various government and non-government organizations. श्री अनुज कुमार सैकिया गुवाहाटी (असम) से ने 2013 में ढींगरी खुम्ब की खेती शुरू की, जिससे प्रति दिन 50 किलोग्राम उत्पादन होता था, और 2018 में 10 किलोग्राम के दैनिक उत्पादन के साथ दूधिया खुम्ब तक इसका विस्तार हुआ। वह पंजीकृत कंपनी "अरिहान एंटरप्राइज" के तहत काम करते हैं, जो खुम्ब उत्पादन और खुम्ब अचार, चटनी कुकीज, बिस्कुट और पाउंडर जैसे मूल्य वर्धित उत्पादों पर ध्यान केंद्रित करता है। इन वर्षों में, उन्होंने पूर्वोत्तर क्षेत्र में 5,000 से अधिक लोगों को खुम्ब की खेती, स्पॉन उत्पादन, मूल्य संवर्धन और विपणन में प्रशिक्षित किया है। "सेवाबिकेश फाउंडेशन" के माध्यम से, वह खुम्ब उत्पादकों को प्रशिक्षण, तकनीकी सहायता, प्रदर्शन, स्पॉन और विपणन सहायता प्रदान करते हैं। इसके अतिरिक्त, वह असम सरकार के साथ "वन और जैव विविधता संरक्षण पर असम परियोजना" पर सहयोग करते हैं, जहां वह व्यक्तियों को खुम्ब की खेती के माध्यम से आत्मिनर्भरता प्राप्त करने के लिए सशक्त बनाते हैं। खुम्ब उद्योग में उनके अग्रणी प्रयासों ने उन्हें विभिन्न सरकारी और गैर—सरकारी संगठनों से कई पुरस्कार और मान्यता दिलाई है।

Sh. Ganesh Kashinath Varpe from Pune (Maharashtra) took up button mushroom cultivation in 2017 with a production of 2000 kg per day in 14 growing rooms. Further, he is also producing 800-1000 kg spawn per day and supplying to the mushroom growers in Maharashtra and adjoining states. The compost for button mushroom cultivation is also being prepared at the unit.

श्री गणेश काशीनाथ वर्षे पुणे (महाराष्ट्र) से ने 2017 में 14 उत्पादित कमरों में प्रति दिन 2000 किलोग्राम उत्पादन के साथ बटन खुम्ब की खेती शुरू की। इसके अलावा, वह प्रतिदिन 800—1000 किलोग्राम स्पॉन का उत्पादन भी कर रहे हैं और महाराष्ट्र और आसपास के राज्यों में खुम्ब उत्पादकों को आपूर्ति कर रहे हैं। यूनिट में बटन खुम्ब की खेती के लिए खाद भी तैयार की जा रही है।

Sh. Prakash Chandra Das from Khorda (Odisha) started oyster mushroom production from 2012 with 50-80 kg per day production. Further, paddy straw mushroom production was also taken up during 2012 with a production of 30-40 kg per day. Apart from oyster and paddy straw mushroom, spawn production was taken up from 2010 with a capacity of 2000-3000 bottles per day. He is also engaged in the manufacture of different equipment for spawn production. He has fabricated low-cost spawn machineries, electrically operated dual straw cutter for paddy straw and oyster mushroom. He is also involved in mushroom processing and has developed products like mushroom pickle and dry mushrooms.

He also conducts trainings on mushroom cultivation. For mushroom cultivation and spawn production he has also been awarded by various government and non-government organizations.

श्री प्रकाश चंद्र दास खोरदा (ओडिशा) से ने 2012 से 50-80 किलोग्राम प्रतिदिन उत्पादन के साथ ढींगरी खुम्ब का उत्पादन शुरू किया। इसके अलावा, 2012 के दौरान प्रतिदिन 30-40 किलोग्राम उत्पादन के साथ पराली खुम्ब का उत्पादन भी शुरू किया गया। ढींगरी और पराली खुम्ब के अलावा, प्रति दिन 2000-3000 बोतलों की क्षमता के साथ स्पॉन उत्पादन 2010 से शुरू किया गया था। वह स्पॉन उत्पादन के लिए विभिन्न उपकरणों के निर्माण में भी लगे हुए हैं। उन्होंने कम लागत वाली स्पॉन मशीनरी, पैडी स्ट्रा और ढींगरी खुम्ब के लिए विद्युत चालित दोहरी स्ट्रॉ कटर का निर्माण किया है। वह खुम्ब प्रसंस्करण में भी शामिल हैं और उन्होंने खुम्ब अचार और सूखे खुम्ब जैसे उत्पाद विकसित किए हैं। वह खुम्ब की खेती पर प्रशिक्षण भी देते हैं। खुम्ब की खेती और स्पॉन उत्पादन के लिए उन्हें विभिन्न सरकारी और गैर सरकारी संगठनों द्वारा सम्मानित भी किया जा चुका है।

Smt. Rekha Kumari from Gopalganj (Bihar) has taken up cultivation of various mushrooms viz., milky and oyster (2017), button (2018), paddy straw (2020) and shiitake mushroom (2023) with a production of 50, 100, 50, 20 and 5 kg per day, respectively. Apart from mushroom production, she is also preparing and selling various value added products like mushroom laddu, biscuit, samosa, pickle, bari, mushroom powder, dry mushroom etc. The spawn production which was 20 kg per day during 2021 has been increased to 150 kg per day during 2024. She has also motivated and trained more than 300 women to undertake mushroom cultivation. Further, she has been awarded by various government and private organizations during this period.

श्रीमती रेखा कुमारी गोपालगंज (बिहार) से ने क्रमशः 50, 100, 50, 20 और 5 किलोग्राम प्रतिदिन उत्पादन के साथ विभिन्न खुम्ब जैसे दूधिया और ढींगरी (2017), बटन (2018), पराली (2020) और शिटाके खुम्ब (2023) की खेती शुरू की है। खुम्ब उत्पादन के अलावा वह विभिन्न मूल्य वर्धित उत्पाद जैसे खुम्ब लड्डू, बिस्किट, समोसा, अचार, बड़ी, खुम्ब पाउडर, सूखा खुम्ब आदि भी तैयार कर बेच रही हैं। स्पॉन उत्पादन जो 2021 के दौरान 20 किलोग्राम प्रति दिन था, 2024 के दौरान बढ़कर 150 किलोग्राम प्रति दिन हो गया है। उन्होंने 300 से अधिक महिलाओं को खुम्ब की खेती करने के लिए प्रेरित और प्रशिक्षित भी किया है। इसके अलावा, उन्हें इस अवधि के दौरान विभिन्न सरकारी और निजी संगठनों द्वारा सम्मानित किया गया है।

Smt. Shije Thankachan from Alapuzha (Kerala) took up oyster cultivation during 2007 with a production of 50 kg per day. Further, she also started spawn production in 2010. She has developed a low-cost-indigenous bio high tech oyster mushroom farm where she uses local herb padding as cooling sytem. Apart from oyster mushroom and spawn production, she is preparing value added products and dishes such as mushroom cutlet, momos, sandwich, mushroom fortified cake, mushroom millet payasam, mushroom stew etc. She has developed a product named Coonvita, which is mushroom-based vitamin D2-rich nutritional health mix that ensures calcium intake, making it a two-in-one supplement ideal for

vegans and vegetarians. Her unit has an annual turnover of Rs. 80 lakhs. She is also involved in training people in mushroom cultivation via offline and digital mode. She has been awarded with Best mushroom farmer during 2020 and Dr. Ambedkar National Award in 2016.

श्रीमती शाईजे थंकाचन अलापुझा (केरल) से ने 2007 के दौरान प्रति दिन 50 किलोग्राम उत्पादन के साथ ढींगरी की खेती शुरू की। इसके अलावा, उन्होंने 2010 में स्पॉन उत्पादन भी शुरू किया। उन्होंने एक कम लागत वाला स्वदेशी जैव उच्च तकनीक ऑयस्टर खुम्ब फार्म विकसित किया है जहां वह शीतलन प्रणाली के रूप में स्थानीय जड़ी—बूटी पैडिंग का उपयोग करती हैं। ऑयस्टर खुम्ब और स्पॉन उत्पादन के अलावा, वह खुम्ब कटलेट, मोमोज, सैंडविच, खुम्ब फोर्टिफाइड केक, खुम्ब बाजरा पायसम, खुम्ब स्टू आदि जैसे मूल्य वर्धित उत्पाद और व्यंजन तैयार कर रही हैं। उन्होंने कूनविटा नामक एक उत्पाद विकसित किया है, जो खुम्ब आधारित विटामिन डी2 से भरपूर पोषण स्वास्थ्य मिश्रण है जो कैल्शियम की मात्रा सुनिश्चित करता है, जिससे यह शाकाहारी और शाकाहारियों के लिए आदर्श टू—इन—वन पूरक बन जाता है। उनकी यूनिट का सालाना टर्नओवर रु. 80 लाख है। वह ऑफलाइन और डिजिटल मोड के माध्यम से लोगों को खुम्ब की खेती का प्रशिक्षण देने में भी शामिल हैं। उन्हें 2020 के दौरान सर्वश्रेष्ठ खुम्ब किसान और 2016 में डॉ. अंबेडकर राष्ट्रीय पुरस्कार से सम्मानित किया गया है।

7. Mera Gaon Mera Gaurav (MGMG) scheme

On July 25, 2015, during the 87th Foundation Day of the Indian Council of Agricultural Research (ICAR), the Honorable Prime Minister introduced the 'Mera Gaon Mera Gaurav' (MGMG) initiative. This program encourages scientists to adopt specific villages to foster comprehensive development, thereby establishing a direct connection between researchers and local communities to expedite the transfer of laboratory innovations to practical applications.

7. मेरा गांव मेरा गौरव (एमजीएमजी) योजना

25 जुलाई 2015 को, भारतीय कृषि अनुसंधान परिषद (ICAR) के 87वें स्थापना दिवस के दौरान, माननीय प्रधान मंत्री ने 'मेरा गाँव मेरा गौरव' (MGMG) पहल की शुरुआत की। यह कार्यक्रम वैज्ञानिकों को व्यापक विकास को बढ़ावा देने के लिए विशिष्ट गांवों को अपनाने के लिए प्रोत्साहित करता है, जिससे प्रयोगशाला नवाचारों को व्यावहारिक अनुप्रयोगों में स्थानांतरित करने में तेजी लाने के लिए शोधकर्ताओं और स्थानीय समुदायों के बीच सीधा संबंध स्थापित होता है।

To implement this initiative, the Directorate formed two teams, each comprising six scientists, who adopted twelve villages in the Kandaghat block of Solan district. These teams conducted visits to the selected villages, engaging in bilateral discussions with residents to identify challenges such as inadequate irrigation facilities, limited access to quality agricultural inputs, and issues with wild animals.

Throughout the reporting year, the teams conducted eleven visits, interacting with approximately 150 farmers. Notably, there was significant interest among these farmers in oyster mushroom cultivation. In response, practical demonstrations were provided, and oyster mushroom spawn was distributed to encourage adoption (Fig. 3.4). Additionally, the teams maintained communication with mushroom growers through telephone interactions under the MGMG program. Various activities were organized in collaboration with the adopted villages, with active participation from the residents. Farmers from nearby adopted villages attended the National Mushroom Mela held on September 10, 2024, at the ICAR-DMR campus, where they participated in exhibitions and demonstrations.

As part of the Central Government's Swachh Bharat Abhiyan (Clean India Campaign), the teams visited the adopted villages to raise awareness about cleanliness and sanitation in homes, surroundings, and public areas. They provided guidance on utilizing agricultural waste for mushroom cultivation and the subsequent use of Spent Mushroom Substrate (SMS) for composting. Villagers were encouraged to avoid single-use plastics, ensure proper waste disposal, and maintain environmental cleanliness.

इस पहल को लागू करने के लिए, निदेशालय ने दो टीमों का गठन किया, जिनमें से प्रत्येक में छह वैज्ञानिक शामिल थे, जिन्होंने सोलन जिले के सोलन ब्लॉक में बारह गांवों को गोद लिया। इन टीमों ने चयनित गांवों का दौरा किया और अपर्याप्त सिंचाई सुविधाओं, गुणवत्तापूर्ण कृषि आदानों तक सीमित पहुंच और जंगली जानवरों के मुद्दों जैसी चुनौतियों की पहचान करने के लिए निवासियों के साथ द्विपक्षीय चर्चा की।

पूरे रिपोर्टिंग वर्ष में, टीमों ने ग्यारह दौरे किए और लगभग 150 किसानों से बातचीत की। विशेष रूप से, इन किसानों के बीच ढींगरी खुम्ब की खेती में काफी रुचि थी। अतः व्यावहारिक प्रदर्शन प्रदान किए गए, और मशरूम खेती अपनाने को प्रोत्साहित करने के लिए ढींगरी खुम्ब स्पॉन वितरित किया गया (चित्र 3. 4)। इसके अतिरिक्त, टीमों ने एमजीएमजी कार्यक्रम के तहत टेलीफोन बातचीत के माध्यम से खुम्ब उत्पादकों के साथ संचार बनाए रखा। अपनाए गए गांवों के सहयोग से, निवासियों की सक्रिय भागीदारी के साथ, विभिन्न गतिविधियाँ आयोजित की गईं। आस—पास के गोद लिए गए गांवों के किसानों ने 10 सितंबर, 2024 को भाकृअनुप—खुम्ब अनुसन्धान निदेशालय परिसर में आयोजित राष्ट्रीय खुम्ब मेले में भाग लिया, जहां उन्होंने प्रदर्शनियों और प्रदर्शनों में भाग लिया।

केंद्र सरकार के स्वच्छ भारत अभियान (स्वच्छ भारत अभियान) के हिस्से के रूप में, टीमों ने घरों, परिवेश और सार्वजनिक क्षेत्रों में स्वच्छता और स्वच्छता के बारे में जागरूकता बढ़ाने के लिए गोद लिए गए गांवों का दौरा किया। उन्होंने खुम्ब की खेती के लिए कृषि अपशिष्ट का उपयोग करने और उसके बाद खाद बनाने के लिए स्पेंट खुम्ब सब्सट्रेट (एसएमएस) के उपयोग पर मार्गदर्शन प्रदान किया। ग्रामीणों को एकल—उपयोग प्लास्टिक से बचने, उचित अपशिष्ट निपटान सुनिश्चित करने और पर्यावरणीय स्वच्छता बनाए रखने के लिए प्रोत्साहित किया गया।

Fig. 3.4. Mushroom cultivation training and distribution of spawn under MGMG चित्र 3.4. एमजीएमजी के तहत खुम्ब खेती का प्रशिक्षण एवं स्पॉन का वितरण

8. Exhibitions and Demonstrations organized

The ICAR- Directorate of Mushroom Research, Solan has organized three exhibitions in 2024 in the campus. On 28th February, 38th National Science Day was celebrated in the Directorate and with the theme "Indigenous Technologies for Viksit Bharat" attended by around 50 school students, where they were addressed on benefits of various mushrooms, importance of indigenous technologies etc. (Fig. 3.5). National Mushroom Day and Kisan Diwas were celebrated on 23rd December where more than 100 farmers/ farm women, village youth attended the celebration in the campus. In these events, participants were given firsthand information with the help of exhibition on different mushrooms, their varieties, improved technologies, and post-harvest management of mushroom with value addition.

8. प्रदर्शनियाँ एवं प्रदर्शनों का आयोजन

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन ने 2024 में पिरसर में तीन प्रदर्शनियों का आयोजन किया है। 28 फरवरी को निदेशालय में 38वां राष्ट्रीय विज्ञान दिवस मनाया गया और इसकी थीम 'विकसित भारत के लिए स्वदेशी तकनीक'' थी, जिसमें लगभग 50 स्कूली छात्रों ने भाग लिया, जहां उन्हें विभिन्न खुम्ब के लाभों, स्वदेशी प्रौद्योगिकियों के महत्व आदि पर संबोधित किया गया (चित्र 3.5)। 23 दिसंबर को राष्ट्रीय खुम्ब दिवस और किसान दिवस मनाया गया, जहां 100 से अधिक किसानों / कृषि महिलाओं, ग्रामीण युवाओं ने परिसर में समारोह में भाग लिया। इन आयोजनों में प्रतिभागियों को विभिन्न मशरूमों, उनकी किस्मों, उन्नत तकनीकों और मूल्यवर्धित खुम्ब की कटाई के बाद के प्रबंधन पर प्रदर्शनी की मदद से प्रत्यक्ष जानकारी दी गई।

Fig. 3.5. Exhibition during National Science Day-2024 at ICAR-DMR, Solan चित्र 3.5. भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में राष्ट्रीय विज्ञान दिवस—2024 के दौरान प्रदर्शनी

9. Technology documentaries

During the reporting year, 282 video documentaries on spawn production, white button mushroom under natural condition, cultivation technology of White button, Oyster, Paddy straw, Shiitake, Milky mushroom, mushroom recipes were sold by the ToT section. This generated revenue of Rs. 36,750 from 151 English and 16, 100 from sale of 131 Hindi documentaries.

9. वृत्तचित्र

रिपोर्टिंग वर्ष के दौरान, टीओटी अनुभाग द्वारा स्पॉन उत्पादन, प्राकृतिक स्थिति में सफेद बटन खुम्ब, सफेद बटन, ढींगरी, पराली, शिटाके, दूधिया खुम्ब, खुम्ब व्यंजनों की खेती तकनीक पर 282 वीडियो वृत्तचित्र बेचे गए। इससे 151 अंग्रेजी वृत्तचित्रों की बिक्री से रु. 36,750 राजस्व प्राप्त हुआ और 131 हिंदी वृत्तचित्रों की बिक्री से रु. 16,100 रुपये प्राप्त हुए।

10. Visitors and telephone calls attended by ToT section

During the year 2024, 2788 people visited the Directorate from various states of the country. These visitors were given a tour of the farm including composting yard, spawn laboratory, crop protection, post-harvest lab, and transfer of technology (ToT) section etc. The ToT section attended to around 1000 calls on landline and more than 600 calls on mobile phones on various queries related to trainings, cultivation technologies and extension services provided by ICAR- DMR, Solan.

11. Total mushroom production

During the year 2024, current scenario of mushroom production was examined in the country with the assistance of AICRP network centers. It helps in investigating the state wise mushroom production scenario and impact of prevailing situations on the Indian mushroom industry. The mushroom production has shown increasing trend in the reporting year 2024. The table 3.2 shows the state-wise mushroom production in the year 2023-24. The production is 347.45 thousand tons in 2023-24 with a 10% increase from the previous year (2022-23) production (314.84 thousand tons).

10. टीओटी अनुभाग द्वारा आगंतुकों और टेलीफोन के माध्यम से जबाब

वर्ष 2024 के दौरान देश के विभिन्न राज्यों से 2788 लोगों ने निदेशालय का दौरा किया। इन आगंतुकों को कंपोस्टिंग यार्ड, स्पॉन प्रयोगशाला, फसल सुरक्षा, फसल कटाई के बाद की प्रयोगशाला और प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग आदि सहित फार्म का दौरा कराया गया। टीओटी अनुभाग ने भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन द्वारा प्रदान किए गए प्रशिक्षण, खेती प्रौद्योगिकियों और विस्तार सेवाओं से संबंधित विभिन्न प्रश्नों पर लेंडलाइन पर लगभग 1000 कॉल और मोबाइल फोन पर 600 से अधिक कॉलों में भाग लिया।

11. कुल खुम्ब उत्पादन

वर्ष 2024 के दौरान एआईसीआरपी नेटवर्क केंद्रों की सहायता से देश में खुम्ब उत्पादन के वर्तमान परिदृश्य की जांच की गई। यह राज्यवार खुम्ब उत्पादन परिदृश्य और भारतीय खुम्ब उद्योग पर मौजूदा स्थितियों के प्रभाव की जांच करने में मदद करता है। रिपोर्टिंग वर्ष 2024 में खुम्ब उत्पादन में वृद्धि की प्रवृत्ति देखी गई है। तालिका 3.2 वर्ष 2023—24 में राज्य—वार खुम्ब उत्पादन को दर्शाती है। 2023—24 में उत्पादन 347.45 हजार टन है, जो पिछले वर्ष (2022—23) उत्पादन (314.84 हजार टन) से 10% अधिक है।

Table 3.2: State-wise mushroom production in India (2023-24) तालिका 3.2: भारत में राज्यवार खुम्ब उत्पादन (2023-24)

State	Production (000 tons)	State	Production (000 tons)
Andhra Pradesh	3.15	Madhya Pradesh	2.44
Arunachal Pradesh	0.01	Manipur	0.04
Assam	1.83	Meghalaya	0.08
Bihar	39.25	Mizoram	0.09
Chhattisgarh	23.27	Nagaland	0.17
Delhi	4.71	Odisha	35.40
Goa	9.39	Punjab	19.80
Gujarat	14.75	Rajasthan	20.69
Haryana	22.65	Sikkim	0.02
Himachal Pradesh	20.88	Tamil Nadu	17.90
Jammu and Kashmir	3.80	Tripura	0.16
Jharkhand	7.82	Uttarakhand	27.39
Karnataka	1.81	Uttar Pradesh	27.70
Kerala	0.12	West Bengal	9.85
Maharashtra	32.28	India	347.45

4. AICRP (MUSHROOM) CENTRES

4. अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना केन्द्र

With a view to test and disseminate the technology developed at ICAR-Directorate of Mushroom Research, Solan and its Centres in different agro-climatic regions of the country and to further popularize mushroom as secondary agriculture along with the existing farming system, the All India Coordinated Research Project on Mushroom (AICRPM) was launched during VI Five-Year Plan on 01.04.1983 with its Headquarters at Directorate of Mushroom Research, Solan (HP). The Director of DMR, Solan (HP) also functions as the Project Co-ordinator of the project. The mandate of AICRP (Mushroom) is to coordinate and monitor multilocation trials with improved mushroom varieties / hybrids, cultivation practices related to crop production, crop protection measures and post harvest technology, all aimed at increasing production, productivity and utilization of mushroom in the country.

Initially, the All India Coordinated Mushroom Improvement Project started with six Centres. During the XII Five Year Plan, 11 more coordinating and 9 cooperating centres were added and Faizabad centre was dropped. At present, 24 Coordinating and 8 cooperating Centres are working under AICRPM. These are:

The old centres

Coordinating Centres

- 1. ICAR Research Complex for NEH Region, Barapani, Meghalaya
- 2. ICAR-Research Complex for Eastern Region Research Centre, Ranchi, Jharkhand
- 3. Punjab Agricultural University, Ludhiana, Punjab
- 4. Tamil Nadu Agricultural University, Coimbatore, Tamilnadu
- 5. G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand
- CoA, Mahatma Phule Agricultural University, Pune, Maharashtra
- 7. Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh
- 8. Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan
- 9. CoA, Kerala Agricultural University, Vellayani, Kerala
- 10. C.C.S. Haryana Agricultural University, Hisar, Haryana
- 11. Orissa University of Agricultute and Technology, Bhubaneswar, Odisha

देश के विभिन्न कृषि—जलवायु क्षेत्रों में भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन और इसके केंद्रों में विकसित तकनीक का परीक्षण और प्रसार करने और मौजूदा कृषि प्रणाली के साथ—साथ खुम्ब को माध्यमिक कृषि के रूप में लोकप्रिय बनाने के लिए, अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना (एआईसीआरपीएम) को छठी पंचवर्षीय योजना के दौरान 01.04.1983 को खुम्ब अनुसंधान निदेशालय, सोलन (हिमाचल प्रदेश) में मुख्यालय के साथ शुरू किया गया था। डीएमआर, सोलन (एचपी) के निदेशक परियोजना के परियोजना समन्वयक के रूप में भी कार्य करते हैं। AICRP (खुम्ब) का जनादेश उन्नत खुम्ब किस्मों / संकरों, फसल उत्पादन से संबंधित खेती के तरीकों, फसल सुरक्षा उपायों और कटाई के बाद की तकनीक के साथ बहु—स्थानीय परीक्षणों का समन्वय और निगरानी करना है, जिसका उद्देश्य देश में खुम्ब का उत्पादन, उत्पादकता और उपयोग बढ़ाना है।

प्रारंभ में, अखिल भारतीय समन्वित खुम्ब सुधार परियोजना छह केंद्रों के साथ शुरू हुई। बारहवीं पंचवर्षीय योजना के दौरान, 11 और समन्वय केंद्र और 9 सहयोगी केंद्र जोड़े गए और फैजाबाद केंद्र को हटा दिया गया। वर्तमान में एआईसीआरपीएम के तहत 24 समन्वयक और 8 सहकारी केंद्र काम कर रहे हैं। ये हैं:

पुराने केंद्र

समन्वय केंद्र

- एनईएच क्षेत्र के लिए आईसीएआर अनुसंधान परिसर, बारापानी, मेघालय
- 2. पूर्वी क्षेत्र अनुसंधान केंद्र, रांची, झारखंड के लिए आईसीएआर—अनुसंधान परिसर
- 3. पंजाब कृषि विश्वविद्यालय, लुधियाना, पंजाब
- 4. तमिलनाडु कृषि विश्वविद्यालय, कोयम्बटूर, तमिलनाडु
- जी.बी. पंत यूनिवर्सिटी ऑफ एग्रीकल्चर एंड टेक्नोलॉजी, पंतनगर, उत्तराखंड
- 6. सीओए, महात्मा फुले कृषि विश्वविद्यालय, पुणे, महाराष्ट्र
- 7. इंदिरा गांधी कृषि विश्वविद्यालय, रायपुर, छत्तीसगढ़
- महाराणा प्रताप कृषि एवं प्रौद्योगिकी विश्वविद्यालय, उदयपुर, राजस्थान
- 9. सीओए, केरल कृषि विश्वविद्यालय, वेल्लयानी, केरल
- 10. सी.सी.एस. हरियाणा कृषि विश्वविद्यालय, हिसार, हरियाणा
- उड़ीसा कृषि और प्रौद्योगिकी विश्वविद्यालय, भुवनेश्वर, ओडिशा

- 12. Dr Rajendra Prasad Central Agricultural University, Samastipur, Pusa, Bihar
- 13. College of Horticulture and Forestry, Central Agril. University, Pasighat, Arunachal Pradesh
- 14. Maharana Pratap Horticultural University (MHU), RMRC, Murthal, Haryana

Cooperating Centres

15. Dr. Y. S. Parmar University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh

New centres included during XII Plan

Coordinating Centres

- 16. ICAR Research Complex for NEH Region, Sikkim
- 17. ICAR Research Complex for NEH Region, Arunachal Pradesh
- 18. ICAR Research Complex for NEH Region, Nagaland
- 19. ICAR Research Complex for NEH Region, Manipur
- 20. ICAR Research Complex for NEH Region, Mizoram
- 21. ICAR Research Complex for NEH Region, Tripura
- 22. ICAR-Central Island Agricultural Research Institute, Port Blair, A&N Islands
- 23. ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka
- 24. CSKHPKV, Palampur, Himachal Pradesh

Co-operating Centres

- 25. ICAR-VPKAS, Almora, Uttarakhand
- 26. Sher-e- Kashmir Uni.of Agri. Sci. & Technology, Srinagar, J&K
- 27. Sher-e- Kashmir Uni.of Agri. Sci. & Technology, Jammu, J&K
- 28. Assam Agri. University, Jorhat, Assam
- 29. Sardar Vallabh Bhai Patel Uni. of Agri & Tech., Meerut, Uttar Pradesh
- Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal
- 31. Sardarkrushinagar- Dantiwada Agri. Uni., Dantiwada, Gujarat
- 32. Acharya N G Ranga Agricultural University, Regional Agricultural Research Station, Tirupati, Andhra Pradesh

- 12. डॉ राजेन्द्र प्रसाद केन्द्रीय कृषि विश्वविद्यालय, समस्तीपुर, पूसा, बिहार
- 13. कॉलेज ऑफ हॉर्टिकल्चर एंड फॉरेस्ट्री, केन्द्रीय कृषि विश्वविद्यालय, पासीघाट, अरुणाचल प्रदेश
- 14. महाराणा प्रताप बागवानी विश्वविद्यालय (एमएचयू), आरएमआरसी, मुरथल, हरियाणा

सहयोगी केंद्र

 डॉ. वाई.एस. परमार औद्यानिकी एवं वानिकी विश्वविद्यालय, नौणी, सोलन, हिमाचल प्रदेश

बारहवीं योजना के दौरान शामिल नए केंद्र

समन्वय केंद्र

- 16. एनईएच क्षेत्र, सिक्किम के लिए आईसीएआर अनुसंधान परिसर
- 17. एनईएच क्षेत्र, अरुणाचल प्रदेश के लिए आईसीएआर अनुसंधान परिसर
- 18. एनईएच क्षेत्र, नागालैंड के लिए आईसीएआर अनुसंधान परिसर
- एनईएच क्षेत्र, मणिपुर के लिए आईसीएआर अनुसंधान परिसर
- 20. एनईएच क्षेत्र, मिजोरम के लिए आईसीएआर अनुसंधान परिसर
- 21. एनईएच क्षेत्र, त्रिपुरा के लिए आईसीएआर अनुसंधान परिसर
- 22. आईसीएआर—केंद्रीय द्वीपीय कृषि अनुसंधान संस्थान, पोर्ट ब्लेयर, अंडमान और निकोबार द्वीप समूह
- 23. आईसीएआर—इंडियन इंस्टीट्यूट ऑफ हॉर्टिकल्चरल रिसर्च, बैंगलोर, कर्नाटक
- चौधरी सरवन कुमार हिमाचल प्रदेश कृषि विश्वविद्यालय , पालमपुर, हिमाचल प्रदेश

सहयोगी केंद्र

- 25. आईसीएआर-वीपीकेएएस, अल्मोडा, उत्तराखंड
- 26. शेर-ए-कश्मीर कृषि विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय, श्रीनगर, जम्मू और कश्मीर
- 27. शेर-ए-कश्मीर कृषि विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय, जम्म्, जम्म् और कश्मीर
- 28. असम कृषि विश्वविद्यालय, जोरहाट, असम
- सरदार वल्लभ भाई पटेल कृषि एवं प्रौद्योगिकी विश्वविद्यालय,
 मेरठ. उत्तर प्रदेश
- 30. बिधान चंद्र कृषि विश्वविद्यालय, नदिया, पश्चिम बंगाल
- 31. सरदारकृषिनगर— दंतीवाड़ा कृषि प्रौद्योगिकी विश्वविद्यालय, दांतीवाडा, गुजरात
- 32. आचार्य एन जी रंगा कृषि विश्वविद्यालय, क्षेत्रीय कृषि अनुसंधान केंद्र, तिरुपति, आंध्र प्रदेश

5. LIST OF PUBLICATIONS

5. प्रकाशनों की शूची

(i) Research papers

- Agnihotri, C., Aarzoo, Agnihotri, S., Kamal, S. and Singh, B.P. 2024. Mushroom Bioactives: Traditional Resources with Nutraceutical Importance. In: Das Talukdar, A., Patra, J.K., Das, G., Nath, D. (eds) Traditional Resources and Tools for Modern Drug Discovery. *Interdisciplinary Biotechnological Advances*. Springer, Singapore. https://doi.org/ 10.1007/978-981-97-4600-2 24.
- 2. Arjun, A.D. and Attri, B.L. 2024. Development of roratry sieve for preparation of csing soil required in mushroom cultivation. *Curr. Agri. Res. J.*, 12 (2): 967-972.
- 3. Attri, B.L., Srivastava, A., and Arjun, A.D. 2024. Biochemical parameters and shelf life of oyster mushroom affected by pre-treatment and packaging material. *Mushroom Research*, 33 (2): 219-228.
- 4. Attri, B.L., Srivastava, A., Kamal, S.and Sharma, V.P. 2024. Influence of packaging materials and size on shelf life and quality of white button mushroom during storage. *Asian Journal of Dairy & Food Research*, doi 10.18805/ajdfr.DR-2069.
- Barh, A., Nath, M., Kumari, B., Verma, P., Kaundal, K., Bijla, S, Thakur, M., Kamal, S., Annepu, S.K. and Sharma, V.P. 2024. A successful cultivation of Flammulina elastica, distantly related to the widely cultivated species F. filiformis. New Zealand Journal of Botany. DOI: 10.1080/0028825X.2024.2362213.
- 6. Barh, A., Sharma, V.P., Annepu, S.K., Kumari, B., Kamal, S. and Kumar, A. 2024. Estimation of genetic diversity for interspecific hybridization in *Pleurotus* spp. *Vegetos*, 37(1): 155-164.
- 7. Bijla, S., Sharma, V. P. and Kumar, S. 2024. Unlocking prosperity: economic potential of Cordyceps mushroom cultivation as a promising agrienterprise in India. *Mushroom Research*, 33(2): 239-247.

- 8. De, S., Chawla, P., Dattatray, A., Iqbal, M., Goksen, G., Dhull, S. B., Rusu, A. V. and Bains, A. 2024. Formulation of functional noodles by adding Lentinus edodes mushroom powder: Physiochemical attributes, cellular mineral uptake and improved glycemic index. *Food Chemistry*: X, 101900. https://doi.org/10.1016/j.fochx.2024.101900
- 9. Kamal, S., Yadav, B. and Sharma, V. P. 2024. Physicochemical characterization of different casing soil combinations for button mushroom and their evaluation for crop production. *Mushroom Research*, 33(2): 163-174.
- 10. Kishor, A., Debnath, S., Das, B., Narayan, R., Attri B.L., Kumar, A., Chandni, Rashmi, E.R., Prasad, R., Verma, M.K. and Arunachalam, A. 2024. Integrated nutrient management in apple-based hortiolericulture system enhances yield of apple and intercrops and improves soil health in *Kumaon* region of Himalaya, Uttarakhand. *Indian J. Agroforestry* (special issue): 42-49.
- 11. Kumar, R., Gupta, D., Barh, A., Nath, M., Sharma, V.P., Rana, N., Sharma P.K. and Bhardwaj, C. 2024. Insights on strain-substrate interactions and antioxidant and anti-bacterial properties of the velvet foot medicinal mushroom *Flammulina velutipes* (Agaricomycetes). *International Journal of Medicinal Mushrooms*, 26(4):29-39.
- 12. Kumar, A., Sharma, V.P. and Kumar, S. 2024. Studies on domestication of the true morel *Morchella importuna* in India. *Indian Phytopathology*, 77:301–310. https://doi.org/10.1007/s42360-024-00731-3.
- 13. Nath, M., Mainkar, P., Kansal, R., Bisht, D.S., Kamal, S., Sharma, V.P. 2024. Comparative genome wide analysis of the EF-hand containing calcium binding proteins in five edible mushrooms. *Mushroom Research*, *33* (2): 153-162.
- 14. Reetu, Kumar, A., Kamal, S. and Sharma, V.P. 2024. Green Synthesis of Silver Nanoparticles by Aqueous

- Extract of Turkey Tail Medicinal Mushroom *Trametes versicolor* (Agaricomycetes). *International Journal of Medicinal Mushrooms*. DOI: 10.1615/IntJMedMushrooms.2025057970.
- 15. Sharma, P., Thakur, M., Chauhan, A. and Kamal, S. 2024. Identification, classification and chromosomal mapping of Fusarium wilt-related R-genes in mutagenized ginger (*Zingiber officinale* Rosc.) through comparative transcriptome sequencing. *South African Journal of Botany*, 170: 23-37, Doi: https://doi.org/10.1016/j.sajb.2024.05.016.
- 16. Sharma, P., Thakur, M., Kamal, S., Chauhan, A., Dev, H. and Gupta, R. 2024. Transcriptome analysis for gaining insight into gingerol biosynthesis and MAPK-dependent hormonal signaling pathway involved in resistance mechanism in Fusarium wilt tolerant ginger (*Zingiber officinale* Rosc.) produced through *in-vitro* mutagenesis and selection. *Journal of Plant Growth Regulation*, 43(9): 3140-3158
- 17. Sharma, V. P. and Bijla, S. 2024. Mapping the Status of Mushroom Cultivation: Global vis-à-vis India. *Mushroom Research*, 33(2): 91-101.
- 18. Singh, V., Bains, A., Goksen, G., Capozzi, V., Dattatray, A., Ali, N., Iqbal, M. and Chawla, P. 2024. Comparative analysis of multifaceted properties of *Agaricus bisporus* and *Ganoderma lucidum* macrofungi powder: Techno-functional and structural characterization, mineral uptake, and photocatalytic activity. *Food Chemistry*: X, 101937. https://doi.org/10.1016/j.fochx.2024.101937
- 19. Srivastava A., Pan R.S., Naik, S. K., Singh, A.K. and Bhatt, B.P. 2024. Nutritional composition, antioxidant activity, minerals and anti-nutritional factors of indigenous leafy vegetables of eastern India. *Indian Journal of Traditional Knowledge*, 23: 336-345.
- 20. Srivastava, A., Attri, B.L., Kamal, S., Pathera, A.K., Kashyap, R., Verma, S. and Sharma, V.P. 2024. Nutritional enhancement, microsturctural modifications, and sensory evaluation of mushroom-enriched multigrain bread. *International Journal of Food Science and Technology*, doi:10.1111/ijfs.17602.

- 21. Srivastava, A., Attri, B.L., Rao, D.B.and Sharma, V.P. 2024. Mushroom-enriched millet pasta: exploring nutritional value, antioxidant activity and sensory acceptability. *Mushroom Research*, **33** (2): 229-237.
- 22. Thakur, A., Gupta, D., Kumar, A., Kamal, S., Thakur, D., Sharma, P. and Reetu. 2024. Physico-chemical properties and characterization of thermophilic flora from button mushroom compost prepared using SMS of different mushroom as supplement. *Mushroom Research*, 33(1): 45-53.

(ii) Technical/popular articles

- Arjun, A.D., Attri, B.L., Srivastava, A. and Bijla, S. 2024. Application of image processing techniques in mushroom industry. *Agri-India TODAY*, 4(9): 96-99.
- 2. Bijla, S. & Kamal, S. 2024. Comparative economic analysis of button mushroom cultivation. *Agri-India TODAY*, **4**(9): 15-16.
- 3. Bijla, S. & Srivastava, A. 2024. Mushroom magic: boosting India's small farmers' fortunes. *Krishi Science Magazine*, **5**(12): 24-27.
- 4. Bijla, S. & Srivastava, A. 2024. Mushroom: a superfood for achieving nutritional security in India. *Agri-India TODAY*, **4**(8): 32-36.
- 5. Bijla, S., Srivastava, A. & Arjun, A. D. 2024. From waste to wonder: the role of mushrooms in the circular economy. *Agri-India TODAY*, 4(9): 114-116.
- बृज लाल अत्री । 2024 । कदन्न (मिलेट्स) स्वास्थ्यवर्धक मोटा अनाज । राजभाषा आलोक, भारतीय कृषि अनुसंधान परिषद, वार्षिकांक 2023: 18–20 ।
- 7. Goyanka, J. and Attri, B.L. 2024. Paddy straw mushroom: Species, Importance and Nutritional Value. *The Agriculture Magazine*, 3(12): 788-791.
- 8. Srivastava, A., Attri, B.L., Bijla, S. and Arjun, A.D. 2024. Value added products from medicinal mushrooms: Innovations and applications. *Agri-India TODAY*, 4 (9): 92-95.
- 9. Srivastava, A., Bijla, S. and Attri, B.L. 2024. Mushrooms: The delicious vegan meat alternative. *Agri-India TODAY*, **4** (8): 100-103.

(iii) Technical bulletins/folders: Nil

(iv) TV programme

Dr V.P. Sharma participated in DD Kisan live programme on 15.05.2024

(v) Participation in Conferences/Symposia/ Workshops

- 1. Dr V. P. Sharma, Director, ICAR-DMR, Solan attended Directors' Conference from 26-27 February 2024 at NASC Complex, New Delhi.
- 2. Dr V. P. Sharma, Director, ICAR-DMR, Solan organised and attended AICRP Annual workshop at IIHR, Bengaluru on 13-14 June 2024. Dr Shwet Kamal, Dr Anil Kumar and Dr Manoj Nath also participated in the annual workshop.

- Dr V. P. Sharma, Director, ICAR-DMR, Solan attended Directors' conference on 16th July 2024 and also participated in the Exhibition at NASC complex, New Delhi.
- 4. Dr V. P. Sharma, Director, ICAR-DMR, Solan delivered Concept Note on "Agri-food system in Indian Himalayan Region" in a workshop organized by VPKAS, Almora.
- 5. Dr V. P. Sharma, Director, ICAR-DMR, Solan attended Annual Governing Body Meeting of ICAR held on 28.02.2024 in which two varieties viz; DMRO-327 (Shiitake) and Milky DMRO-1985 were released.

(vi) Book Chapter: Nil

(vii) Event organized: Nil

6. APPROVED ON-GOING RESEARCH PROJECTS

6. श्वीकृत चल रही अनुसंधान परियोजनाएं

On-going Research Projects of ICAR-DMR, Solan (H.P.) for the year 2023

Institute Code	Title	Researchers	Tentative Cost of the Project (Rs. in lakhs) as provided by the concerned Scientists	Period/ Remarks	Present Status of the Project
DMR-2021-1	Standardization of substrate formulations for mushrooms	Dr. V.P. Sharma, Project Leader	Rs.64.00 lakhs	April, 2021 to March, 2024	On-going
	Refinement of existing technologies and domestication of some novel mushrooms	Dr. Shwet Kamal, PI Dr. Satish Kumar, Co-PI Dr. Anil Kumar, Co-PI Dr. Manoj Nath, Co-PI Dr. Anarase Dattatray, Co-PI Dr. Shweta Bijla, Co-PI			
DMR-2021-2(1)	Genetic improvement of mushroom	Dr. V.P. Sharma, Project Leader	Rs.70.26 lakhs	April, 2021 to March, 2024	On-going
	Development of potential strains in button mushroom (<i>Agaricus bisporus</i>)	Dr. Shwet Kamal, PI Dr. Rakesh Kumar Bairwa, Co-PI (w.e.f. 3.1.2023)			
DMR-2021-2(2)	Development of potential strains in <i>Pleurotus</i> spp and <i>Lentinula edodes</i> and <i>Flammulina velutips</i>	Dr. Manoj Nath, PI (w.e.f. 21.08.2022) Dr. Manoj Nath, Co-PI (upto 20.08.2022) Dr. Shwet Kamal, Co-PI		April, 2021 to March, 2024	On-going
DMR-2021-2(3)	Development of potential strains in <i>Volvariella volvacea, Calocybe indica</i> and <i>Macrocybe giganteum</i>	Dr. Manoj Nath, PI Dr. Satish Kumar, Co-PI Dr. Anil Kumar, Co-PI		April, 2021 to March, 2024	On-going
DMR-2021-3	Crop Protection in mushroom	Dr. V.P. Sharma, Project Leader	15.31 lakhs		
DMR-2021-3(1)	Development of resource efficient technologies for the management of major insect/ pests of mushrooms	Dr. Satish Kumar, PI		August, 2021 to July, 2023	On-going
DMR-2021-3(2)	Re-defining epidemiological parameters and management approaches for major mushroom pathogens	Dr. Anil Kumar	Rs.36.50 lakhs	August, 2021 to July, 2024	On-going

Institute Code	Title	Researchers	Tentative Cost of the Project (Rs. in lakhs) as provided by the concerned Scientists	Period/ Remarks	Present Status of the Project
DMR-2021-4	Development of Novel Value Added Products from Selected Medicinal Mushrooms	Dr. Anuradha Srivastava, PI Dr. B.L. Attri, Co-PI Dr. Anarase Dattatray Arjun, Co-PI	Rs.25.45 lakhs	August, 2021 to July, 2023	On-going
DMR-2021-5	Application of Solar energy in mushroom drying	Dr. Anarase Dattatray, PI Dr. BL Attri, Co-PI	Rs.1.60 lakhs	August, 2021 to July, 2023	On-going
DMR-2021-7	Impact assessment of selected technologies developed by ICAR-DMR	Dr. Shweta Bijla, PI	Rs.4.10 lakhs	August, 2021 to July, 2024	On-going
DMR-2023-1	Development and analysis of meat analogues from different mushrooms	Dr. B.L. Attri, Pl Dr. Anuradha Srivastava, Co-Pl	Rs.22.50 lakhs	April, 2023 to March, 2025	On-going

7. CONSULTANCY AND ADVISORY SERVICES

7. परामशीं और सलाहकार सेवाएं

During 2024, advisory services were given by ICAR-DMR, Solan through website, mobile apps, e-mails, telephones and face to face interactions on various aspects of mushroom cultivation, training and marketing. On an average there were about 20-25 queries per day received either by mail/phone/personal visits which were replied. The majority of gueries were related to training programmes under various components followed by mushroom cultivation, spawn and marketing of mushrooms. Group of farmers from several parts of the country and students from various educational institutions visited the directorate during 2024 and they were briefed about various facilities and services rendered by ICAR-DMR, Solan. More than 2627 farmers, students and other visitors were attended at transfer of technology (ToT) section of the Directorate. The details of the visitors have been given in Table 7.1.

2024 के दौरान, आईसीएआर-डीएमआर, सोलन द्वारा खुम्ब की खेती, प्रशिक्षण और विपणन के विभिन्न पहलुओं पर वेबसाइट, मोबाइल ऐप, ई-मेल, टेलीफोन और आमने-सामने बातचीत के माध्यम से सलाहकार सेवाएं दी गईं। प्रतिदिन औसतन लगभग 20-25 प्रश्न मेल / फोन / व्यक्तिगत मुलाकात के माध्यम से प्राप्त होते थे जिनका उत्तर दिया जाता था। अधिकांश प्रश्न खुम्ब की खेती, स्पॉन और खुम्ब के विपणन सहित विभिन्न घटकों के तहत प्रशिक्षण कार्यक्रमों से संबंधित थे। देश के कई हिस्सों से किसानों के समृह और विभिन्न शैक्षणिक संस्थानों के छात्रों ने 2024 के दौरान निदेशालय का दौरा किया और उन्हें आईसीएआर-डीएमआर, सोलन द्वारा प्रदान की जाने वाली विभिन्न सुविधाओं और सेवाओं के बारे में जानकारी दी गई। निदेशालय के प्रौद्योगिकी हस्तांतरण (टीओटी) अनुभाग में २६२७ से अधिक किसानों, छात्रों और अन्य आगंतुकों ने भाग लिया। आगंतुकों का विवरण तालिका 7.1 में दिया गया है ।

Table 7.1. Individual and group visits in ICAR-DMR, Solan during 2024 तालिका 7.1. 2024 के दौरान आईसीएआर—डीएमआर, सोलन में व्यक्तिगत और समूह दौरे

S. No.	Visitors' detail	Number of visitors
1.	Farmers from RMRC, MHU, Karnal, Haryana	23
2.	Farmers from Lucknow	14
3.	Visitors from Nauni, Solan, Himachal Pradesh	21
4.	Farmers from Rajasthan	37
5.	Farmers from Gujarat	68
6.	Farmers from Rajasthan	59
7.	Visitors from Kerala	11
8.	Visitors from Nauni, Solan, Himachal Pradesh	15
9.	Visitors from Mohali, Punjab	45
10.	Farmers from Haryana	13
11.	Visitors from Karnataka	66
12.	Farmers group from Punjab	40
13.	Visitors from Noida, Uttar Pradesh	28
14.	Visitors from Chandigarh	62
15.	Students visit from St. Luke's Sen. Sec. School	44
16.	Farmers from Uttar Pradesh	28
17.	Farmers from Bihar	24

S. No.	Visitors' detail	Number of visitors
18.	Farmers from Baddi, Solan (H.P.)	38
19.	Visitors from Patiala, Punjab	52
20.	Visitors from Delhi	26
21.	Visitors from Madhya Pradesh	33
22.	Students from Tamil Nadu Agricultural University	124
23.	Students from Tamil Nadu Agricultural University	115
24.	Farmers from Bihar	26
25.	Students from Tamil Nadu Agricultural University	124
26.	Students from Tamil Nadu Agricultural University	128
27.	Farmers from Shimla, Himachal Pradesh	64
28.	Farmers from Himachal Pradesh	38
29.	Students from Tamil Nadu	90
30.	Visitors from Andhra Pradesh	68
31.	Students from Tamil Nadu	120
32.	Students from Tamil Nadu	100
33.	Students from Tamil Nadu	118
34.	Visitors from Haryana	22
35.	Farmers from Rajasthan	100
36.	Visitors from Solan	05
37.	Visitors from Chandigarh	05
38.	Visitors from Nauni, Solan, Himachal Pradesh	07
39.	Visitors from Shimla, Himachal Pradesh	05
40.	Farmers from Uttarakhand, Himachal Pradesh	25
41.	Visitors from Tamil Nadu	56
42.	Visitors from Mandi, Himachal Pradesh	05
43.	Visitors from Solan, Himachal Pradesh	44
44.	Visitors from Jammu and Kashmir	21
45.	Farmers from Renuka, Sirmour, Himachal Pradesh	29
46.	Farmers from Solan, Himachal Pradesh	05
47.	Farmers from Nauni, Solan, Himachal Pradesh	20
48.	Farmers from Uttar Pradesh	74
49.	Other groups	44
i.	Total group visitors	2329
ii.	Number of individual visitors	358
iii.	Total visitors	2687

Techno Economic Feasibility Reports (TEFRs) for 2024

One hundred ten numbers (110 Nos.) Techno-Economic Feasibility Reports (TEFRs) for setting up of Mushroom Units of 20, 50, 100, 200, 500, above 500 Ton per annum capacity of Growing units of white button, Button mushroom compost production, Spawn production, *Oyster, Ganoderma, Shiitake, Cordyceps*, processing units etc. have been prepared for mushroom growers/firms from different parts of the country.

2024 के लिए तकनीकी आर्थिक व्यवहार्यता रिपोर्ट (टीईएफआर)

देश के विभिन्न हिस्सों से उत्पादक / फर्मों द्वारा खुम्ब के लिए 20, 50, 100, 200, 500, 500 टन प्रति वर्ष से अधिक क्षमता वाली खुम्ब इकाइयों की स्थापना, सफेद बटन, बटन खुम्ब खाद उत्पादन, स्पॉन उत्पादन, ऑयस्टर, गैनोडर्मा, शिटाके, कॉर्डिसेप्स, प्रसंस्करण इकाइयों आदि की बढ़ती इकाइयों की स्थापना के लिए एक सौ दस संख्या (110 संख्या) तकनीकी—आर्थिक व्यवहार्यता रिपोर्ट (टीईएफआर) तैयार की गई है।

Table 7.2: Details of TEFRs prepared by ICAR-DMR, Solan (HP) तालिका 7.2. आईसीएआर—डीएमआर, सोलन (हिमाचल प्रदेश) द्वारा तैयार टीईएफआर का विवरण

S.No.	Name & address	Details
1.	Mr. Gurumander, S/o Sh. Randhir, V.P.O. Titoli, District Rohtak-124001, Haryana	20 TPA White Button Mushroom Growing Unit
2.	-do-	20 TPA Spawn production Unit
3.	M/s. Aujla Mushroom Farm, Sh. Jagroop Singh, S/o Sh. Kashmir Singh, Dehriwal, Tarsikka, Amritsar, Punjab-143116	500 TPA White Button Mushroom Compost production Unit
4.	M/s. Himalayan Touch, Mr. Ashni Kumar, S/o Sh. Bir Singh, Village Basantpur, PO & Tehsil Jawali, District Kangra (H.P.) – 176023	100 TPA White Button Mushroom Growing +Compost production Project report
5.	M/s Mushroom Pearls, Mr. Prashant Bharadwaj, Mr. Mohd. Sufyan and Mr. Vipin Saini, 288 Avas Vikas Colony Rookree, District Haridwar, Uttarakhand -247667	90 TPA White Button Mushroom Growing +Compost production Project report
6.	-do-	20 TPA Spawn production Unit
7.	M/s. Usawan Agro Farm, Mr. Vishal Jha, Gram Bacheli Dara Nagar, District- Budaun, Tehseel Dataganj, Uttar Pradesh	700 TPA White Button Mushroom Growing +Compost production Project report
8.	Mr. Saurav Rana, S/o Sh. Ranjit Singh, R/o Palwal, District Palwal, Haryana	20 TPA White Button Mushroom Growing Unit
9.	Sh. Veeru Ram, Village Shalon, PO Gunhankalan, Tehsil Ramshahr, District Solan (H.P.)	20 TPA White Button Mushroom Growing Unit
10.	Mr. Ravi Singh Rana, S/o Sh. Kalyan Singh, Ward No.21, 4 Civil Line Colony, Near Shiv Mandir, Palwal, Haryana - 121102	20 TPA White Button Mushroom Growing Unit
11.	-do-	500 TPA White Button Mushroom Compost production Unit
12.	M/s. Sidhuz Mushroom Closet, Mr. Jagjit Sidhu, Opp. Park Ave Uppli Road, Sangrur, Punjab	36 TPA White Button Mushroom Growing production Unit
13.	Mr. Karam Singh, Sh. Suraj Bhan, V.P.O. Mathana, District Kurukshetra, Haryana	24 TPA White Button Mushroom Growing +Compost production Project report
14.	Mr. Karam Singh, Sh. Suraj Bhan, V.P.O. Mathana, District Kurukshetra, Haryana	20 TPA Spawn Production Unit
15.	Mr. Sandeep Singh, S/o Sh.Avtar Singh. Village Arkbas, Tehsil Lehragaga, District Sangrur-148031, Punjab	1600 TPA White Button Mushroom Compost production Unit
16.	Mr. Layak Ram, S/o Sh. Kundan Ram, Post Office Manju, Tehsil Arki, Khanalag (103), Manjoo, Solan (H.P.) - 173208	20 TPA White Button Mushroom Growing Unit
17.	Mr. Sahil Dhull, S/o Mr. Brijender Singh #128/11, Nehru Garden Colony Ward No. 16, Kaithal, Haryana -136027	50 TPA White Button Mushroom Growing +Compost production Project report
18.	Mr. Akhil Salaria, S/o Sh. Jeet Singh, Village Rinna, PO Bhadwar, Tehsil Nurpur, District Kangra (H.P.) – 176200	20 TPA White Button Mushroom Growing Unit

S.No.	Name & address	Details
19.	M/s Akshay Enterprises, Dr. Jitendra Kumar Singh, Aparna Residency, Block-B, Flat no. 502, West of IAS colony, RamJaipal Road, Patna- 801503, Bihar	138 TPA White Button Mushroom Growing +Compost production Project report
20.	Mr. Mahak Mehta, S/o Sh. Pradeep Mehta, R/o Village Thana, P.O. & Tehsil, Nankhari, District Shimla (H.P.) $-\ 172021$	20 TPA White Button Mushroom Growing Unit
21.	GREENTECH FARMS, Mrs. Savita Singh, Mrs. Sunita Saha, Mrs.Pinky Prasad, Mrs. Anupa Kumari, Ms. Shalvi Prasad, Village Sahera, P.S. Namkum Tetri, At Namkum, District Ranchi, 834010	110 TPA White Button Mushroom Growing + compost production Project report
22.	Mr. Ashish Gautam, S/o Sh. Tota Ram Gautam, Chamora, (263/3), Sarahan, Sirmaur, Pachhad, Himachal Pradesh 173024	20 TPA White Button Mushroom Growing Unit
23.	Mr. Yogesh Kumar, Village Sai Brahmna, PO Kharsi, Tehsil Sadar, District Bilaspur (H.P.) – 174001	20 TPA White Button Mushroom Growing Unit
24.	Mrs. Heena Chaudhary, W/o Mr. Hunny Kumar, V.P.O. Thopia, Tehsil Balachaur, District Shaheed Bhagat Singh Nagar, Punjab – 144521	500 TPA White Button Mushroom Compost production Unit
25.	Mrs. Sunita Kumari, Village Banmando, PO Tamber, Tehsil Jaisinghpur, District Kangra (H.P.) - 176095	20 TPA White Button Mushroom Growing Unit
26.	M/s. Shaurya Mushrooms, Mr. Sunil Sharma, Village Phalahi, PO Bhatrana Block: Hoshiarpur 2, Tehsil & District Hoshiarpur, Punjab-146111	360 TPA White Button Mushroom Compost production Unit
27.	Mr. Daleep Singh Thakur, S/o Sh. Mihi Ram Thakur, Village Shamla, PO & The Sangrah, District Sirmour (H.P.) -133023	20 TPA White Button Mushroom Growing Unit
28.	Mrs. Meera Chauhan, C/o Mr. Hitesh Kumar, V.T.C. Dhana, PO Fagu, Sub Tehsil Theog, District Shimla (H.P.)- 171209	20 TPA White Button Mushroom Growing Unit
29.	Mr. Sikander Singh, S/o Sh. Partap Singh, Village Niyar, PO Aond, Tehsil Nurpur, District Kangra (H.P.)	500 TPA White Button Mushroom Compost production Unit
30.	Sh. Partap Singh, S/o Sh. Khyal Singh, Village Niyar, PO Aond, Tehsil Nurpur, District Kangra (H.P.)	500 TPA White Button Mushroom Compost production Unit
31.	Mr. Rudra Prasad Upadhyay, Village Dibong Fakial, PO Ketetong, PS Margherita, District Tinsukia, Assam - 786181	50 TPA White Button Mushroom Growing +Compost production Unit
32.	Sh. Geeta Ram S/o Sh. Atma Ram/Ghanta, Village Palog, PO Dagsech, Tehsil Sadar, District Bilaspur (H.P.)	500 TPA White Button Mushroom Compost production Unit
33.	M/s. Aujla Mushroom Farm, Sh. Jagroop Singh, S/o Sh. Kashmir Singh, Dehriwal, Tarsikka, Amritsar, Punjab-143116	500 TPA White Button Mushroom Compost production Unit
34.	Ms. Sapna Chauhan, Omx City Phase-2, Palwal, Haryana	50 TPA White Button Mushroom Growing Unit
35.	Mr. Chain Singh, S/o Sh. Sunder Singh, Village Gadhasar, PO Kotla Panjola, Sub Tehsil Narang, District Sirmour (H.P.) – 173223	20 TPA White Button Mushroom Growing Unit
36.	Mr. Harpreet Singh, S/o Sh. Baldev Singh, Village Hema Majra, Barara, Ambala, Haryana — 133203	20 TPA White Button Mushroom Growing Unit
37.	Smt. Pratibha Sharma, W/o Sh. Vijender Sharma, Village Ladhi, P.O. Domehar, Tehsil Arki, District Solan (H.P.)	20 TPA White Button Mushroom Growing Unit
38.	M/s. Steelmet Industries, Mrs. Shreya Sehgal, F-238/239, Ghiloth Industrial Area, District Kotputli-Behror, Rajasthan – 301705	50 TPA White Button Mushroom Growing +Compost production Unit
39.	Mr. Deepanshu Sharma, Village Darab Ka Jubber, VPO Ghanahatti, Tehsil & District Shimla (H.P.) – 171011	20 TPA White Button Mushroom Growing Unit
40.	Mrs. Neelama Kumari, W/o Sh. Pushap Raj, Village Bakhalwar, PO & Tehsil - Thunag, District Mandi (HP) – 175048	25 TPA White Button Mushroom Growing Unit
41.	M/s. Laicha Mushroom Farm, Mr. Gurmeet Singh Dhurala, Village Dhurala, PO Jalbera, Ambala City Haryana-134003	500 TPA White Button Mushroom Compost production Unit
42.	Mr. Partap Singh S/o Sh. Baldev Singh, 146, Malikpur, Malakpur, Kurukshetra, Haryana-136128	500 TPA White Button Mushroom Compost production Unit
43.	Mr. Abhijeet Singh S/o Sh. Gurvinder Singh, 145, Malikpur, Malakpur, Kurukshetra, Haryana-136128	500 TPA White Button Mushroom Compost production Unit

S.No.	Name & address	Details
44.	Mr. Jujhar Singh S/o Sh. Baldev Singh, 146, Malikpur, Malakpur, Kurukshetra, Haryana-136128	500 TPA White Button Mushroom Compost production Unit
45.	M/s. Nivedita Mushroom Farm, Mr. Ram Chander S/o Sh. Ravi Dutt, Village Bar, Tehsil Kalka, District Panchkula, Haryana – 133302	20 TPA White Button Mushroom Growing Unit
46.	M/s. Bhawani Agro Products, Mr. Naresh Pal Kashyap, Village Chabahan (Sen Ki Ser), Nahan, District Sirmour (H.P.) - 173001	20 TPA White Button Mushroom Growing Unit
47.	-do-	500 TPA White Button Mushroom Compost production Unit
48.	Mr. Pardeep Singh, S/o Sh. Zile Singh, V.P.O. Nandnor, Sonipat, Haryana – 131027	40 TPA White Button Mushroom Growing Unit
49.	Sh. Ajay S/o Surajbhan, VPO - Birhi kalan,Tehsil and district - Charkhi Dadri State, Haryana -127026	24 TPA White Button Mushroom Growing +Compost production Unit
50.	Mr. Vivek Kaushik, Village Chhoi, PO Morni Hills, District Panchkula, Haryana – 134205	500 TPA White Button Mushroom Compost production Unit
51.	Mr.Faquir Chand, S/o Sh. Babu Ram Sharma, Village Morni Hills, Bhoj Jabyal, Morni, Panchkula, Haryana – 134205	20 TPA White Button Mushroom Growing Unit
52.	Sh. Jagat Ram, S/o Late Sh. Ruldu Ram, Village Kanshipur, P.O. Nihalgarh, Tehsil Poanta Sahib, District Sirmour (H.P.)	20 TPA White Button Mushroom Growing Unit
53.	Mrs. Swati Raj, "Village Bahuara, PO Sona Gopalpur, Thana Gourichak, Dist Patna, Bihar – 800007	15 TPA White Button Mushroom Growing Unit
54.	-do-	500 TPA White Button Mushroom Compost production Unit
55.	Mr. Hardeep Singh S/o Sh. Dharam Singh, Village Manakpur, PO Kakru, District Ambala (Haryana) – 134003	20 TPA White Button Mushroom Growing Unit
56.	M/s. Galaxy Mushroom Spawn, Village Barhi, Shahpur Road, Gannaur, Sonepat, Haryana	50 TPA Spawn Production Unit
57.	Mr. Sunil Kumar S/o Sh. Satbir Singh, VPO Manas, Kaithal, Haryana -136027	1500 TPA White Button Mushroom Compost production Unit
58.	Sh. Nardev Singh, S/o Sh. Prem Chand, Village Thanpuri, Post Rajiana, Tehsil Nagrota Bagwan, District Kangra (H.P.) - 176056	20 TPA White Button Mushroom Growing Unit
59.	Mr. Prempal Singh, S/o Sh. Kishan Lal, Ramghat Road, Devsaini, Near Kendriya Vidalaya, Quarsi, Aligarh, U.P202002	20 TPA White Button Mushroom Growing Unit
60.	-do-	20 TPA Spawn Production Unit
61.	Mr. Bipin Kumar Pandey, Village- Barani Hasana, Post- Hathi Bazar, District- Varanasi - 221405, U.P.	12 TPA White Button Mushroom Growing Unit
62.	M/s Ananya Mushroom, Village Fatehpur, Post Surapur, Block Akbarpur, District Ambedkar Nagar, Uttar Pradesh	64 TPA White Button Mushroom Growing Unit
63.	Mr. Manoj Kumar, S/o Sh. Om Prakash Singh, Village Nagla Bhajja, Post Dhampur, District Bijnor (U.P.) – 246761	20 TPA White Button Mushroom Growing Unit
64.	-do-	20 TPA Spawn Production Unit
65.	Mr. Vikram Singh, S/o Sh. Budhram, Village Kalba, PO Nangal Nuniya, Tehsil Nangal Chaudhary, District Mahendergarh, Haryana-123023	40 TPA White Button Mushroom Growing Unit
66.	Sh. Chetan Panwar, S/o Sh. Rajkumar Panwar, Village Lanabaka, PO Dinger Kinner, Tehsil Pachhad, Sirmour, H.P. – 173024	20 TPA White Button Mushroom Growing Unit
67.	Mr. Rajesh Kumar, S/o Sh. Gika Ram, V.P.O. Naswal, Tehsil Ghumarwin, District Bilaspur (H.P.)	20 TPA Spawn Production Unit
68.	Mr. Dinesh Kumar, S/o Sh. Uttam Chand, Village Kevli, PO Surah, Tehsil Balh, District Mandi (H.P.) – 175027	20 TPA White Button Mushroom Growing Unit
69.	Mr. Hardeep Singh S/o Sh. Dharam Singh, Village Manakpur, PO Kakru, District Ambala (Haryana) – 134003	500 TPA White Button Mushroom Compost production Unit

S.No.	Name & address	Details
70.	M/s. Nivedita Mushroom Farm, Mr. Ram Chander S/o Sh. Ravi Dutt, Village Bar, Tehsil Kalka, District Panchkula, Haryana – 133302	500 TPA White Button Mushroom Compost production Unit
71.	Mr Suresh Kumar Saini, S/o Sh. Dev Raj, Villager Lower Arniala, PO Kotla Kalan, Tehsil & District Una (H.P.)	20 TPA White Button Mushroom Growing Unit
72.	Mr. Sagar Vishal, Village Kalianpur, P.O. Lambra, Jalandhar West, Jalandhar – 144026, Punjab	100 TPA White Button Mushroom Growing +Compost production Unit
73.	Mr. Daljeet Singh, Village Mand Fatehgarh, Tehsil Machhiwara, District Ludhiana, Punjab – 141115	500 TPA White Button Mushroom Compost production Unit
74.	M/s. Shreedha Agrofield Pvt Ltd, 5/291 Chandra Kuteer Malla Gorakhpur, Haldwani, Uttarakhand -263129	268 TPA White Button Mushroom Growing +Compost production Unit
75.	M/s. Sandhu Mushroom Farm, Mr. Prince Karandeep Singh Sandhu, Mr. Kulbir Singh, Mrs.Parmjit Kaur, Manawala, Amritsar, Punjab	72 TPA White Button Mushroom Cultivation
76.	-do-	360 TPA White Button Mushroom Compost production Unit
77.	Mr. Shamsher Ali, S/o Sh. Nizam Khan, Ward No. 5, V.P.O. Lower Chalola, Tehsil & District Una (H.P.)- 174303	20 TPA White Button Mushroom Growing Unit
78.	Mrs. Pratibha Rani, W/o Mr. Pravesh Kumar, 224, Behind Indian Oil Petrol Pump, Sudhowala (Narendra Vihar), Jhajra, Dehradun, Uttarakhand-248007	20 TPA White Button Mushroom Growing Unit
79.	Mr. Gurpuneetpal Singh, S/o Sh. Jagtar Singh, Village Ghug Shor, PO Pattar Kalan, Tehsil Kartarpur, District Jalandhar, Punjab-144806	20 TPA White Button Mushroom Growing Unit
80.	Mr. Raj Kumar, S/o Sh. Dharam Chand, Village & PO Chamned, Hamirpur (H.P.) - 177029	20 TPA White Button Mushroom Growing Unit
81.	Sh. Dharam Singh, S/o Sh. Chuhar Singh, Village Manakpur, PO Kakru, District Ambala (Haryana) — 134003	20 TPA White Button Mushroom Growing Unit
82.	Mr. Rohit Bisht, Village Chausla, Haldwani, Nainital, Uttarakhand – 263139	20 TPA White Button Mushroom Growing Unit
83.	M/s. AARA AGRO FARMS, Dr. P. Archana Reddy, 101, Elite Classic Residence, Gateway Villas Near Devaki Convention, Bandlaguda, Nagole-500068, Hyderabad	1800 TPA White Button Mushroom Growing & Compost production Unit
84.	M/s. Mahadev Organic Farm, Mr. Sidharath Sood, Village Pasu, Tehsil Dharamshala. District Kangra (H.P.) – 176057	120 TPA White Button Mushroom Growing & Compost production Unit
85.	M/s Aashvi Organic Mushroom and Agri Farm, Mrs. Sushma Sinha & Mr. R. K.Sinha, Flat No. 701, Sri Ram regency, Opp Hariom Towers, Lalpur, Ranchi (Jharkhand)	600 TPA White Button Mushroom Growing & Compost production Unit
86.	M/s. K. K. Akshya Agro Products, Mr. Aghore Kumar Jena, Anandpur, Odisha-758015	120 TPA White Button Mushroom Growing & Compost production Unit
87.	M/s. Raj Agri Venture, Mr. Ranjeet Ranjan, S/o Late Shyamanandan Sharma, Address: Raksa Inar Barahia Keri, Village Parsa, Naubatpur, Patna, Bihar - 801109	75 TPA White Button Mushroom Growing & Compost production Unit
88.	M/s. Sushila Kiran Agri Venture, Mr. Praveen Kumar, S/o Late Radha Raman Sharma, Village Motipur, PO Naubatpur, Anchal Naubatpur, Patna, Bihar	75 TPA White Button Mushroom Growing & Compost production Unit
89.	Mrs. Bhavna Verma, PO Plah Chhausa, Tehsil Waknaghat, District Solan (H.P.) - 173234	20 TPA White Button Mushroom Growing Unit
91.	M/s. Durga Snow White Mushroom Farm, Mr. Tribhuwan Chand Joshi, Balparow Kaladhungi, Nainital, Uttarakhand	50 TPA White Button Mushroom Growing Unit
92.	Sh. Vikas Behal, S/o Sh. Onkar Singh, Village Sukhar Bharana, P.O. Sukhar, Sukhara Choudrian, Nurpur, Kangra (H.P.) – 176051	20 TPA White Button Mushroom Growing Unit
93.	M/s. MAA Yashoda Mushroom Farm, Mrs. Yashoda Devi, Village Karmel Banrahi, Post Rudrapur, District Deoria – 274204, Uttar Pradesh	500 TPA White Button Mushroom Compost production Unit

S.No.	Name & address	Details
94.	Pupri Farmers Producer Company Limited, Village Temhua, Ward No.8, Post Hariharpur, P.S. Pupri Block, Pupri Sitamarhi, Bihar — 843320	35 TPA White Button Mushroom Growing & Compost production Unit
95.	Medley Organic World, Mr. Praveen Kumar, Khasra No. 57/18-23 VPO Haibatpur, District Yamuna Nagar, Pin- 133206, Haryana	500 TPA White Button Mushroom Compost production Unit
96.	Mr. Vinit Kumar, Village Parasi, Post Bhanganbigha, District Nalanda, Bihar 803118	500 TPA White Button Mushroom Compost production Unit
97.	Mr. Gurpreet Singh, S/o Sh. Kuldeep Singh, Sarchur, Sarchur, Gurdaspur, Punjab- 143602	34 TPA White Button Mushroom Growing Unit
98.	M/s. Fresh G Biotech Lab, Plot No.09, Spring Garden, Uttar Dhona, Near Times of India Chinhat, Tehsil Sadar, Lucknow, U.P.	50 TPA Spawn Production Unit
99.	Mr. Amit Kumar, S/o Sh. Devinder Singh, Village Manyana, PO Tilly, District Sadar, Mandi (H.P.) – 175001	20 TPA White Button Mushroom Growing Unit
100.	M/s. Delta Agritech Inc. Prop., Mrs. Manmeet Kaur Wazir Wazir Farms - Siamipur Road, Vill Siamipur Teh Kharar, SAS Nagar, Punjab - 140301	50 TPA White Button Mushroom Integrated Project report
101.	M/s. Chandrama Mushroom Spawn Production Unit, Mr.Suresh Chandra Sahu, At Behartaposi, PO Nelung, PS Sadar, District Keonjhar – 758002, Odisha	50 TPA Spawn Production Unit
102.	Mr. Faquir Chand, S/o Sh. Babu Ram Sharma, Village Morni Hills, Bhoj Jabyal, Morni, Panchkula, Haryana - 134205	50 TPA White Button Mushroom Growing Unit
103.	M/s. IRAGO Solutions Private Limited, Mr. Ishant Rao, R/o 170/3, Fatehpur, Tehsil Sarkaghat, District Mandi (H.P.) – 175024	20 TPA Spawn Production Unit
104.	Mr. Malkiat Singh, V.P.O. Junga, Tehsil Junga, District Shimla (H.P.) – 171218	20 TPA White Button Mushroom Growing Unit
105.	Sh. Krishan Dass, S/o Sh. Madan Singh, Chauki Charech, Sarahan, Tehsil Pachhad, Sirmour, H.P. – 173024	20 TPA White Button Mushroom Growing Unit
106.	Mr. Balbir Chand, Village Saini Majra, P.O. Manjholi, Tehsil Nalagarh, District Solan (H.P.) – 174101	20 TPA White Button Mushroom Growing Unit
107.	Sh. Keshav Ram, Village Balan, P.O. Jais, Tehsil Theog, District Shimla (H.P.) – 171201	20 TPA White Button Mushroom Growing Unit
108.	Sh. Bhoop Ram, Village Otidhar, P.O. Kelvi, Tehsil Theog, District Shimla (H.P.) – 171212	20 TPA White Button Mushroom Growing Unit
109.	M/s. Nilanchala Agro Services Unit, Mr. Darubrahma Palei, At-Kolipasi, PO Dhanhadaiha, PS Ghatgaon, District Keonjhar-758027, Odisha	120 TPA White Button Mushroom Production Integrated Project report.
110.	Sh.Arun Dutt Sharma, S/o Sh. Som Dutt Sharma, Village Machhari, dakghar Naina Tikker, Tehsil Pachhad, District Sirmour (H.P.) — 173229	20 TPA White Button Mushroom Growing Unit

8. COMMITTEE MEETINGS

8. सिमिति की बैठकें

Meeting of Research Advisory Committee (RAC) of ICAR-DMR, Solan (H.P.) was held on 27th May, 2024. The Members of RAC were as under for the period 2023-2026 (14.02.2023 – 13.02.2026)

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि0प्र0) में गठित अनुसंधान सलाहकार समिति की बैठक दिनांक 27 मई, 2024 को हुई। अनुसंधान सलाहकार समिति के सदस्य 2023—2026 (14.02.2023 — 13.02.2026) अवधि के लिए निम्नलिखित हैं।

S.No. क्र.सं.	Name & Address नाम व पता	Designation पदनाम
1.	Dr. Vijay Singh Thakur, Former Vice Chancellor, UHF, Nauni, Village Kohlara, PO Praunthi, Tehsil Jubbal, District Shimla (H.P.) -171205 डॉ. विजय सिंह ठाकुर, पूर्व कुलपति, औद्यानिकी एवं वानिकी विश्वविद्यालय, नौणी, गाँव कोहलारा, डाकघर परौंथी, तहसील जुब्बल, जिला शिमला (हि0प्र0)—171205	Chairman अध्यक्ष
2.	Dr. Sudhakar Pandey, Asstt. Director General (HS-II), Hort. Sci. Division, Indian Council of Agricultural Research,KAB-II, Pusa,New Delhi – 110 012 डॉ. सुधाकर पांडेय, सहायक महानिदेशक (बागवानी विज्ञान—II), बागवानी विज्ञान विभाग, भारतीय कृषि अनुसंधान परिषद, कृषि अनुसंधान भवन—II, पूसा, नई दिल्ली—110 012	Member सदस्य
3.	Dr. K.P. Singh, Former-Principal Scientist, IIVR, VaranasiB-27/31B 1, Durgakund, Varanasi (U.P.)-221005 डॉ. के.पी. सिंह, पूर्व प्रधान वैज्ञानिक, भारतीय सब्जी अनुसंधान संस्थान, वाराणासी, बी—27 / 31बी 1, दुर्गाकुंड, वाराणासी (उत्तर प्रदेश)—221005	Member सदस्य
4.	Dr. B.M. Sharma, Prof.(Retd.), HPKVV, Palampur (H.P.)Ganesh Vihar, Khilru, PO Bindravan, Palampur- 176061 (H.P.) डॉ. बी. एम. शर्मा, प्रोफेसर (सेवानिवृत्त), हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर (हि0प्र0), गणेश विहार, खिलडू, डाकघर बिंदरावन, पालमपुर (हि0प्र0)—176061	Member सदस्य
5.	Dr. C.D. Thapa, Ex-Professor, Deptt. Of Pl.Path., UHF, Nauni (H.P.) Vaishnav Kunj, Near Power House Saproon, PO Saproon, District Solan (H.P.) - 173211 डॉ. सी.डी. थापा, पूर्व प्रोफेसर, पादप रोगविज्ञान, यूएचएफ, नौणी, वैष्णव कुंज, समीप पावर हाउस, सपरून, डाकघर सपरून, जिला सोलन (हि0प्र0)—173211	Member सदस्य
6.	Dr. B.Vijay, Ex-Principal Scientist, ICAR-DMR, Solan.Village Ber Ki Ser, PO Chambaghat, Solan (H.P.)-173213 डॉ. बी. विजय, पूर्व प्रधान वैज्ञानिक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि०प्र०), गाँव बेर की सैर, डाकघर चम्बाघाट, जिला सोलन (हि०प्र०)—173213	Member सदस्य
7.	Dr. V.P. Sharma, Director,ICAR-Directorate of Mushroom Research,Chambaghat, Solan (HP) — 1732113 डॉ. वी.पी. शर्मा, निदेशक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0)—173213	Member सदस्य
8.	Sh. Dharmender Rana, S/o Sh. Kuwar Mahan, VPO Singha, Tehsil Haroli, District Una (H.P.) – 176602 श्री धर्मेन्द्र राणा, सपुत्र श्री कुंवर मोहन सिंह राणा, गांव व डा. सिंघा, तहसील हरौली, जिला ऊना (हि0प्र0)–176602	Member सदस्य
9.	Sh. Swaran Singh Chib, S/o Sh. Thoru Ram, R/o Fathu Chak, PO Satrayan, Tehsil Suchetgarh, District Jammu – 181102 श्री स्वर्ण सिंह, सपुत्र श्री थोरू राम, निवासी फथू चक, डाकघर सतरायण, तहसील सुचेतगढ़, जिला जम्मू—181102	Member सदस्य
10.	Dr.Brij Lal Attri, Principal Scientist,ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) – 173213 डॉ. बृज लाल अत्री, प्रधान वैज्ञानिक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0)	Member Secretary सदस्य सचिव

Meetings of Institute Research Committee (IRC) of ICAR-DMR, Solan meetings were held on 02.01.2024, 25.01.2024, 24.04.2024, 20-22 May, 2024, 05.06.2024, 08.07.2024, 31.07.2024 the Members were as under:

भाकृअनुप—खुम्ब अनुसंघान निदेशालय, सोलन की संस्थान अनुसंघान समिति की बैठक दिनांक 02.01.2024, 25.01. 2024, 24.04.2024, 20—22 मई, 2024, 05.06.2024, 08. 07.2024, 31.07.2024 को हुई। समिति के सदस्य निम्नलिखित थे:

S.No. क्र.सं.	Name नाम	Designation पदनाम
1.	Dr. V.P. Sharma, Director डॉ. वी.पी. शर्मा, निदेशक	Chairman अध्यक्ष
2.	Dr. Brij Lal Attri, Principal Scientist डॉ. बृज लाल अत्री, प्रधान वैज्ञानिक	Member Secretary सदस्य सचिव
3.	Dr. Satish Kumar, Principal Scientist डॉ. सतीश कुमार, प्रधान वैज्ञानिक	Member सदस्य
4.	Dr. Shwet Kamal, Principal Scientist डॉ. श्वेत कमल, प्रधान वैज्ञानिक	Member सदस्य
5.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	Member सदस्य
6.	Dr. Anuradha Srivastava, Senior Scientist डॉ. अनुराधा श्रीवास्तव, वरिष्ठ वैज्ञानिक	Member सदस्या
7.	Dr. Reetu, Scientist डॉ. रीतू, वैज्ञानिक	Member सदस्या
8.	Dr. Manoj Nath, Scientist डॉ. मनोज नाथ, वैज्ञानिक	Member सदस्य
9.	Dr. Anarase Dattatray Arjun, Scientist डॉ. अनारसे दत्तात्रय, वैज्ञानिक	Member सदस्य
10.	Dr. Shweta Bijla, Scientist डॉ. श्वेता बिजला, वैज्ञानिक	Member सदस्या
11.	Dr. Jagdish Goyanka, Scientist डॉ. जगदीश गोयंका, वैज्ञानिक	Member सदस्य

Research Priority Setting & Monitoring (PME) Committees constituted at ICAR-DMR, Solan (H.P.)

भाकृअनुप—खुम्ब अनुसंघान निदेशालय, सोलन (हि0प्र0) में गठित अनुसंघान प्राथमिकता सेटिंग, निगरानी और मूल्याकंन सैल

S.No. क्र.सं.	Name of employee नाम	Designation पदनाम
1.	Dr. Brij Lal Attri, Principal Scientist ভাঁ. ৰৃज লাল अत्री	Chairman प्रधान वैज्ञानिक / अध्यक्ष पीएमई सैल
2.	Dr. Satish Kumar, Principal Scientist डॉ. सतीश कुमार	Co-Chairman प्रधान वैज्ञानिक / सह—अध्यक्ष पीएमई सैल
3.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार	Member Secretary वरिष्ठ वैज्ञानिक/ सदस्य सचिव
4.	Dr. Anuradha Srivastava, Senior Scientist डॉ. अनुराधा श्रीवास्तव	Member वरिष्ठ वैज्ञानिक/ सदस्य
5.	Mr. Deep Kumar Thakur, PA श्री दीप कुमार ढाकुर	Dealing Assistant (PME Cell) निजी सहायक / संबंधित सहायक (पीएमई सैल)

Meetings of Scientists/Monthly Planning and Review Meetings of Scientists of ICAR-DMR, Solan meetings were held on 05.01.2024, 06.02.2024, 01.03.2024, 05.04.2024, 03.05.2024, 28.05.2024, 05.07.2024, 02.08.2024, 12.09.2024, 09.10.2024, 21.11.2024, 26.11.2024, 06.12.2024, 16.12.2024, 31.12.2024 the Members were as under:

भाकृअनुप—खुम्ब अनुसंघान निदेशालय, सोलन के वैज्ञानिकों की/मासिक योजना व समीक्षा बैठकें दिनांक 05.01.2024, 06.02.2024, 01.03.2024, 05.04.2024, 03.05.2024, 28.05. 2024, 05.07.2024, 02.08.2024, 12.09.2024, 09.10.2024, 21.11.2024, 26.11.2024, 06.12.2024, 16.12.2024, 31.12. 2024 को हुई। समिति के सदस्य निम्नलिखित थे:

S.No. क्र.सं.	Name नाम	Designation पदनाम
1.	Dr. V.P. Sharma, Director डॉ. वी.पी. शर्मा, निदेशक	Chairman अध्यक्ष
2.	Dr. Brij Lal Attri, Principal Scientist डॉ. बृज लाल अत्री, प्रधान वैज्ञानिक	Member सदस्य सचिव
3.	Dr. Satish Kumar, Principal Scientist डॉ. सतीश कुमार, प्रधान वैज्ञानिक	Member सदस्य
4.	Dr. Shwet Kamal, Principal Scientist डॉ. श्वेत कमल, प्रधान वैज्ञानिक	Member सदस्य
5.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	Member सदस्य
6.	Dr. Anuradha Srivastava, Senior Scientist डॉ. अनुराधा श्रीवास्तव, वरिष्ठ वैज्ञानिक	Member सदस्या
7.	Dr. Reetu, Scientist डॉ. रीतू, वैज्ञानिक	Member सदस्या
8.	Dr. Manoj Nath, Scientist डॉ. मनोज नाथ, वैज्ञानिक	Member सदस्य
9.	Dr. Anarase Dattatray Arjun, Scientist डॉ. अनारसे दत्तात्रय, वैज्ञानिक	Member सदस्य
10.	Dr. Shweta Bijla, Scientist डॉ. श्वेता बिजला, वैज्ञानिक	Member सदस्या
11.	Dr. Jagdish Goyanka, Scientist डॉ. जगदीश गोयंका, वैज्ञानिक	Member सदस्य

Publication Committee प्रकाशन समिति

S.No. क्र.सं.	Name नाम	Designation पदनाम
1.	Dr. Brij Lal Attri, Principal Scientist डॉ. बृज लाल अत्री, प्रधान वैज्ञानिक	Chairman अध्यक्ष
2.	Dr. Shwet Kamal, Principal Scientist डॉ. श्वेत कमल, प्रधान वैज्ञानिक	Member सदस्य
3.	Dr. Anil Kumar, Senior Scientist डॉ. अनिल कुमार, वरिष्ठ वैज्ञानिक	Member सदस्य
4.	Dr. Anuradha Srivastava, Scientist डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	Member सदस्या

Meetings of Scientists-Technical Personnel of ICAR-DMR, Solan were held on 23.02.2024, 15.03.2024, 19.04.2024, 17.05.2024, 28.06.2024, 19.07.2024, 16.08.2024, 20.09.2024, 25.10.2024, 20.12.2024 the Members were as under: वैज्ञानिकों व तकनीकी कार्मिकों की बैठकें दिनांक 23.02. 2024, 15.03.2024, 19.04.2024, 17.05.2024, 28.06.2024, 19.07.2024, 16.08.2024, 20.09.2024, 25.10.2024, 20.12. 2024 को हुई | सदस्य निम्नलिखित हैं:

S.No. क्र.सं.	Name नाम	Designation पदनाम
क्र.स.	गाम	पदनाम
1.	Dr. V.P. Sharma डॉ. वी. पी. शर्मा	Director निदेशक
2.	Dr. Brij Lal Attri डॉ. बृज लाल अत्री	Principal Scientist प्रधान वैज्ञानिक
3.	Dr. Satish Kumar डॉ. सतीश कुमार	Principal Scientist प्रधान वैज्ञानिक
4.	Dr. Shwet Kamal डॉ. श्वेत कमल	Principal Scientist प्रधान वैज्ञानिक
5.	Dr. Anil Kumar डॉ. अनिल कुमार	Senior Scientist वरिष्ठ वैज्ञानिक
6.	Dr. Anuradha Srivastava डॉ. अनुराधा श्रीवास्तव	Senior Scientist वरिष्ठ वैज्ञानिक
7.	Dr. Reetu डॉ. रीतू.	Scientist वैज्ञानिक
8.	Dr. Manoj Nath डॉ. मनोज नाथ	Scientist वैज्ञानिक
9.	Dr.Anarase Dattatray Arjun डॉ. अनारसे दत्तात्रय अर्जुन	Scientist वैज्ञानिक
10.	Dr. Shweta Bijla डॉ. श्वेता बिजला	Scientist वैज्ञानिक
11.	Dr. Jagdish Goyanka डॉ. जगदीश गोयंका	Scientist वैज्ञानिक
12.	Dr. Sushil Kumar डॉ. सुशील कुमार	CTO मुख्य तक. अधिकारी (फॉर्म)
13.	Smt. Reeta Bhatia श्रीमती रीता	CTO मुख्य तक. अधिकारी (पुस्त.)
14.	Smt. Shailja Verma श्रीमती शैलजा वर्मा	CTO मुख्य तक.अधिकारी (कला)
15.	Sh. Ram Lal श्री राम लाल	TO तकनीकी अधिकारी (वाहन)
16.	Sh. Deepak Sharma श्री दीपक शर्मा	TO तकनीकी अधिकारी (कम्प्यूटर)
17.	Sh. Jeet Ram श्री जीत राम	TO तकनीकी अधिकारी (फॉर्म)
18.	Sh. Guler Singh Rana श्री गुलेर सिंह राणा	TO तकनीकी अधिकारी (विद्युत)
19.	Smt. Meera Devi श्रीमती मीरा देवी	Tech. Asstt. (Farm) तकनीकी सहायक (फॉर्म)

Institute Technology Management Committee (ITMC) and its Members were as under: संस्थान तकनीकी प्रबंधन समिति (आईटीएमसी) व इसके सदस्य निम्नलिखित है:

S. No. क्र.सं.	Name नाम	Designation पदनाम
1.	Dr. V.P. Sharma डॉ. वी. पी. शर्मा	Director निदेशक
2.	Dr. Brij Lal Attri डॉ. बृज लाल अत्री	Principal Scientist प्रधान वैज्ञानिक
3.	Dr. Sanjeev Sharma डॉ. संजीव शर्मा	Pricipal Scientist (Plant Pathology), ICAR-Central Potato Research Institute, Shimla (H.P.), Specialist प्रधान वैज्ञानिक (पादप रोग विज्ञान), भाकृअनुप—केन्दीय आलू अनुसंधान संस्थान, शिमला (हि०प्र०) से विशेषज्ञ
4.	Dr. Anil Kumar डॉ. अनिल कुमार	Senior Scientist वरिष्ठ वैज्ञानिक
5.	Dr. Anuradha Srivastava डॉ. अनुराधा श्रीवास्तव	Senior Scientist वरिष्ठ वैज्ञानिक
6.	Dr. Satish Kumar डॉ. सतीश कुमार	Principal Scientist/Member Secretary, ITMC प्रधान वैज्ञानिक / सदस्य सचिव

GRIEVANCE CELL

शिकायत समिति

Meetings of Grievance Committee held on 15.03.2024, 30.05.2024, 30.08.2024 and 20.12.2024 शिकायत समिति की बैठकें 15.03.2024, 30.05.2024, 30.08.2024 तथा 20.12.2024 को आयोजित की गईं।

ELECTED MEMBERS OF GRIEVANCE COMMITTEE

शिकायत समिति के निर्वाचित सदस्य

S N	Name & designation	Category	Capacity
क्र.सं.	नाम व पदनाम	श्रेणी	क्षमता / स्थिति
1	Dr. Reetu, Scientist	Scientific	Member
	डा. रितु, वैज्ञानिक	वैज्ञानिक	सदस्य
2	Smt. Shashi Poonam, UDC	Administrative	Member
	श्रीमती शशी पूनम, वo लिपिक	प्रशासनिक	सदस्या
3	Sh.Ram Lal, Technical Officer	Technical	Member
	श्री रामलाल, तकनीकी अधिकारी	तकनीकी	सदस्य
4	Sh. Vinay Sharma, SSS	Skilled Support Staff	Member
	श्री विनय शर्मा, एस.एस.एस	कुशल सहायक कर्मचारी	सदस्य

NOMINATED OFFICE SIDE MEMBERS OF GRIEVANCE COMMITTEE

शिकायत समिति के कार्यालय पक्ष के मनोनीत सदस्य

SN	Name & designation	Category	Capacity
क्र.सं.	नाम व पदनाम	श्रेणी	क्षमता / स्थिति
1.	Dr. V.P. Sharma	Director	Chairman
	डा. वी.पी. शर्मा, निदेशक	वैज्ञानिक	अध्यक्ष
2.	Dr. Satish Kumar, Principal Scientist	Scientific	Member
	डा. सतीश कुमार, प्रधान वैज्ञानिक	वैज्ञानिक	सदस्य
3.	Finance & Accounts Officer	Audit	Member
	वित्त एवं लेखा अधिकारी	लेखा परीक्षा	सदस्य
4.	Administrative Officer	Administrative	Member Secretary
	प्रशासनिक अधिकारी	प्रशासनिक	सदस्य सचिव

INSTITUTE JOINT STAFF COUNCIL (IJSC)

Meetings of Institute Joint Staff Council held on 15.03.2024, 30.05.2024, 30.08.2024 and 20.12.2024

STAFF SIDE MEMBERS OF IJSC

- 1. Sh. N.P. Negi, Assistant (Member CJSC)
- 2. Sh. Sanjeev Sharma, LDC
- 3. Sh. Jeet Ram, Technical Officer
- 4. Sh. Guler Singh Rana, Technical Officer (Secretary IJSC)
- 5. Sh. Vinay Sharma, SSS

OFFICE SIDE MEMBERS OF IJSC

- 1. Dr. Brij Lal Attri, Principal Scientist
- 2. Dr. Reetu, Scientist
- 3. Dr. Manoj Nath, Scientist
- 4. Dr. Shweta Bijla, Scientist
- 5. Finance & Accounts Officer
- 6. Administrative Officer, Member Secretary

संयुक्त कर्मचारी परिषद (आई जेएससी)

संयुक्त कर्मचारी परिषद (आईजेएससी) की तिमाही बैठकें दिनांक 15.03.2024, 30.05.2024, 30.08.2024 तथा 20. 12.2024 को आयोजित की गई।

कर्मचारी पक्ष के सदस्यः

- 1. श्री एन.पी. नेगी, सहायक / सदस्य सीजेएससी
- 2. श्री संजीव शर्मा, कनिष्ठ लिपिक
- 3. श्री जीत राम, तकनीकी अधिकारी
- श्री गुलेर सिंह राणा, तकनीकी अधिकारी / सचिव आईजेएससी
- 5. श्री विनय शर्मा, स्किल्ड स्पोर्ट स्टाफ

कार्यालय पक्ष के सदस्यः

- 1. डा. बृज लाल अत्री, प्रधान वैज्ञानिक
- 2. डा. रितु, वैज्ञानिक
- 3. डा. मनोज नाथ, वैज्ञानिक
- 4. डा. श्वेता बिजला, वैज्ञानिक
- 5. वित्त एवं लेखा अधिकारी
- 6. प्रशासनिक अधिकारी (सदस्य सचिव)

INSTITUTE MANAGEMENT COMMITTEE MEMBERS संस्थान प्रबंधन समिति

S.No.	Name and address	Designation
1.	Dr. V.P. Sharma, Director, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.). डा. वी.पी. शर्मा, निदेशक, भाकृअप—खु.अनु. निदेशालय, चम्बाघाट, सोलन (हि.प्र.)।	Chairman अध्यक्ष
2.	Assistant Director General (HS-1), Indian Council of Agricultural Research, Krishi Anusandhan Bhavan-II, Pusa, New Delhi-12 सहायक महानिदेशक (बागवानी विज्ञान—1), भारतीय कृषि अनुसंधान परिषद, कृषि अनुसंधान भवन—2,	Member
	पूसा, नई दिल्ली—110012	सदस्य
3.	Director of Horticulture, Govt. of Himachal Pradesh , Shimla (HP) निदेशक (बागवानी), बागवानी विभाग, हिमाचल प्रदेश, शिमला (हि.प्र.)	Ex-Officio Member पदेन सदस्य
4.	Director of Horticulture, Deptt. of Horticulture, Govt. of Haryana, Panchkula (Haryana). निदेशक (बागवानी), बागवानी विभाग, हरियाणा सरकार, पंचकूला (हरियाणा)	Ex-Officio Member पदेन सदस्य
5.	Vice Chancellor, Dr. Y.S. Parmar University of Hort. & Forestry, Nauni, Distt. Solan (H.P.) कुलपति, डा. यशवंत सिंह परमार औद्यानिकी एवं वानिकी विश्वविद्यालय, नौणी, जिला सोलन, हिमाचल प्रदेश	Ex-Officio Member पदेन सदस्य
6.	Dr. Sriram S, Principal Scientist & Head, Crop Protection, ICAR- Indian Institute of Horticultural Research, Bengaluru – 560089. डा. श्रीराम एस., प्रधान वैज्ञानिक / प्रमुख, भाकृअप—भारतीय बागवानी अनुसंधान संस्थान, बैंगलूरू—560089	Member सदस्य
7.	Dr. Sanjeev Kumar Sharma, Head, Crop Protection, ICAR- Central Potato Research Insitute,	Member
	Shimla – 171001 (HP) डा. संजीव कुमार शर्मा, प्रमुख फसल सुरक्षा, भाकृअप—केन्द्रीय आलू अनुसंधान संस्थान, शिमला—171001	सदस्य
8.	Dr. Vikas Singh, Principal Scientist & I/c Head, ICAR Indian Institute of Vegetable Research Regional Research Station, Sargatia, Kushinagar – 274304 (UP)	Member
	डा. विकास सिंह, प्रधान वैज्ञानिक / इंचार्ज प्रमुख, भाकृअप—भारतीय सब्जी अनुसंधान संस्थान क्षेत्रीय अनुसंधान स्टेशन, सरगटिया, कुशीनगर, उत्तर प्रदेश—274304	सदस्य
9.	Dr. Satish Kumar, Pricipal Scientist, ICAR-Directorate of Mushroom Research, Solan(HP) डा. सतीश कुमार, प्रधान वैज्ञानिक, भाकृअप—खुंब अनुसंधान निदेशालय, सोलन	Member सदस्य
10.	Sh. Chander Prakash Sharma, Finance & Accounts Officer, ICAR- Central Potato Research Insitute, Shimla – 171001 (HP)	Member
4.4	श्री चंद्र प्रकाश शर्मा, वित्त एवं लेखा अधिकारी, भाकृअप—केन्द्रीय आलू अनुसंधान संस्थान, शिमला—171001	सदस्य
11.	Sh. Dharmendra Rana, VPO. Singa, Tehsil Haroli, Distt. Una (HP) — 176601 श्री धर्मेन्द्र राणा, गांव व डाकघर सिंगा, तहसील हरोली, जिला ऊना, हिमाचल प्रदेश—176601	Non Official Member गैर सरकारी सदस्य
12.	Sh. Swaran Singh Chib, R/o Fathu Chak, PO. Satrayan, Tehsil Suchetgarh, Distt. Jammu – 181102 श्री स्वर्ण सिंह छिब्ब, फातू चक, डाकघर सातरायन, तहसील सुचेतगढ, जम्मू—181102	Non Official Member गैर सरकारी सदस्य
13.	Administrative Officer, ICAR-DMR, Chambaghat, Solan (H.P.) प्रशासनिक अधिकारी, भाकृअप—खु.अनु. निदेशालय, चम्बाघाट, सोलन (हि.प्र.)	Member-Secretary सदस्य सचिव

SWACHH ABHIYAN COMMITTEE स्वच्छ अभियान समिति

1.	Sh. T.D. Sharma श्री तुलसी दास शर्मा	Nodal Officer नोडल अधिकारी
2.	Dr. Rajneesh Jaryal डा.रजनीश जरयाल	Member सदस्य
3.	Sh. Jeet Ram श्री जीत राम	Member सदस्य
4.	Sh. Sanjeev Sharma श्री. संजीव शर्मा	Member सदस्य

Special Campaign 2.0 for disposal of pending matters from 14.09.2024 to 02.10.2024

Special campaign 2.0 was organised in the Directorate from dated 14.09.2024 to 02.10.2024 as per the directions of the Council. As per the programme, special emphasis was given to settle down the various references received in the Directorate through different portal or otherwise. A comprehensive drive was undertaken to review the old physical files and unwanted files were weeded out. About 4.0 tonnes office scrap was disposed off during the campaign, which resulted in the revenue generation of Rs 32,100/ - and almost 400 sq feet space/area was free. During the programme, in total 15 No. of cleanliness drives were undertaken and various teams of the Directorate visited the Residential Colonies/Parks/School/ Prominent Places and the Villages adopted under the "Mera Gaon Mera Gaurav" to spread the message of the Cleanliness, sanitation and conservation of water resources. All the staff members, farmers, Villagers, Youth and visitors were sensitized about the Swachhata, personal hygiene and overall cleanliness.

Swachhata Pakhwada from 16.12.2024 to 31.12.2024

As per the direction of the ICAR, various activities were organized by the Directorate under the Swachhata Pakhwada held from 16.12.2024 to 31.12.2024. Comprehensive sanitation and cleanliness drives ware organized during the period in the campus as well outside the campus. Various programmes were organized on and off the campus for creating awareness among masses for cleanliness in their day to day life.

लंबित मामलों के निस्तारण हेतु दिनांक 14.09.2024 से 02.10.2024 तक विशेष अभियान 2.0

परिषद के निर्देशानुसार निदेशालय में दिनांक 14.09.2024 से 02.10.2024 तक विशेष अभियान 2.0 आयोजित किया गया। कार्यक्रम के अनुसार निदेशालय में विभिन्न पोर्टल अथवा अन्य माध्यम से प्राप्त विभिन्न सन्दर्भों के निस्तारण पर विशेष बल दिया गया। पुरानी भौतिक फाइलों की समीक्षा के लिए एक व्यापक अभियान चलाया गया और अवांछित फाइलों को हटा दिया गया। अभियान के दौरान लगभग 4.0 टन कार्यालय स्क्रैप का निपटान किया गया, जिसके परिणामस्वरूप 32,100 / — रुपये का राजस्व प्राप्त हुआ और लगभग 400 वर्ग फूट जगह / क्षेत्र मुक्त हो गया। कार्यक्रम के दौरान, कुल 15 स्वच्छता अभियान चलाए गए और निदेशालय की विभिन्न टीमों ने स्वच्छता, स्वच्छता और जल संसाधनों के संरक्षण का संदेश फैलाने के लिए आवासीय कॉलोनियों / पार्कों / स्कूलों / प्रमुख स्थानों और "मेरा गांव मेरा गौरव" के तहत गोद लिए गए गांवों का दौरा किया। सभी स्टाफ सदस्यों, किसानों, ग्रामीणों, युवाओं और आगंतुकों को स्वच्छता, व्यक्तिगत स्वच्छता और समग्र स्वच्छता के बारे में जागरूक किया गया।

16.12.2024 से 31.12.2024 तक स्वच्छता पखवाड़ा

आईसीएआर के निर्देशानुसार दिनांक 16.12.2024 से 31. 12.2024 तक आयोजित स्वच्छता पखवाड़ा के अंतर्गत निदेशालय द्वारा विभिन्न गतिविधियों का आयोजन किया गया। इस अविध के दौरान परिसर के साथ—साथ परिसर के बाहर भी व्यापक स्वच्छता और सफाई अभियान आयोजित किये गये। लोगों के बीच दैनिक जीवन में स्वच्छता के प्रति जागरूकता पैदा करने के लिए परिसर में और बाहर विभिन्न कार्यक्रम आयोजित किए गए। स्वच्छता पखवाड़ा के दौरान किसानों, ग्रामीण युवाओं,

During the Swachhata Pakhwada various activities like Swachhata Pledge, sanitation drive in the villages adopted under the 'Mera Gaon Mera Gaurav', stock taking waste management inside and outside Directorate's campus, wealth from waste and various sanitation campaign etc. were organized by involving the farmers, Village youth, students and trainees. Kisan Diwas/Mushroom Day was also celebrated on 23 Dec., 2024 by involving more than 120 farmers. All the people involved were sensitized about the Swachhata, personal hygiene and overall cleanliness.

छात्रों और प्रशिक्षुओं को शामिल करके स्वच्छता शपथ, 'मेरा गांव मेरा गौरव' के तहत गोद लिए गए गांवों में स्वच्छता अभियान, निदेशालय परिसर के अंदर और बाहर अपशिष्ट प्रबंधन का स्टॉक लेना, कचरे से धन और विभिन्न स्वच्छता अभियान आदि जैसी विभिन्न गतिविधियां आयोजित की गईं। 23 दिसंबर, 2024 को 120 से अधिक किसानों को शामिल करके किसान दिवस / खुम्ब दिवस भी मनाया गया। इसमें शामिल सभी लोगों को स्वच्छता, व्यक्तिगत स्वच्छता और समग्र स्वच्छता के बारे में जागरूक किया गया।

9. IMPLEMENTATION OF OFFICIAL LANGUAGE

9. राजभाषा कार्यान्वयन

Progress report of official language (Hindi) of ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) 2023

Official Language Implementation Committee (Hindi Committee):

Dr. V.P. Sharma, Director - Chairman Dr. Brij Lal Attri, Principal Scientist - Member Ms. Harnoor Kaur, Administrative Officer - Member Mrs. Sunila Thakur, Private Secretary - Member Mr. Deep Kumar Thakur, Personal Assistant - Member Mrs. Shashi Poonam, Upper Division Clerk - Member Mrs. Reeta Bhatia, CTO- Member Secretary

Brief description of the work done by the official language implementation committee during the year 2024

In order to ensure the implementation of the official language policy of the Government of India and to ensure the use of Hindi in the work being done by the Directorate, an official language implementation committee has been constituted in the Directorate. Despite the absence of any separate officer and employee in the Directorate for the implementation of the official language, as a result of the efforts made by the Official Language Implementation Committee, expected success has been achieved in the work and promotion of Hindi in the Directorate and the goals set by the council have been completed on time. The brief description of the work done by the Directorate during the year 2023 is as follows:-

Implementation on Official Language Annual **Program**

The Official Language Annual Program issued by the Department of Official Language, Ministry of Home Affairs, Government of India was discussed in the quarterly meetings of the Official Language Implementation Committee of the Directorate and action was taken according to the decisions taken and all the officers and employees of the Directorate were informed about the annual program. Correspondence was done to achieve the set target as per the programme.

भाकृअनुप–खुम्ब अनुसंघान निदेशालय, चम्बाघाट, सोलन (हि0प्र0) 2024 की राजभाषा हिन्दी की प्रगति रिपोर्ट

राजभाषा कार्यान्वयन समिति (हिन्दी समिति):

डा. वी. पी. शर्मा	_	निदेशक / अध्यक्ष
डा. बी. एल. अत्री	_	प्रधान वैज्ञानिक / सदस्य
कुमारी हरनूर कौर	_	प्रशासनिक अधिकारी /
		सदस्या
श्रीमती सुनीला ठाकुर	_	निजी सचिव / सदस्या
श्री दीप कुमार ठाकुर	_	निजी सहायक / सदस्य
श्रीमती शशी पूनम	_	व. लिपिक / सदस्या
श्रीमती रीता	_	मु. तकनीकी अधिकारी /
		सदस्या सचिव

राजभाषा कार्यान्वयन समिति द्वारा वर्ष 2024) के दौरान किये गए कार्यों का संक्षिप्त विवरण

भारत सरकार की राजभाषा नीति के कार्यान्वयन को सुनिश्चित करने तथा निदेशालय द्वारा संपादित किये जाने वाले कामकाज में हिन्दी का प्रयोग सुनिश्चित करने के उद्देश्य से निदेशालय में राजभाषा कार्यान्वयन समिति का गठन किया गया है। राजभाषा कार्यान्वयन के लिए निदेशालय में अलग से कोई अधिकारी व कर्मचारी न होने के बावजूद राजभाषा कार्यान्वयन समिति द्वारा किए गये प्रयासों के फलस्वरूप निदेशालय में हिन्दी के कामकाज व प्रचार–प्रसार में अपेक्षित सफलता प्राप्त हुई है तथा परिषद द्वारा निर्धारित लक्ष्यों को समयानुसार पूर्ण किया गया। निदेशालय द्वारा वर्ष 2024 के दौरान किये गये कार्यों का संक्षिप्त विवरण निम्नानुसार है:-

राजभाषा वार्षिक कार्यक्रम पर कार्यान्वयन

राजभाषा विभाग, गृह मंत्रालय, भारत सरकार द्वारा जारी राजभाषा वार्षिक कार्यक्रम पर निदेशालय की राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों में चर्चा हुई तथा दिए गए दिशा-निर्देशों के अनुरूप लिए गए निर्णयों के अनुसार कार्रवाई की गई तथा निदेशालय के सभी अधिकारियों व कर्मचारियों को वार्षिक कार्यक्रम के अनुसार निर्धारित लक्ष्य प्राप्त करने हेत् पत्राचार किया गया।

Action on letters/circulars received from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research, New Delhi

During this period various types of letters/circulars related to latest instructions/rules related to official language implementation were received from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research, on which action was desired, action was taken on them and they were circulated to all concerned officers and employees for their information and necessary action.

Compilation and review of Quarterly Hindi Progress Report

After obtaining/preparing the progress data related to official language implementation in the Directorate, a consolidated Hindi progress report of the Directorate was prepared by compiling all the data in the quarterly report proforma. This consolidated report was sent online to Indian Council of Agricultural Research, New Delhi, Town Official Language Implementation Committee, Solan and Deputy Director (Implementation), Department of Official Language, Northern Regional Implementation Office-1, Delhi A-Sarojani Nagar, New Delhi. This report was reviewed and sent to all the officers and employees for pointing out the deficiencies found.

Implementation of Hindi Promotion Scheme

As per the instructions issued by the Department of Official Language, an incentive scheme has been implemented for all officers and employees to do official work in Hindi in the Directorate. Keeping in view the works done in the whole year, an evaluation committee is formed which decides the first, second and third prizes after examining the files and other works.

Holding of quarterly meetings

Quarterly meetings of the Official Language Implementation Committee were organized regularly. In the meetings, discussions were held on achieving राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद्, नई दिल्ली से प्राप्त पत्रोंध्परिपत्रों पर कार्रवाई।

इस अविध में राजभाषा कार्यान्वयन सम्बन्धी नवीनतम निर्देशों/नियमों से सम्बन्धित विभिन्न प्रकार के पत्र/परिपत्र आदि राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन तथा भारतीय कृषि अनुसंधान परिषद से प्राप्त हुए जिन पर कार्रवाई वांछित थी, उन पर कार्रवाई की गई तथा उन्हें सभी संबंधित अधिकारियों व कर्मचारियों को उनकी जानकारी व आवश्यक कार्रवाई हेतु परिचालित किया गया।

तिमाही हिन्दी प्रगति रिपोर्ट का संकलन तथा समीक्षा

निदेशालय में राजभाषा कार्यान्वयन सम्बन्धी प्रगति के आँकड़े प्राप्त/तैयार कर त्रैमासिक रिपोर्ट प्रोफार्मा में सभी आँकड़ों को संकलित कर निदेशालय की समेकित हिन्दी प्रगति रिपोर्ट तैयार की गई। इस समेकित रिपोर्ट को भारतीय कृषि अनुसंधान परिषद, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन तथा उप—िनदेशक (कार्यान्वयन), राजभाषा विभाग, उत्तरी क्षेत्रीय कार्यान्वयन कार्यालय—1, दिल्ली ए—सरोजनी नगर, नई दिल्ली को ऑन लाईन भेजा। इस रिपोर्ट की समीक्षा की गई तथा पाई गई किमयों को इंगित कर दूर करने के लिए सभी अधिकारियों व कर्मचारियों को सुधार के लिए प्रेषित किया गया।

हिन्दी प्रोत्साहन योजना का क्रार्यान्वयन

राजभाषा विभाग द्वारा जारी निर्देशों के अनुरूप निदेशालय में सरकारी कामकाज मूल रूप में हिन्दी में करने के लिए प्रोत्साहन योजना सभी अधिकारियों व कर्मचारियों के लिए लागू की है। पूरे वर्ष में किए गए कार्यों को मद्देनजर रखते हुए एक मूल्यांकन समिति का गठन किया जाता है जो फाईलों व अन्य कार्यों का अवलोकन कर प्रथम, द्वितीय व तृतीय पुरस्कारों का निर्णय करती है।

त्रैमासिक बैठकों का आयोजन

राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों का नियमित आयोजन किया गया। बैठकों में राजभाषा वार्षिक the targets set in the Official Language Annual Programme, compliance of instructions/orders received from time to time from Department of Official Language, New Delhi, Town Official Language Implementation Committee, Solan and Indian Council of Agricultural Research and in these meetings Action was taken to implement the decisions taken.

Organization of quarterly official language workshops

Following the guidelines of Government of India/Council, quarterly official language workshops were organized regularly in the Directorate. In these workshops (Fig. 9.1), the obstacles in working in Hindi were discussed and measures were suggested to remove them. All types of forms were prepared in bilingual form for all the officers and employees of the Directorate and downloaded on everyone's computers so that they can use these forms in day to day office use (Fig. 9.1).

कार्यक्रम में निर्धारित किए गए लक्ष्यों को प्राप्त करने के लिए, समय— समय पर राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद् से प्राप्त निर्देशों / आदेशों के अनुपालन पर चर्चा की गई तथा इन बैठकों में लिए गए निर्णयों को लागू करने के लिए कार्रवाई की गई।

त्रैमासिक राजभाषा कार्यशालाओं का आयोजन

भारत सरकार / परिषद के दिशा—निर्देशों का पालन करते हुए निदेशालय में त्रैमासिक राजभाषा कार्यशालाओं का नियमित आयोजन किया गया (चित्र 9.1)। इन कार्यशालाओं में हिन्दी में कार्य करने में आ रही बाधाओं पर चर्चा की गई तथा उनका निवारण करने के लिए उपाय सुझाए गए। निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए सभी प्रकार के प्रपत्र द्विभाषी रूप में तैयार किए गए व सभी के कंप्यूटरों पर डाउनलोड किए गए ताकि वे दिन—प्रतिदिन कार्यालय प्रयोग में इन प्रपत्रों को प्रयोग में लाएं।

Fig. 9.1. Staff of the Directorate attending quarterly official language workshop चित्र. 9.1. त्रैमासिक राजभाषा कार्यशाला में भाग लेते निदेशालय के कर्मचारी

Hindi fortnight organized

Hindi fortnight was organized at ICAR-Directorate of Mushroom Research, Solan from 14-28 September, 2024, in which 5 competitions were organized, the details of which are as follows:-

हिन्दी पखवाडे का आयोजन

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में हिन्दी पखवाड़े का आयोजन दिनांक 14—28 सितम्बर, 2024 तक किया गया जिसमें 5 प्रतियोगिताएं करवायी गयीं, जिनका विवरण निम्नलिखित है:—

Date: 14.09.2024

Calligraphy Competition: This competition was for all the officers and employees of the Directorate. 15 participants took part in this competition. The main objective of this competition was to practice writing and check the beautiful writing of all the officers and employees. The following officers/employees won prizes in this competition:

- 1. Dr. Brij Lal Attri, Principal Scientist I
- 2. Dr Anuradha Srivastava, Senior Scientist II
- 3. Dr Ashish Dhangar, F&AO III
- 4. Sh. Jeet Ram, Techical Officer and Mrs. Shashi Poonam, Upper Division Clerk–Consolation

Date: 17.09.2024

Dictation Competition: This competition was for all the officers and employees of the Directorate. 09 participants took part in this competition. The following officers/employees won prizes in this competition:

- 1. Dr Anuradha Srivastava, Scientist I
- 2. Dr. Ashish Dhangar, Finance & Accounts Officer II
- 3. Dr Shwet Kamal, Principal Scientist III

Date: 19.09.2024

Hindi Typing Competition in Unicode: This competition was for all the officers and employees of the Directorate. 07 participants of the Directorate participated in this competition. The following officers/employees won prizes in this competition:

- 1. 1. Dr Anuradha Srivastava, Senior Scientist I
- 2. Mrs. Shashi Poonam, Upper Division Clerk II
- 3. Dr Shweta Bijla, Scientist III

Date: 23.09.2024

Essay writing competition: This competition was for all the officers and employees of the Directorate. 04 participants of the Directorate participated in this competition. Since the number of participants were very less only consolation prize was given.

Sh. Ram Lal, Technical Officer - Consolation

दिनांकः 14.09.2024

सुलेख प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 15 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता का मुख्य उद्देश्य सभी अधिकारियों व कर्मचारियों का लिखने का अभ्यास तथा सुन्दर लिखाई को जाँचना था। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डा. बृज लाल अत्री, प्रधान वैज्ञानिक प्रथम
- 2. डा. अनुराधा श्रीवास्तव, व. वैज्ञानिक द्वितीय
- डा. आशीष धनगर, वि. ले. अधिकारी तृतीय
- 4. श्रीमती शशी पूनम, व. लिपिक सांत्वना
- 5. श्री जीत राम, त. अधिकारी सांत्वना

दिनांकः 17.09.2024

श्रुतलेखन प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 9 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डा. अनुराधा श्रीवास्तव, वैज्ञानिक प्रथम
- 2. डा. आशीष धनगर, वि. ले. अधिकारी द्वितीय
- 3. डा. श्वेत कमल, प्रधान वैज्ञानिक तृतीय

दिनांक 19.09.2024

यूनिकोड में हिंदी टाईपिंग प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में निदेशालय के 7 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डा. अनुराधा श्रीवास्तव, व. वैज्ञानिक प्रथम
- 2. श्रीमती शशी पुनम, व. लिपिक द्वितीय
- 3. डा. श्वेता बिजला, वैज्ञानिक तृतीय

दिनांक: 23.09.2024

निबंध प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 4 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

1. श्री राम लाल, त. अधिकारी - सांत्वना

Date: 26.09.2024

Translation from English to Hindi and from Hindi to English: This competition was for all officers and employees of the Directorate. 05 participants participated in this competition. The following officers/

1. Dr Shwet Kamal, Principal Scientist - I

employees won prizes in this competition:

- 2. Shri Deep Kumar Thakur, Personal Assistant II
- 3. Dr. Ashish Dhangar, F&AO III

Dated 01.10.2024

The Hindi fortnight was concluded on 01.10.2024, in which prizes were given to the winners of various competitions and to the officers and employees who did excellent work in Hindi throughout the year.

Award under incentive scheme for doing official work basically in Hindi throughout the year

(Under the guidelines received from the Government of India, Ministry of Home Affairs, Department of Official Language, New Delhi City Centre-2 Building, Jaisingh Road, New Delhi-110 001 vide Office Memorandum No. 12013/01/2011-NR(Policy) dated September 14, 2016 Incentive scheme for doing maximum work in Hindi in the previous year (September, 2023 to August, 2024)

Awards were given to the following officers and employees for doing maximum work in Hindi throughout the year.

1. First Prize

- 1. Sh. Deep Kumar Thakur, Personal Assistant
- 2. Sh. N.P. Negi, Assistant

2. Second Prize

- 1. Dr Brij Lal Attri, Principal Scientist
- 2. Sh. T.D. Sharma, Asstt. Administrative Officer
- 3. Shri Sanjeev Sharma, Lower Division Clerk

3. Third Prize

- 1. Sh. Bhim Singh, Assistant
- 2. Shri Dharam Das, Upper Division Clerk
- 3. Mrs Shashi Poonam, Upper Division Clerk
- 4. Shri Roshan Negi, Lower Division Clerk

दिनांकः 26.09.2024

अनुवाद अंग्रेजी से हिन्दी में तथा हिंदी से अंग्रेजी में प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 5 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीतेः

- 1. डा. श्वेत कमल, प्रधान वैज्ञानिक प्रथम
- 2. श्री दीप कुमार ठाकुर, निजी सहायक द्वितीय
- 3. डा. आशीष धनगर, वि. ले. अधिकारी तृतीय

दिनांक 01.10.2024

हिन्दी पखवाड़े का समापन दिनांक 01.10.2024 को किया गया जिसमें विभिन्न प्रतियोगिताओं के विजेताओं को तथा सारा साल हिन्दी में उत्कृष्ट कार्य करने वाले अधिकारियों व कर्मचारियों को पुरस्कार प्रदान किए गए।

पूरे वर्ष सरकारी कामकाज मूल रूप से हिन्दी में करने के लिए प्रोत्साहन योजना के तहत प्रस्कार

(भारत सरकार, गृह मंत्रालय, राजभाषा विभाग, नई दिल्ली सिटी सेंटर—2 बिल्डिंग, जयसिंह रोड़, नई दिल्ली — 110 001 के कार्यालय ज्ञापन सं0 12013ध01ध2011—रा0भा0(नीति) दिनांक 14 सितम्बर, 2016 द्वारा प्राप्त दिशा—निर्देशों के अंतर्गत पूर्व वर्ष (सितम्बर, 2023) से अगस्त, 2024) में कार्यालय में अधिक से अधिक कार्य हिन्दी में करने के लिए प्रोत्साहन योजना

पूरे वर्ष हिन्दी में सर्वाधिक कार्य करने के लिए निम्नलिखित अधिकारियों व कर्मचारियों को पुरस्कार दिए गए।

1. प्रथम पुरस्कार

- 1. श्री दीप कुमार ठाकुर, निजी सहायक
- 2. श्री एन. पी. नेगी, सहायक

2. द्वितीय पुरस्कार

- 1. डा. बृज लाल अत्री, प्रधान वैज्ञानिक
- 2. श्री टी.डी. शर्मा. स० प्रशासनिक अधिकारी
- 3. श्री संजीव शर्मा, निम्न श्रेणी लिपिक

3. तृतीय पुरस्कार

- 1. श्री भीम सिंह, सहायक
- 2. श्री धर्म दास व लिपिक
- 3. श्रीमती शशी पूनम, व. लिपिक
- 4. श्री रोशन नेगी, निम्न श्रेणी लिपिक

Main activities and achievements related to annual Hindi progress of the Directorate

A concise summary of the major activities and achievements of the Official Language Implementation Committee is presented in the form of an annual Hindi progress report.

- 1. The Directorate was awarded the second prize of 'Rajarshi Tandon Puraskar Yojana' 2020-21 by the Council for promoting the use of official language Hindi in small institutions of 'A' and 'B' region.
- 2. More than 85 percent personnel of the Directorate have proficiency/working knowledge in Hindi, therefore this Directorate has been notified as Hindi Office in the Gazette of Government of India under Rule 10(4) of Official Language.
- 3. Meetings of the Official Language Implementation Committee were held on 12.01.2024, 19.04.2024, 19.07.2024 and 09.10.2024. The agenda of all the meetings was decided according to the requirements of the annual implementation and only after the approval of the Chairman, Official Language Implementation Committee.
- 4. Official Language workshops were organized on 22.03.2024, 28.06.2024, 30.09.2024 and 13.12.2024, following the guidelines issued by the Government of India/Council from time to time, in which all the officers and employees of the Directorate voluntarily participated for successfully achieving the objectives of the workshops.
- 5. Out of all the letters received in Hindi or signed in Hindi, to which it was considered necessary to answer, those letters were answered only in Hindi.
- 6. In the context of compliance of Section 3(3) of the Official Language Act, 1963 and other rules, office orders have been issued from time to time to each officer and employee of the Directorate and efforts are being made to ensure their 100% compliance.
- 7. Minutes of most of the meetings of the Directorate were prepared in Hindi.
- 8. All 55 standard forms have been prepared bilingually and continuous efforts are being made so that all the personnel fill them in Hindi only.

निदेशालय की वार्षिक हिन्दी प्रगति संबंधी मुख्य गतिविधियाँ एवं उपलब्धियाँ

राजभाषा कार्यान्वयन समिति की प्रमुख-प्रमुख गतिविधियों और उपलब्धियों का संक्षिप्त-विवरण वार्षिक हिन्दी प्रगति रिपोर्ट के रूप में प्रस्तुत किया गया है।

- निदेशालय को 'क' और 'ख' क्षेत्र के छोटे संस्थानों में हिन्दी के प्रयोग को बढ़ावा देने के लिए परिषद द्वारा 'राजर्षि टण्डन पुरस्कार योजना' 2020—21 का दूसरा पुरस्कार दिया गया।
- 2. निदेशालय के 85 प्रतिशत से अधिक कार्मिक हिन्दी में प्रवीणता / कार्यसाधक ज्ञान प्राप्त है इसलिए यह निदेशालय राजभाषा नियम 10(4) के अंतर्गत भारत सरकार के गजट में हिन्दी कार्यालय के रूप में अधिसूचित किया जा चुका है।
- 3. राजभाषा कार्यान्वयन समिति की बैठकें दिनांक 12.01. 2024, 19.04.2024, 19.07.2024 व 09.10.2024 को संपन्न हुई। सभी बैठकों की कार्यसूची वार्षिक कार्यान्वयन की अपेक्षाओं के अनुसार एवं अध्यक्ष महोदय, राजभाषा कार्यान्वयन समिति के अनुमोदन के बाद ही तय की गई।
- 4. भारत सरकार / परिषद द्वारा समय—2 पर जारी दिशा—निर्देशों का पालन रखते हुए राजभाषा कार्यशालाओं का आयोजन दिनांक 22.03.2024, 28.06.2024, 30.09.2024 व 13.12. 2024 को किया गया जिसमें निदेशालय के सभी अधिकारियों व कर्मचारियों ने स्वेच्छा से भाग लेकर कार्यशालाओं के लक्ष्यों को सफलतापूर्वक प्राप्त किया।
- 5. हिन्दी में प्राप्त या हिन्दी में हस्ताक्षरित सभी पत्रों में से जिन पत्रों का उत्तर देना अपेक्षित समझा गया, उन पत्रों का उत्तर केवल हिन्दी में ही दिया गया।
- 6. राजभाषा अधिनियम, 1963 की धारा 3(3) तथा अन्य नियमों की अनुपालना के संदर्भ में निदेशालय के प्रत्येक अधिकारी व कर्मचारी को समय—समय पर कार्यालय आदेश जारी किए गए व इनकी शत—प्रतिशत अनुपालन सुनिश्चित करवाने के प्रयास किए गये।
- 7. निदेशालय की अधिकतर बैठकों के कार्यवृत्त हिन्दी में तैयार किए गए।
- 8. सभी 55 मानक फार्मों को द्विभाषी रूप में तैयार कर लिया गया है तथा निरंतर प्रयास किए जा रहे हैं ताकि सभी कार्मिक इन्हें हिन्दी में ही भरें।

- 9. Hindi software has been downloaded in all 35 computers of the Directorate. With this, every officer and employee working on computer can work in Hindi or in both Hindi and English simultaneously in any language as per their wish.
- 10. A roster has been prepared for all the officers of the Directorate with knowledge of Hindi and it has also been put on the Directorate's website dmrsolan.icar.gov.in
- 11. All sign boards, information boards, name boards and other similar boards of the Directorate have been prepared in bilingual form.
- 12. Training compendium for the training programs of the Directorate is available in both Hindi and English languages.
- 13. Code manuals and other procedural literature are available in Hindi.
- 14. With the aim of increasing the Hindi word knowledge of the officers and employees of the Directorate, a Hindi word is written everyday on the blackboard under the heading 'Today's word' so that the word knowledge of the officers and employees can increase.
- 15. Rubber stamps to be used in daily works in the office have been prepared in bilingual form.
- 16. A committee has been formed for the purchase of Hindi books, which recommends the purchase of books for the Hindi library. Efforts are being made to buy books in the library every year according to the target set by the Department of Official Language. The list of all the publications available in Hindi in the library of the Directorate has been made available on the website of the Directorate.
- 17. Apart from this, Dr. V.P. Sharma, Director and Chairman, Official Language Implementation Committee, under the continuous personal-cooperation and guidance, timely organization of Hindi quarterly meetings and workshops and mutual cooperation and coordination of all the officers and employees working in the Directorate, activities related to official language implementation progressed continuously moving forward.

- 9. निदेशालय के सभी 35 कम्पयूटरों में हिन्दी सॉफटवेयर को डाउनलोड किया गया है। इससे कम्पयूटर पर काम करने वाले प्रत्येक अधिकारी व कर्मचारी को अपनी इच्छानुसार हिन्दी में अथवा हिन्दी और अंग्रेजी दोनों में किसी भी भाषा में एक साथ काम कर सकते हैं।
- 10. निदेशालय के सभी अधिकारियों का हिन्दी की जानकारी संबंधी रोस्टर तैयार किया गया है तथा निदेशालय की वेबसाईट dmrsolan.icar.gov.in पर भी डाला गया है।
- 11. निदेशालय के सभी साईन बोर्ड, सूचना बोर्ड, नाम पट्ट व अन्य इसी प्रकार के बोर्ड द्विभाषी रूप में तैयार करवाए गए हैं।
- 12. निदेशालय के प्रशिक्षण कार्यक्रमों के लिए प्रशिक्षण सार—संग्रह (ट्रैनिंग कम्पेडियम) हिन्दी व अंग्रेजी दोनों भाषाओं में उपलब्ध है।
- 13. कोड मैनुअलों और अन्य कार्यविधि साहित्य हिन्दी में उपलब्ध है।
- 14. निदेशालय के अधिकारियों तथा कर्मचारियों के हिन्दी शब्द ज्ञान को बढ़ाने के उद्देश्य से श्यामपट्ट (ब्लैक बोर्ड) पर "आज का शब्द" शीर्षक के अन्तर्गत प्रतिदिन हिन्दी का शब्द लिखा जाता है ताकि अधिकारियों व कर्मचारियों के शब्द ज्ञान में वृद्धि हो सके।
- 15. कार्यालय में दैनिक कार्यों मे प्रयोग होने वाली रबड़ की मोहरों को द्विभाषी रूप में तैयार किया गया है।
- 16. हिन्दी पुस्तकों की खरीद के लिए एक समिति बनाई गई है जो पुस्तकालय के लिए हिन्दी पुस्तकें खरीदने की सिफारिश करती है। पुस्तकालय में प्रत्येक वर्ष राजभाषा विभाग द्वारा निर्धारित लक्ष्य के अनुसार पुस्तकें खरीदने का प्रयास किया जा रहा है। निदेशालय के पुस्तकालय में हिन्दी में उपलब्ध सभी प्रकाशनों की सूची निदेशालय की वेबसाइट पर उपलब्ध करा दी गई है।
- 17. इसके अतिरिक्त डा. वी.पी. शर्मा, निदेशक एवं अध्यक्ष, राजभाषा कार्यान्वयन समिति के सतत् निजी—सहयोग और मार्गदर्शन के तहत हिन्दी की तिमाही बैठकों व कार्याशालाओं का समय पर आयोजन व निदेशालय में कार्यरत सभी अधिकारियों व कर्मचारियों के आपसी सहयोग और मेलमिलाप के साथ राजभाषा कार्यान्वयन संबंधी गतिविधियां निरंतर प्रगत्ति की ओर अग्रसर हो रही हैं।

10. INSTITUTIONAL ACTIVITIES

10. संस्थागत गतिविधियां

Celebration of Republic Day

ICAR-Directorate of Mushroom Research, Solan celebrated 75th Republic Day on 26th Jan., 2024. Dr V.P. Sharma, Director highlighted the achievements of the Directorate and called upon all the staff members to contribute maximum to take the mushroom industry to new heights in the country (Fig. 10.1).

गणतंत्र दिवस समारोह का आयोजन

आईसीएआर—खुम्ब अनुसंधान निदेशालय, सोलन ने 26 जनवरी, 2024 को 75वां गणतंत्र दिवस मनाया। डॉ. वी.पी. शर्मा, निदेशक ने निदेशालय की उपलब्धियों पर प्रकाश डाला और सभी कर्मचारियों से देश में खुम्ब उद्योग को नई ऊंचाइयों पर ले जाने के लिए अधिकतम योगदान देने का आह्वान किया (चित्र 10.1)।

Fig. 10.1. Celebration of 75th Republic Day at ICAR-DMR, Solan चित्र 10.1. आईसीएआर—डीएमआर, सोलन में 75वें गणतंत्र दिवस का जश्न

National Science Day celebration

38th National Science Day was observed on 28th Feb., 2024 at ICAR-DMR, Solan in which all the staff members of the Directorate along with students from St. Lukes School, Solan (H.P.) actively participated. The theme of the National Science Day was *Indigenous technologies for viksit Bharat*. A small exhibition was also arranged in which the different technologies and mushroom products were displayed on this day for creating awareness about cultivation and utilization of mushroom (Fig.10.2).

राष्ट्रीय विज्ञान दिवस समारोह

28 फरवरी, 2024 को आईसीएआर—डीएमआर, सोलन में 38वां राष्ट्रीय विज्ञान दिवस मनाया गया, जिसमें निदेशालय के सभी स्टाफ सदस्यों के साथ—साथ सेंट ल्यूक्स स्कूल, सोलन (एच.पी.) के छात्रों ने सक्रिय रूप से भाग लिया। राष्ट्रीय विज्ञान दिवस का विषय विकसित भारत के लिए स्वदेशी तकनीक था। इस दिन खुम्ब की खेती और उपयोग के बारे में जागरूकता पैदा करने के लिए एक छोटी प्रदर्शनी भी आयोजित की गई जिसमें विभिन्न तकनीकों और खुम्ब उत्पादों को प्रदर्शित किया गया (चित्र.10.2)।

Fig. 10.2. Celebration of 38th National Science Day चित्र 10.2. 38वें राष्ट्रीय विज्ञान दिवस का उत्सव

Institute Research Council (IRC) meeting

The Institute Research Council (IRC) meetings of the Directorate were organized on 24th April, 2024, 21st & 22nd May, 2024, 8th July, 2024 and 31st July, 2024 in which the new and on-going research projects were discussed in detail and finalized the technical programme for the year.

Visit of Secretary DARE & DG, ICAR

Dr Himanshu Pathak, Hon'ble Secretary DARE (Gol) & DG, ICAR, New Delhi visited ICAR-DMR, Solan (H.P.) on 26th April, 2024 to review various research and other developmental activities of the Directorate. He was accompanied by Dr Sudhakar Pandey, ADG (Hort.). Apart from visit to different laboratories, the spawn and mushroom cultivation units were shown to the dignitaries (Fig. 10.3).

Research Advisory Committee meeting

The Research Advisory committee meeting of the Directorate was held on 27th May, 2024. The Chairman, Dr Vijay Singh Thakur and members Dr V.B. Patel, ADG (Hort.), Dr K.P.Singh, Dr B.M. Sharma, Dr C.D. Thapa along with Sh. Dharmendra Rana, Dr V.P. Sharma and

संस्थान अनुसंघान परिषद (आईआरसी) की बैठक

निदेशालय की संस्थान अनुसंधान परिषद (आईआरसी) की बैठकें 24 अप्रैल, 2024, 21 और 22 मई, 2024, 8 जुलाई, 2024 और 31 जुलाई, 2024 को आयोजित की गई, जिसमें नई और चल रही अनुसंधान परियोजनाओं पर विस्तार से चर्चा की गई और वर्ष के लिए तकनीकी कार्यक्रम को अंतिम रूप दिया गया।

सचिव डेयर एवं महानिदेशक, आईसीएआर का दौरा

डॉ. हिमांशु पाठक, माननीय सचिव डेयर (भारत सरकार) और महानिदेशक, आईसीएआर, नई दिल्ली ने निदेशालय के विभिन्न अनुसंधान और अन्य विकासात्मक गतिविधियों की समीक्षा करने के लिए 26 अप्रैल, 2024 को आईसीएआर—डीएमआर, सोलन (एच.पी.) का दौरा किया। उनके साथ एडीजी (बागवानी) डॉ. सुधाकर पांडे भी थे। विभिन्न प्रयोगशालाओं के दौरे के अलावा, गणमान्य व्यक्तियों को स्पॉन और खुम्ब खेती इकाइयां दिखाई गईं (चित्र 10.3)।

अनुसंघान सलाहकार समिति की बैठक

निदेशालय की अनुसंधान सलाहकार समिति की बैठक 27 मई, 2024 को आयोजित की गई। अध्यक्ष डॉ. विजय सिंह ठाकुर और सदस्य डॉ. वी.बी. पटेल, एडीजी (बागवानी), डॉ. के. पी.सिंह, डॉ. बी.एम. शर्मा, डॉ. सी.डी. थापा के साथ श्री. धर्मेन्द्र

Fig. 10.3. Visit of Dr Himanshu Pathak, Secretary DARE & DG, ICAR चित्र 10.3. डॉ. हिमांशु पाठक, सचिव डेयर एवं महानिदेशक, आईसीएआर का दौरा

all scientists of the Directorate attended RAC meeting (Fig.10.4). Apart from presentation on action taken report on the last year's recommendations by Dr V.P. Sharma, all the scientists presented the salient achievements of their ongoing research projects. The progress of all the research projects was reviewed very

राणा, डॉ. वी.पी. शर्मा और निदेशालय के सभी वैज्ञानिकों ने आरएसी बैठक में भाग लिया (चित्र.10.4)। डॉ. वी.पी. शर्मा द्वारा पिछले वर्ष की सिफारिशों पर की गई कार्रवाई रिपोर्ट की प्रस्तुति के अलावा सभी वैज्ञानिकों ने चल रही अनुसंधान परियोजनाओं की प्रमुख उपलब्धियों को प्रस्तुत किया। आरएसी द्वारा सभी

Fig. 10.4. Members of Research Advisory Committee (RAC) visiting the Directorate चित्र 10.4. अनुसंधान सलाहकार समिति (आरएसी) के सदस्य निदेशालय का दौरा करते हुए

critically by RAC and road map for the next year research activities was finalized along with different recommendations.

Foundation Day of ICAR-DMR, Solan and International Yoga Day

ICAR-DMR, Solan celebrated its 42nd Foundation Day on 21st June, 2024. Dr V.P. Sharma complemented the contribution of all the staff members to accomplish various research and developmental activities related to mushroom because of which the total mushroom production of India has increased about three times during last couple of years (Fig. 10.5). On this day 10th International Yoga Day was also observed where all the staff members actively participated and performed various yogasanas. Sh Yogesh Sharma from Art of Living demonstrated yogasanas and it was stressed upon that for keeping ourselves fit with a sound mental and physical health yoga must be made an integral part of our day to day life.

अनुसंधान परियोजनाओं की प्रगति की बहुत गंभीरता से समीक्षा की गई और विभिन्न सिफारिशों के साथ अगले वर्ष की अनुसंधान गतिविधियों के लिए रोड मैप को अंतिम रूप दिया गया।

आईसीएआर—डीएमआर, सोलन का स्थापना दिवस और अंतर्राष्ट्रीय योग दिवस

आईसीएआर—डीएमआर, सोलन ने 21 जून, 2024 को अपना 42वां स्थापना दिवस मनाया। डॉ. वी.पी. शर्मा ने खुम्ब से संबंधित विभिन्न अनुसंधान और विकासात्मक गतिविधियों को पूरा करने के लिए सभी स्टाफ सदस्यों के योगदान की सराहना की, जिसके कारण पिछले कुछ वर्षों के दौरान भारत का कुल खुम्ब उत्पादन लगभग तीन गुना बढ़ गया है (चित्र 10.5)। इस दिन 10वां अंतर्राष्ट्रीय योग दिवस भी मनाया गया जहां सभी स्टाफ सदस्यों ने सक्रिय रूप से भाग लिया और विभिन्न योगासन किए। आर्ट ऑफ लिविंग के श्री योगेश शर्मा ने योगासनों का प्रदर्शन किया और इस बात पर जोर दिया गया कि स्वस्थ मानसिक और शारीरिक स्वास्थ्य के साथ खुद को फिट रखने के लिए योग को हमारे दैनिक जीवन का अभिन्न अंग बनाना चाहिए।

Fig. 10.5. Celebration of 42nd Foundation Day of the Directorate चित्र 10.5. निदेशालय के 42वें स्थापना दिवस का उत्सव

AICRP-Mushroom workshop

XXVI workshop of All India Coordinated Research Project on Mushroom (AICRP-Mushroom) was held at ICAR-Indian Institute of Horticultural Research Bengaluru on 13-14 June 2024 (Fig. 10.6). A total of 100 scientists, farmers and industry people attended the workshop. The workshop was inaugurated by Dr. Sanjay Kumar Singh, Deputy Director General (HS), ICAR, New Delhi and Dr. T.K. Behera, Director, IIHR, Bengaluru was the Guest of Honour. Dr. R.P. Tewari, Former Director, ICAR-DMR, Solan and Dr. Meera Pandey, Retd. Principal Scientist, IIHR, Bengaluru were Special Invitees during the two days deliberations.

एआईसीआरपी-खुम्ब कार्यशाला

खुम्ब पर अखिल भारतीय समन्वित अनुसंधान परियोजना (एआईसीआरपी—खुम्ब) की 26वीं कार्यशाला 13—14 जून 2024 को आईसीएआर—भारतीय बागवानी अनुसंधान संस्थान बेंगलुरु में आयोजित की गई (चित्र 10.6)। कार्यशाला में कुल 100 वैज्ञानिक, किसान और उद्योग जगत के लोग शामिल हुए। कार्यशाला का उद्घाटन डॉ. संजय कुमार सिंह, उप महानिदेशक (एचएस), आईसीएआर, नई दिल्ली ने किया और डॉ. टी.के. बेहरा, निदेशक, आईआईएचआर, बेंगलुरु सम्मानित अतिथि थे। दो दिवसीय विचार—विमर्श के दौरान डॉ. आर.पी. तिवारी, पूर्व निदेशक, आईसीएआर—डीएमआर, सोलन और डॉ. मीरा पांडे, सेवानिवृत्त, प्रधान वैज्ञानिक, आईआईएचआर, बेंगलुरु विशेष आमंत्रित सदस्य थे।

Fig. 10.6. Inauguration of 26th Annual Workshop of AICRP Mushroom at ICAR-IIHR, Bengaluru चित्र 10.6. आईसीएआर—आईआईएचआर, बेंगलुरु में एआईसीआरपी खुम्ब की 26वीं वार्षिक कार्यशाला का उद्घाटन

ICAR Foudation Day

ICAR-DMR, Solan participated in 96th Foundation Day of ICAR w.e.f. 15-17 July, 2024 in which the live specimen and value added products were displayed. Hon'ble Agriculture Minister Sh. Shivraj Singh Chauhan released cultivation technologies of Shiitake and Milky mushroom during this event (Fig. 10.7).

Celebration of Independence Day

78th Independence Day of the country was celebrated at ICAR-DMR, Solan on 15th Aug., 2024. Dr V.P. Sharma, Director addressed all the staff members of the Directorate on this National festival (Fig. 10.8).

आईसीएआर स्थापना दिवस

आईसीएआर—डीएमआर, सोलन ने 15—17 जुलाई, 2024 के दौरान आईसीएआर के 96वें स्थापना दिवस में भाग लिया जिसमें सजीव नमूने और मूल्य वर्धित उत्पाद प्रदर्शित किये गये। इस कार्यक्रम के दौरान माननीय कृषि मंत्री श्री शिवराज सिंह चौहान ने शिटाके और मिल्की खुम्ब की खेती की तकनीक जारी की (चित्र 10.7)।

स्वतंत्रता दिवस का जश्न

15 अगस्त, 2024 को आईसीएआर—डीएमआर, सोलन में देश का 78वां स्वतंत्रता दिवस मनाया गया। डॉ. वी.पी. शर्मा, निदेशक ने इस राष्ट्रीय उत्सव पर निदेशालय के सभी स्टाफ सदस्यों को संबोधित किया (चित्र 10.8)। उन्होंने अपने संबोधन

Fig. 10.7. Sh. Shivaraj Singh Chauhan, Hon'ble Agriculture Minister releasing the technologies on shiitake and milky mushroom

चित्र 10.7. माननीय कृषि मंत्री श्री शिवराज सिंह चौहान शिटाके और दूधिया खुम्ब पर प्रौद्योगिकियों का विमोचन करते हुए

He highlighted the achievements of the Directorate in his address and called upon all the staff members to contribute immensely to fulfill the demand and expectations of the stakeholders across the country. में निदेशालय की उपलब्धियों पर प्रकाश डाला और सभी कर्मचारियों से देश भर के हितधारकों की मांग और अपेक्षाओं को पूरा करने के लिए महत्वपूर्ण योगदान देने का आह्वान किया।

Fig. 10.8. Celebration of 78th Independence Day at ICAR-DMR, Solan चित्र 10.8. आईसीएआर—डीएमआर, सोलन में 78वें स्वतंत्रता दिवस का जश्न

Parthenium awareness week

For creating awareness about the harmful effects of obnoxious weed amongst the staff members, trainees and villages under MGMG, *Parthenium Awareness Week* was observed w.e.f. 16-22 Aug., 2024 at ICAR-DMR, Solan. A number of programmes were organized during this week where all the staff members and visitors/trainees as well as nearby villagers were made aware of the parthenium as it is very hardy weed plant and can survive in water logged as well as dry areas causing a number of ailments including allergy in human beings. All were requested to eradicate the weed with roots on community basis from the fields, roads and grasslands before its flowering (Fig. 10.9).

पार्थेनियम जागरूकता सप्ताह

स्टाफ सदस्यों, प्रशिक्षुओं और एमजीएमजी के तहत गांवों के बीच अप्रिय खरपतवार के हानिकारक प्रभावों के बारे में जागरूकता पैदा करने के लिए 16—22 अगस्त, 2024 को आईसीएआर—डीएमआर, सोलन में पार्थेनियम जागरूकता सप्ताह मनाया गया। इस सप्ताह के दौरान कई कार्यक्रम आयोजित किए गए, जहां सभी स्टाफ सदस्यों और आगंतुकों / प्रशिक्षुओं के साथ—साथ आस—पास के ग्रामीणों को पार्थेनियम के बारे में जागरूक किया गया क्योंकि यह बहुत ही कठोर खरपतवार पौधा है और जल जमाव के साथ—साथ शुष्क क्षेत्रों में भी जीवित रह सकता है और मनुष्यों में एलर्जी सहित कई बीमारियों का कारण बन सकता है। सभी से अनुरोध किया गया कि वे फूल आने से पहले खेतों, सड़कों और घास के मैदानों से सामुदायिक आधार पर खरपतवार को जड सहित नष्ट कर दें (चित्र 10.9)।

Fig. 10.9. Eradication of parthenium from the premises of ICAR-DMR, Solan चित्र 10.9. आईसीएआर-डीएमआर, सोलन के परिसर से पार्थेनियम का उन्मूलन

National Mushroom Mela

ICAR-DMR, Solan organized 27th National Mushroom Mela on 10th Sept., 2024. It was inaugurated by Sh. Shiv Pratap Shukla, Hon'able Governor, Himachal Pradesh. Prof. Rajeshwar Singh Chandel, Hon'able Vice Chancellor, UHF, Nauni, Solan

राष्ट्रीय खुम्ब मेला

आईसीएआर—डीएमआर, सोलन ने 10 सितंबर, 2024 को 27वें राष्ट्रीय खुम्ब मेले का आयोजन किया। इसका उद्घाटन श्री शिव प्रताप शुक्ला, माननीय राज्यपाल, हिमाचल प्रदेश द्वारा किया गया। प्रोफेसर राजेश्वर सिंह चंदेल, माननीय कुलपति, यूएचएफ, नौणी, सोलन और डॉ. संजय कुमार सिंह, डीडीजी

and Dr Sanjay Kumar Singh, DDG (Hort. Sci.) attended as guest of honour. Dr V.P. Sharma, Director, ICAR-DMR, Solan presented the salient achievements of the Directorate. The programme was attended by more than 1050 mushroom growers across the country. Five mushroom growers selected across the country were felicitated with progressive mushroom grower award on this occasion (Fig. 10.10).

(बागवानी विज्ञान) ने सम्मानित अतिथि के रूप में भाग लिया। डॉ. वी.पी. शर्मा, निदेशक, आईसीएआर—डीएमआर, सोलन ने निदेशालय की मुख्य उपलब्धियों को प्रस्तुत किया। कार्यक्रम में देश भर के 1050 से अधिक खुम्ब उत्पादकों ने भाग लिया। इस अवसर पर देश भर से चयनित पांच खुम्ब उत्पादकों को प्रगतिशील खुम्ब उत्पादक पुरस्कार से सम्मानित किया गया (चित्र 10.10)।

Fig.10.10. Interaction of the Chief guest during 27th National Mushroom Mela चित्र.10.10. 27वें राष्ट्रीय खुम्ब मेले के दौरान मुख्य अतिथि की बातचीत

Hindi Pakhwara

From 16-28 Sept., 2024 Hindi Pakhwara was organized at ICAR-DMR, Solan in which 5 competitions *viz.*, Sulekh, Shrutlekhan, Unicode Hindi typing on computer, Nibandh and translation (Hindi to English and English to Hindi) were conducted for all the staff members of the Directorate for encouraging them to use Hindi language more and more in their day to day official work (Fig. 10.11). The winners of the competitions along with the staff members using maximum Hindi in official work throughout the year were awarded on the closing day (01.10.2024) by Dr V.P. Sharma, Director.

हिंदी पखवाडा

16—28 सितंबर, 2024 तक आईसीएआर—डीएमआर, सोलन में हिंदी पखवाड़ा आयोजित किया गया जिसमें निदेशालय के सभी स्टाफ सदस्यों को अपने दिन—प्रतिदिन के आधिकारिक कार्यों में हिंदी भाषा का अधिक से अधिक उपयोग करने के लिए प्रोत्साहित करने के लिए 5 प्रतियोगिताएं जैसे सुलेख, श्रुतलेखन, कंप्यूटर पर यूनिकोड हिंदी टाइपिंग, निबंध और अनुवाद (हिंदी से अंग्रेजी और अंग्रेजी से हिंदी) आयोजित की गईं (चित्र 10. 11)। समापन दिवस (01.10.2024) को डॉ. वी.पी. शर्मा, निदेशक द्वारा प्रतियोगिता के विजेताओं तथा पूरे वर्ष सरकारी कामकाज में अधिकतम हिंदी का प्रयोग करने वाले स्टाफ सदस्यों को पुरस्कृत किया गया।

Fig. 10.11. Inauguration of Hindi Pakhwara at ICAR-DMR, Solan चित्र 10.11. आईसीएआर—डीएमआर, सोलन में हिंदी पखवाड़ा का उद्घाटन

Celebration of Vigilance Awareness Week

The vigilance awareness week was observed at the Directorate w.e.f. 28 Oct. to 3 Nov., 2024 (Fig. 10.12). As per the guidelines from the council the programmes were organized on and off the campus and the report was submitted.

सतर्कता जागरूकता सप्ताह का आयोजन

निदेशालय में 28 अक्टूबर से 3 नवंबर, 2024 तक सतर्कता जागरूकता सप्ताह मनाया गया (चित्र 10.12)। परिषद के दिशानिर्देशों के अनुसार परिसर में और बाहर कार्यक्रम आयोजित किए गए और रिपोर्ट प्रस्तुत की गई।

Fig. 10.12. Observation of vigilance awareness week at ICAR-DMR, Solan चित्र 10.12. आईसीएआर-डीएमआर, सोलन में सतर्कता जागरूकता सप्ताह का अवलोकन

National Kisan Diwas/Mushroom Day

To commemorate the birth anniversary of the late Prime Minister of India and farmer leader Chaudhary Charan Singh, 24th National Kisan Diwas/Mushroom Day was celebrated on 23rd Dec., 2024 at ICAR-DMR, Solan. The programme was attended by more than 200 farmers/farmwomen along with staff members of the Directorate. The theme of the day was *Climate based round the year mushroom production* (Fig. 10.13). Sh. Vinod Thakur, Progressive Mushroom Grower from Chambaghat was felicitated with life time achievement award on this occasion.

राष्ट्रीय किसान दिवस/खुम्ब दिवस

भारत के दिवंगत प्रधान मंत्री और किसान नेता चौधरी चरण सिंह की जयंती मनाने के लिए, 23 दिसंबर, 2024 को आईसीएआर—डीएमआर, सोलन में 24वां राष्ट्रीय किसान दिवस / खुम्ब दिवस मनाया गया। कार्यक्रम में निदेशालय के कर्मचारियों के साथ—साथ 200 से अधिक किसानों / कृषि महिलाओं ने भाग लिया। दिन का विषय जलवायु आधारित वर्ष भर खुम्ब उत्पादन (चित्र 10.13) था। इस अवसर पर चंबाघाट के प्रगतिशील खुम्ब उत्पादक विनोद ठाकुर को लाइफ टाइम अचीवमेंट पुरस्कार से सम्मानित किया गया।

Fig. 10.13. Celebration of National Kisan Diwas at ICAR-DMR, Solan चित्र 10.13. आईसीएआर—डीएमआर, सोलन में राष्ट्रीय किसान दिवस का उत्सव

Swachhata Pakhwada

ICAR-DMR, Solan celebrated Swachhata Pakhwadas w.e.f. 14 Sept.-2 Oct., 2024 and 16-31 December, 2024 (Fig. 10.14). During this period various programmes like Swachhata pledge, sanitation campaign, awareness regarding disposal of waste management, campaign on cleaning of sewerage and water lines, awareness of waste water harvesting for agricultural/horticulture application/kitchen gardens etc. were organized on and off campus.

स्वच्छता पखवाड़ा

आईसीएआर—डीएमआर, सोलन ने 14 सितंबर—2 अक्टूबर, 2024 और 16—31 दिसंबर, 2024 तक स्वच्छता पखवाड़ा मनाया (चित्र 10.14)। इस अवधि के दौरान स्वच्छता शपथ, स्वच्छता अभियान, अपशिष्ट प्रबंधन के निपटान के बारे में जागरूकता, सीवरेज और पानी की लाइनों की सफाई पर अभियान, कृषि/बागवानी अनुप्रयोग/गृह उद्यानों के लिए अपशिष्ट जल संचयन के बारे में जागरूकता आदि जैसे विभिन्न कार्यक्रम परिसर में और बाहर आयोजित किए गए।

Fig.10.14. Staff members doing cleanliness drive under swachhata pakhwara near ICAR-DMR, Solan (H.P.) चित्र.10.14. आईसीएआर—डीएमआर, सोलन (हि.प्र.) के पास स्वच्छता पखवाड़ा के तहत सफाई अभियान चलाते कर्मचारी सदस्य

North Zone ICAR Tournament

ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) contingent participated in Zonal Sports Tournaments (North Zone)-2024 at ICAR-National Dairy Research Institute, Karnal (Haryana) w.e.f. 2–5 February, 2025. The contingent included 17 participants (13 Men & 4 Women). The contingent remained winner in badminton women doubles and runners up in women table tennis doubles. Mrs. Sunila Thakur won gold medal in high jump while Mrs. Shashi Poonam won silver medal in carrom (Fig. 10.15).

उत्तर क्षेत्र आईसीएआर टूर्नामेंट

आईसीएआर—खुम्ब अनुसंधान निदेशालय, चंबाघाट, सोलन (हिमाचल प्रदेश) के दल ने आईसीएआर—राष्ट्रीय डेयरी अनुसंधान संस्थान, करनाल (हरियाणा) में 2—5 फरवरी, 2025 तक जोनल स्पोर्ट्स टूर्नामेंट (उत्तरी क्षेत्र)—2024 में भाग लिया। दल में 17 प्रतिभागी (13 पुरुष और 4 महिलाएँ) शामिल थे। यह दल बैडमिंटन महिला युगल में विजेता और महिला टेबल टेनिस युगल में उपविजेता रहा। श्रीमती सुनीला ठाकुर ने ऊंची कूद में स्वर्ण पदक जीता जबकि श्रीमती शशी पूनम ने कैरम में रजत पदक जीता (चित्र 10.15)।

Fig. 10.15. Winners of different events in ICAR North Zone Sports Tournament चित्र 10.15. आईसीएआर नॉर्थ जोन स्पोर्ट्स टूर्नामेंट में विभिन्न स्पर्धाओं के विजेता

11. TRAINING AND CAPACITY BUILDING

11. प्रशिक्षण और क्षमता निर्माण

- Dr Satish Kumar, Principal Scientist attended online workshop cum training on Intellectual Property Rights and Traditional Knowledge on 2nd May, 2024 organized by ICAR-IIVR, Varanasi (Uttar Pradesh).
- Dr Satish Kumar, Principal Scientist attended online awareness training on different IPRs (patents, copyrights, patent design, trademarks, PPV&FRA and technology transfer) on 13th Sept., 2024 organized by ICAR-IIVR, Varanasi (Uttar Pradesh).
- Mrs Reeta Bhatia, Chief Technical Officer (Library) attended J-Gate@CeRA Regional Training cum Awareness Workshop for Northern Region on 2nd September, 2024 at Sher-e- Kashmir University of Agricultural Sciences and Technology, Kashmir, Srinagar.
- 4. Ms Harnoor Kaur, Administrative Officer attended recapitulation training programme for newly recruited AOs and FAOs at ICAR, New Delhi w.e.f. 3-28 June, 2024.

- 1. डॉ. सतीश कुमार, प्रधान वैज्ञानिक ने 2 मई, 2024 को भाकृअनुप—भारतीय सब्जी अनुसन्धान संस्थान, वाराणसी (उत्तर प्रदेश) द्वारा बौद्धिक संपदा अधिकार और पारंपरिक ज्ञान पर आयोजित ऑनलाइन कार्यशाला सह प्रशिक्षण में भाग लिया।
- 2. डॉ. सतीश कुमार, प्रधान वैज्ञानिक ने 13 सितंबर, 2024 को भाकृअनुप—भारतीय सब्जी अनुसन्धान संस्थान, वाराणसी (उत्तर प्रदेश) द्वारा विभिन्न आईपीआर (पेटेंट, कॉपीराइट, पेटेंट डिजाइन, ट्रेडमार्क, पीपीवी और एफआरए और प्रौद्योगिकी हस्तांतरण) पर आयोजित ऑनलाइन जागरूकता प्रशिक्षण में भाग लिया।
- 3. श्रीमती रीता भाटिया, मुख्य तकनीकी अधिकारी (पुस्तकालय) ने 2 सितंबर, 2024 को शेर—ए—कश्मीर कृषि विज्ञान और प्रौद्योगिकी विश्वविद्यालय, कश्मीर, श्रीनगर में उत्तरी क्षेत्र के लिए जे—गेट / सीईआरए क्षेत्रीय प्रशिक्षण सह जागरूकता कार्यशाला में भाग लिया।
- 4. सुश्री हरनूर कौर, प्रशासनिक अधिकारी ने 3–28 जून, 2024 तक भारतीय कृषि अनुसन्धान परिषद्, नई दिल्ली में नव नियुक्त प्रशासनिक अधिकारी और वित्त एवं लेखाधिकारी के लिए पुनर्पूंजीकरण प्रशिक्षण कार्यक्रम में भाग लिया।

12. DISTINGUISHED VISITORS

12. विशिष्ट आशंतुक

A number of visitors visited ICAR-Directorate of Mushroom Research, Solan (H.P.) during 2024 and the distinguished ones are as:

2024 के दौरान कई आगंतुकों ने आईसीएआर—खुम्ब अनुसंधान निदेशालय, सोलन (हि.प्र.) का दौरा किया और उनमें से प्रमुख लोग इस प्रकार हैं:

S.No. क्र.सं.	Name and address नाम एवं पता	Date of visit to ICAR-DMR, Solan आईसीएआर—डीएमआर, सोलन के दौरे की तिथि
1.	Dr. Himanshu Pathak, Hon'ble Secretary DARE, Gol and Director General, ICAR, New Delhi डॉ. हिमांशु पाठक, माननीय सचिव डेयर, भारत सरकार और महानिदेशक, आईसीएआर, नई दिल्ली	26.04.2024
2.	Dr Vijay Singh ThakurFormer Vice Chancellor, UHF, Nauni, Solan and Chairman RAC डॉ विजय सिंह ठाकुर पूर्व कुलपति, यूएचएफ, नौणी, सोलन और अध्यक्ष आरएसी	27.05.2024
3.	Dr. Sudhakar Pandey, ADG (Hort.), ICAR, New Delhi डॉ. सुधाकर पांडे, एडीजी (बागवानी), आईसीएआर, नई दिल्ली	27.05.2024
4.	Sh. Kanwal Singh Chauhan, Member GB, ICAR, New Delhi श्री कंवल सिंह चौहान, सदस्य जीबी, आईसीएआर, नई दिल्ली	26.07.2024
5.	Sh. Shiv Pratap Shukla, Hon'ble Governor of Himachal Pradesh श्री शिव प्रताप शुक्ला, हिमाचल प्रदेश के माननीय राज्यपाल	10.09.2024
6.	Dr Sanjay Kumar Singh, DDG (HS), ICAR, New Delhi डॉ. संजय कुमार सिंह, डीडीजी (एचएस), आईसीएआर, नई दिल्ली	10.09.2024

13. ICAR-DMR, SOLAN IN PRESS

13. प्रेस में आईशीएआए-डीएमआए, शोलन

भारकर खास • देश में पहली ऐसी मशरूम तैयार होगी जिसमें चिकन-मटन जैसा स्वाद मिलेगा डीएमआर के वैज्ञानिक तैयार कर रहे हैं ऐसा शाकाहारी मशरूम जो देगा नॉनवेज का स्वाद, पोषकतत्व भी भरपूर

पवन ठाकुर | सोलन

लोग अब मशरूम से भी नॉनवेज यानी चिकन-मटन जैसा स्वाद ले सकेंगे। हिमाचल प्रदेश के सोलन स्थित डायरेक्टरेट ऑफ मशरूम रिसर्च (डीएमआर) के वैज्ञानिक एक ऐसी मशरूम ईजाद करने पर शोध कर रहे हैं जिसका स्वाद नॉनवेज की तरह होगा, लेकिन मशरूम शाकाहारी होगी। जल्द ही इस शोध में कामयाबी मिलने की उम्मीद है। इसके बाद यह मशरूम बाजार में लोगों को उपलब्ध होगी।

देश में यह अपनी तरह की पहली मशरूम प्रजाति होगी। वैज्ञानिकों का मात्रा में प्रोटीन होगा जबिक फेट

एक लाख रुपए प्रति किलो बिकने वाली मशरूम भी की तैयार

मानना है कि यह मशरूम नॉनवेज न खाने वालों के लिए बेहतर विकल्प होगा। इस मशरूम को वीगनमीट का नाम दिया है। वैज्ञानिकों का दावा है कि इसमें चिकन-मटन से अधिक इस मशरूम को कई तकनीक से

सोलन के डीएमआर में वैज्ञानिकों ने एक लाख रुपए प्रति किलो तक बिकने वाली कीड़ा जड़ी मशरूम भी तैयार करने में सफलता पाई है। आज कई लोग इसकी कमर्शियल खेती कर रहे हैं। इसके अलावा यहां के वैज्ञानिकों को नीम और तुलसी के भूसे पर औषधीय गुणों से भरपूर मशरूम, कैंसर से लड़ने वाली टरकीटेल, 45 दिन में तैयार होने वाली शटाखे मशरूम, याददाश्त को तेज करने वाली हैरोशियम मशरूम समेत अन्य कई मशरूम को तैयार करने में सफलता मिली है।

कम होगा। यह रंग में भी मटन की तरह दिखेगी। इसमें सोडियम और कोलेस्ट्रोल भी कम होगा जोकि े स्वास्थ्य के लिए भी लाभदायक है। तैयार करने पर शोध चल रहा है।

ज्ञानकारी के मुताबिक भारत के साथ अन्य कई देश भी इस मशरूम पर शोध कर रहे हैं। हालांकि संबंधित देशों ने भी इसे तैयार करने की विधि का खलासा नहीं किया है।

इसी तरह डीएमआर की ओर से सफलता मिलने की उम्मीद है।

साझा नहीं की जा रही है। डीएमआर की ओर से पहले भी कई औषधीय गुणों से मशरूम पर शोध किया है। डीएमआर के डायरेक्टर डॉ. वीपी शर्मा ने अनुसार यह देश की पहली ऐसी मशरूम होगी जोकि चिकन-मटन के स्वाद के साथ प्रोटीन से भरपर होगी। यह स्वास्थ्य के लिए भी फायदेमंद होगी। इस पर शोध चल रहा है। सफलता मिलने पर यह नॉनवेज का भी एक विकल्प बन सकता है। डॉ. बृजलाल अत्री और डॉ. अनुराधा श्रीवास्तव की टीम इस पर काम रही है। जल्द ही इसमें

डीएमआर में कृषि अनुसंघान महानिदेशक निरीक्षण करते हुए। संवाद

उत्पादकों को अच्छी किस्म की मश्ररूम खाद उपलब्ध करवाने के दिए निर्देश

सोलन। खुंब अनुसंधान एवं निदेशालय को देश भर के मशरूम उत्पादकों को अच्छी किस्म की खाद उपलब्ध करवाने के निर्देश दिए हैं। यह निर्देश महानिदेशक भारतीय कृषि अनुसंधान परिषद नई दिल्ली डॉ. हिमांशु पाठक ने खुंब निदेशालय के दौरे के दौरान दिए।

उन्होंने निदेशालय की प्रयोगशालाओं और मशरूम उत्पादन का निरीक्षण किया। उन्होंने देश के एकमात्र खंब संस्थान की ओर से विकसित किस्मों एवं प्रौद्यीगिकियों की प्रशंसा करते हुए उत्पादन व उत्पादकता को बढ़ाने पर जोर दिया। उन्होंने कहा कि डीएमआर का महानिदेशक भारतीयं कृषि अनुसंधान ने किया दौरा

खंब उत्पादकों को उच्च गुणवता युक्त स्पॉन उपलब्ध करवाएं ताकि देश का कुल उत्पादन बढ़े और आम आदमी को उपलब्धता हो सके। मशरूम संपूर्ण आहार है। इस मौके पर उन्होंने पौधारोपण किया और सभी अधिकारियों, कर्मचारियों को संबोधित किया। केंद्र के निदेशक डॉ. बेद प्रकाश शर्मा ने खुंब अनुसंधान निदेशालय उपलब्धियों आगामी कार्ययोजनाओं पर प्रस्तृति दी। संवाद

जंगलों में गुच्छी तलाश रहे लोग

संवाद न्युज एजेंसी

जुन्गा (शिमला)। दुनिया की सबसे महंगी सिब्जियों में शुमार गुच्छी की तलाश शुरू हो गई है। ग्रामीण सुबह से घर से निकलकर दिन भर गुच्छी के लिए जंगलों की

खांक छान रहे हैं। जुन्मा के दुर्गा सिंह ठाकुर ने बताया कि गुच्छी के उगने का उचित समय हर वर्ष फाल्गुन से बैशाख माना जाता है। आग से झुलसे जंगल, नमी और घास के बीच गुच्छी मशरूम

यादा उगती है। गुच्छी का वैज्ञानिक नाम मार्किला गुच्छी का वज्ञानक नाम माकला एक्वयूपलेंटा है। प्रदेश के शिमला, चंबा और मनाली के ऊंचाई वाले क्षेत्रों में गुच्छी अधिक मात्रा में उगती है। इसे स्थानीय भाषा में चंज, राँटू, छतरी, चटमोर और खूंगरू कहा

जंगल में उगी दुनिया की सबसे महंगी सब्जी में शुमार गुच्छी।

औषधियों गुणों से है भरपूर हृदय रोगियों के लिए संजीवनी

क्षुत्र ता प्रकाशन गाम माकला एक्युयलेटा है। प्रदेश के शिमला, जमाए हुए हैं। लीग सुबह घर से अंगे में गुच्छी अर्थिक मात्रा में उपती है। इसे स्थानीय भाषा में चेक, रीट्, होती, चटामों और बॉल कहा जाता है। कुछ में स्थानीय भाषा में चेक, रीट, जाते हैं। कई दिनों तक प्रामीण जंगल में मुख्छी को तलाश में उपल जा रहा मुख्छी मशरूम मार्च से मई तक आमृतिक रूप से उपती है। बारिश से पहले आसमानी विजली की तैज किए और बादलों के गड़्याइस्ट में पहले आसमानी विजली की तैज किए जो और बादलों के गड़्याइस्ट में सुच्छी जातों में स्वयं उपती है। स्वयं से अहम बात यह है कि गुच्छी को जंगल में मुख्डी का तता में महं को जंगल के ही उपती है। सबसे अहम बात यह है कि गुच्छी को जंगल से लाकर पर पर सुखाया जाता है। इसके माला पिरोकर पर में टोगी बातों है। सुक्क हो जंगलों के अनुसार पर में टोगी बातों है। सुक्क हो उपती है। इसके मिला पर से से 17 हिंग की जंगल से लाकर पर पर सुखाया जाता है। इसके माला पिरोकर पर में टोगी बातों है। सुक्क हो उपती है। इसके लिए 14 से 17 हिंग की जंगल बहुत कम रह जाता है। उपति के इसके विज पर से से 17 हिंग की जंगल वार के उपार का जंग बहुत कम रह जाता है। इसके माला पिरोकर पर में टोगी बातों है। सुक्क हो उपति है। इसके लिए 14 से 17 हिंग की जंगल बहुत कम रह जाता है। इसके प्रामी पर्छी हो हो की कीम तुम्म उपति है। इसके सिता उपति हो हो हो की कीम तुम उपति है। इसके सिता उपति हो। भारत के अलावा आमीरिका, यूरोप, इटली सिता विज पर पर पर सुच्छी का कराने के लिए पूर दिन अंगलों में डेस

आयरन, विटामिन बी और सी से भरपूर

और सी से भरपूर अगुर्वेद (करोणड़ डॉ. अनु अर्मा ने बताया गुच्छी चमलकारी और ओपधीय गुणों से भरपूर होती हैं। इसमें आयरन, विटामिन बी और सी के अतिरकत अमीना ऐसाड और खनिज तत्व भरपूर माजा में गण् जात हैं। इसमें ला फैट और हाई एंट्री आस्मिडंट्स फाइबर होते हैं। विशेषकर इदय गीगियों के लिए गुच्छी आरुक्त संजीवनी है। पहाड़ों पर प्रकृति के स्पर्श से उनने वाली गुच्छी आरुक्त में वीचालों के लिए गुच्छी आरुक्त में वीचालों के लिए रहस्य हैं। गृच्छियां जंगलों में प्राकृतिक तीर पर उनती है। कुरदत ने न ही इसका बीज बनाया है और न हो उपयुक्त स्थान। उनाने पर हो रहा गोध : निरंशालय खुंब अनुसंभान केंद्र चंबाधाद सोलन में गुच्छी भरारुक्त पर बीजाने हो हारा शोध किया जा। ता है ताकि इसका उत्पादन घर पर ही हो सक्त।

सफलता

जंगलों में उगने वाली और कमरे में तैयार गुच्छी की गुणवत्ता एक समान

शोध सफल: कमरे में भी तैयार होगी गुच्छी

ललित कश्यप

सोलन। अधिक ऊंचाई वाले जंगलों में प्राकृतिक रूप से "उगने वाली गुच्छी अब बंद कमरे में भी तैयार हो सकेगी। खुंब अनुसंधान निदेशालय (डीएमआर) की ओर से पिछले पांच वर्षों से किया जा रहा शोध सफल हो गया है।

निदेशालय का इस वर्ष का यह दूसरा सफल शोध है। प्राकृतिक और कमरे में उगाई गई गुच्छी की गुणवता भी समान है। वहीं अंतिम शोध में गुच्छी (मोर्केला) की बंपर फसल निकली है। जानकारी के अनुसार जंगलों में प्राकृतिक तौर पर गुच्छी उगती है। यही गुच्छी करीब 25 से 30 हजार रुपये तक प्रति किलो के हिसाब से बिक रही है। गुच्छी का निर्यात भी किया जाता है। डिएमआर के विशेषज्ञ डॉ. अनिल

खुंब अनुसंधान निदेशालय ने बंपर फसल की तैयार

कुमार ने बताया कि अभी तक प्रदेश में करीब साढ़े छह हजार फुट से अधिक की ऊंचाई में गुच्छी देवदार, कायल आदि के जंगलों में प्राकृतिक रूप से उगती है। वर्तमान समय में प्रदेश के ऊंचाई वाले इलाकों में उगने वाली बीमारियों से लड़ने में सहायक: गुच्छी में विटामिन डी, सी, के, आयरन, कॉपर, जिंक व फॉस्फोरस अच्छी मात्रा में पाया जाता है। वैज्ञानिकों के अनुसार इसका सेवन गठिया, थायराइड, बोन हेल्थ व मानसिक तनाव को खत्म करने में सहायक होता है। दिल के रोगों व शरीर की चोट को भी जल्द भरने में यह लाभकारी है।

इंडोर में गुच्छी का रहा सफल शोधखुंब अनुसंधान निदेशालय ने वर्ष 2019 से गुच्छी पर शोध शुरू किया था। पहले वर्ष शोध में ज्यादा सफलता हाथ नहीं लगी थी। लेकिन 2020 से शोध में सफलता मिलनी शुरू हो गई थी। इसके बाद अब सफल शोध के साथ इस बार गुच्छी की फसल भी अच्छी आई है। सफलता के लिए वैज्ञानिकों को भी बधाई। -डॉ. वीपी शर्मा, निदेशक प्रशुरूम अनसधान निदेशालयं सोलन।

गुच्छी एकत्र करके ग्रामीण इसे बाजार में बेचकर अपनी वित्तीय स्थिति मजबूत करते हैं। इसे खेतों में उगाना संभव नहीं था, क्योंकि इसका बीज विकस्ति नहीं किया जा सका था। लेकिन अब डीएमआर को इसमें सफलता हाथ लगी है। अंचाई वाले क्षेत्रों से प्राकृतिक गुच्छी के नमूने एकत्रित किए गए। जहां पर प्राकृतिक रूप से गुच्छी तैयार हुई है, उस स्थान से और उसके आसपास से भी कई नमूने लिए। इसके बाद शोध कर इसे तैयार किया गया है। संवाद

मशरूम का अचार, पापड़ बनाना सीखा

संवाद न्यूज एजेंसी

सोलन। नौणी विवि के खाद्य विज्ञान एवं प्रौद्योगिकी विभाग ने तीन प्रशिक्षण शिविरों का आयोजन किया। इसमें 90 किसानों विशेषकर महिलाओं ने भाग लिया।

खाद्य विज्ञान एवं प्रौद्योगिकी विभाग के विभागाध्यक्ष और इस प्रशिक्षण के समन्वयक डॉ. राकेश शर्मा ने बताया की विभाग के वैज्ञानिकों ने नौणी मझगांव और शमरोड़, शामती और डिलमन पंचायतों के किसानों के लिए एक-एक दिवसीय प्रशिक्षण शिविर आयोजित किए। इन शिविरों का विषय मशरूम प्रसंस्करण एवं मूल्यवर्धन किसानों की आय वृद्धि एवं स्वरोजगार रहा।

भारत सरकार ने वन डिस्ट्रिक्ट वन प्रोडक्ट के तहत मशरूम के

नौणी विवि में मरारूम पर आयोजित प्रशिक्षण शिविर में भाग लेते किसान। संबाद

लिए सोलन जिला को चुना है। सोलन को मशरूम के लिए जाना जाता है। मशरूम प्रोटीन, कैल्शियम और विटामिन डी से भरपूर होती है परंतु इसे ज्यादा दिन तक भंडारण में नहीं रखा जा सकता।

प्रतिभागियों को मशरूम के मूल्य वर्धित उत्पाद बनाकर आय के साधन बढ़ाने पर प्रशिक्षित किया गया। शिविरों में वैज्ञानिक डॉ. मनीषा कौशल, डॉ. अनिल वर्मा, डॉ. अभिमन्यु ठाकुर, डॉ. सतीश शर्मा, डॉ. अंशु शर्मा, इंजीनियर अतुल धीमान और अनिल गुप्ता ने किसानों को मशरूम से अचार, मशरूम पाउडर, पाउडर से पापड़, बड़ी, बिस्कुट, इत्यादि तैयार करने की विधि पर प्रशिक्षण दिया।

पहली बार मटन का स्वाद देने वाली मशरूम हो रही तैयार

केंद्रीय मरारुम अनुसंधान केंद्र सोलन के वैज्ञानिक जुटे शोध कार्य में, मीट से बेहद कम होगा फैट

ललित कश्यप

सोलन। मांसाहार से परहेज करने वाले शाकाहारी लोग चिकन-मटन का स्वाद मशरूम से ही ले सकेंगे, जिनके लिए जल्द ही बाजार में ऐसी मशरूम मिलेगी। केंद्रीय मशरूम अनुसंधान केंद्र सोलन के वैज्ञानिक देश की पहली ऐसी मशरूम के शोध कार्य में जुटे हैं, जो चिकन-मटन का स्वाद देगी।

यह मशरूम मांसाहार न खाने वालों के लिए बेहतर विकल्प होगा। इस मशरूम को वेगनमीट का नाम दिया है। वैज्ञानिकों का दावा है कि इसमें

रंग और आकार भी होगा मटन की तरह, वेगनमीट दिया नाम

चिकन-मटन से अधिक मात्रा में प्रोटीन होगा, जबकि फैट कम होगा। यह रंग और आकार में मटन की तरह दिखेगी। इसमें सोडियम और कोलेस्ट्रॉल भी कम होगा, जो स्वास्थ्य के लिए

डीएमआर कई तरह के मशरूम कर चुका तैयार

इससे पहले भी डीएमआर की ओर से एक लाख रुपये प्रति किलो बिकने वाली कीड़ा जड़ी मशरूम, नीम और तुलसी के भूसे पर औषधीय गुणों से भरपूर मशरूम, कैंसर से लड़ने वाली टरकीटेल, 45 दिन में तैयार होने वाली शटाखें, याददारत तेज

करने वाली हैरोशियम मशरूम समेत अन्य कई मशरूम को तैयार करने में सफलता हासिल की है। निदेशालय की ओर से जंगली मशरूमों पर भी शोध किया जा रहा है, जिसमें जंगलों में पाई जाने वाली गुच्छी मशरूम को कमरे में तैयार करने पर भी सफलता हासिल की है।

माइसिलियम समेत अन्य कई तकनीक से तैयार करने पर शोध चल रहा है। खुंब निदेशालय के निदेशक डॉ. वीपी

सही रहेगा। डीएमआर की ओर से मशरूम पर शोध किया जा चुका है।

यह मशरूम अन्य सभी मशरूमों को तैयार करने, स्वाद, रंग और आकार में

अलग होगी। कई अन्य देश भी इस पर कार्य कर रहे हैं। संबंधित देशों ने इसे तैयार करने की विधि का खुलासा

नहीं किया है। इस कारण डीएमआर ने भी इस पर ज्यादा जानकारी साझा नहीं की है। डॉ. वीपी शर्मा ने बताया कि डॉ. बृजलाल अत्री, डॉ. अनुराधा श्रीवास्तव इस पर कार्य कर रही है। संवाद

शर्मा ने बताया कि कुछ लोग मांसाहार सकते हैं। इससे उनका स्वास्थ्य भी

नहीं कर पाते। अब सभी लोग चिकन-मटन का स्वाद मशरूम के रूप में चख

के शौकीन होने के बाद भी इसमें

अधिक फैट के कारण इसका सेवन

एक्सक्लूसिव

नॉर्थ जोन खेलों में बैडमिंटन में रीत् जगदीश ने जीता सिल्वर मेडल

स्टाफ रिपोर्टर-सोलन

भारतीय कृषि अनुसंधान परिषद की उत्तर क्षेत्र जोनल खेल प्रतियोगिता 17-20 जनवरी तक अधियांत्रिकी एवं प्रौद्योगिकी संस्थान, लुधियाना (पंजाब) में आयोजित की गई। इस खेलकृद प्रतियोगिता में खुंब अनुसंधान निदेशालय, चंबाघाट, सोलन के 19 खिलाडियों के खेल दल ने भी ने सिल्वर मेडल हासिल किया। भाग लिया जिसमें 16 पुरूष व 3 महिला वर्ग जेवलियन थ्रो में सुनील महिलाएं शामिल थीं। प्रतियोगिता

में निदेशालय की वॉलीबाल टीम ने आईआई एफएसआर, आईआईएसडब्ल्युआर, देहरादून तथा आईआईपी कानपुर की टीमों को हराकर फाइनल में जगह बनाई। उप-विजेता पुरस्कार के लिए मुकाबला सीपीआरआई, शिमला के साथ हुआ। इसके अलावा मिश्रित डबल बैडिमिंटन प्रतियोगिता में डा. रीतू व डा.जगदीश गोयिंका ठाकुर ने ब्रॉज मेडल जीता।

जंगली मशरूम की सब्जी खाने से बुजुर्ग समेत पांच बच्चों की हालत बिगड़ी, दो मंडी रेफर

खबलेच पंचायत के थ्रिम्बली गांव में एक ही परिवार के हैं सभी लोग

पीएचसी कल्हनी में प्राथमिक खराब हालत वाली दो बिच्चयों को जोनल उपचार से सुधरी 3 की हालत

भास्कर न्यूज गोहर

सिराज क्षेत्र की खबलेच पंचायत के श्रिम्बली गांव में जंगली मशरूम की सब्जी खाने से चार बच्चों समेत एक बुजुर्ग की हालत खराब हो गई। पांचों को पीएचसी कल्हनी में भर्ती किया गया। जहां से प्राथमिक उपचार के बाद नाजुक हालत में दो बच्चों को जोनल अस्पताल मंडी रेफर किया गया है।

जंगली मशरूम की सब्जी का सेवन करने वालों में भदरु राम 72, प्रिया 11, रीता 13, मीनाक्षी 9 और कपिल 5 साल के हैं। बीएमओ बगस्याड डॉ. पुष्प राज ठाकुर ने पुष्टि करते हए बताया कि एक ही परिवार के सभी लोगों का प्राथमिक उपचार करने के बाद अधिक

अस्पताल रेफर कर दिया गया है। पीएसची कलहनी के इंचार्ज डॉ. अभिषेक शर्मा ने बतायां कि दो को मंडी रेफर किया गया है बाकी लोगों की हालत पहले से बेहतर आ गई है। जानकारी के अनुसार श्रिम्बली गांव के एक परिवार ने जंगल से जंगली मशरूम लाए और रात को सब्जी बनाकर इसको खा लिया। रात को परिवार के कुछ लोगों को उल्टी-दस्त शुरू हो गए और कुछ बच्चे सुस्त पड़ गए। सुबह जब इनकी हालत अधिक खराब हुई तो परिजनों ने तुरंत 108 बुलाकर इन्हें पीएचसी कलहनी भर्ती कर दिया। जहां प्राथमिक उपचार के उपरांत दो बच्चियों को अधिक हालत खराब होने पर जोनल अस्पताल मंडी रेफर किया गया। बीएमओ जंजैहली डॉ. पुष्प राज ठाकुर ने बताया कि जंगली उत्पादों की सही जानकारी होने पर ही लोग इनका सेवन करें।

भारत में जल्द उगेगी जापान की इनोकी मशरूम

डीएमआर सोलन के वैज्ञानिक देंगे प्रशिक्षण, मशरूम में एंटी कैंसर और एंटी ट्यूमर प्रॉपर्टीज मौजूद

तोमर ठाकुर 🛮 सोलन

जापान में उगने वाली इनोकी मशरूम अब जल्द ही भारत में भी उगने वाली है। इसके लिए सोलन डीएमआर के वैज्ञानिक आने वाले दिनों में किसानों-बागवानों को प्रशिक्षण देने वाले हैं। इस मशरूम की खासियत है कि इसमें एंटी कैंसर और एंटी ट्यूमर प्रॉपटींज शामिल हैं। यानी यदि इस मशरूम का नियमित रूप से सेवन किया जाए तो इन दोनों गंभीर बीमारियों से बचा जा सकता है। इसके अलावा यह मशरूम इंसानों के इम्यून सिस्टम को भी बढ़ाएगी। मशरूम का प्रयोग सूप, नूडल्स और सब्जी बनाने के तौर पर किया जा सकेगा। सोलन डीएमआर के वैज्ञानिकों की मानें तो यह पूरे भारत देश में आसानी से उग सकती है। इसकी वजह यह है कि इस मशरूम को उगाने के लिए 24 से 25 डिग्री तक का टेंपरेचर होना चाहिए जो कि भारत देश में आसानी से मिल जाता है। हालांकि ऐसा नहीं है कि इनोकी

लाइनमैन मशरूम बढाएगी मेमोरी

वडी लाइनमैन मशरूम एक ऐसी मशरूम है, जिसका सेवन यदि नियमित रूप से किया को बढ़ाता है। इसके लिए 24 से 25 डिग्री तक का टेंपरेचर होना चाहिए। इस मशरूम को उगाने नियमित रूप से किसानो को पशिक्षण दिया जा रहा है। बताया जा रहा है कि यह मशरूम फिलहाल देहरादून में उगाई जाती है और ज्यादा इसे बाहर ही एक्सपोर्ट किया जाता है, जबकि गैनोडमां मशरूम की प्रजाति को उगाने के लिए 32 से 37 डिग्री तक क टेंपरेचर होना चाहिए और इस मशरूम से कई प्रकार के कैप्सूल भी बनाए जाते हैं।

विटामिन डी की कमी को दूर करता है स्प्लिट गिल मशरूम

उधर, प्रदर्शनी में स्पिनट गिल मशरूम को भी बेहतर तरीके से प्रदर्शित किया गया है। यह मशरूम लगभग २४ से ३० डिग्री तक के टेंपरेचर में उगती है। इस मशरूम में जहां विटामिन डी की कमी को दूर करने की पावर है तो वहीं यह मशरूम भी एटी कैंसर और एटी ट्यूमर प्रॉपर्टी से भरपूर है। स्पिट गिल मशरूम मेडिसिन के तौर पर भी इस्तेमाल की जाती है। इसका प्रयोग दो प्रकार से किया जाता है। एक मेडिसिन मशरून, दूसरा एडिशनल मशरून के रूप में।

कीडा-जडी और मिल्की मशरूम ने भी किया सभी को आकर्षित

इसके आलावा प्रदर्शनी में कीड़ा जड़ी मशरूम पर भी सभी की निगाहें टिकी रही। यह वह मशरूम है जिसके दाम सुनकर आप भी दंग रह जाएंगे। इस मशरूम को प्रतिकिलो खरीदने के लिए १ लाख रुपये तक खर्च करने पड़ेंगे। इस मशरूम के सेवन करने से स्टैमिना, एनर्जी व इम्यून सिस्टम बढ़ता है, जबकि मिल्की मशरूम भी जहां एक और मिल्क का प्लेक्ट देती है तो वहीं दूसरी तरफ यह सबसे लंबे यानी ७ दिन तक खराब नहीं होती। यही वजह है कि मिल्की मशरूम को भी लोग खास पसंद करते हैं।

मश्रक्षम का फिलहाल भारत देश के लोग सेवन न कर रहे हों। यह जापान से भारत इंपोर्ट की जा रही है। लगभग 1 हजार से 1500 रुपये प्रति किलो तक इसे बाजार में खरीदा भी जा सकता है. लेकिन फिलहाल अभी इसकी डिमांड कम होने से यह हर जगह उपलब्ध नहीं है। खैर अब इस पूरे मसले पर सोलन डीएमआर लोगों को जागरूक करने में भी जुटे हुए इस बारे में अधिक जानकारी देते इस मशरूम में एंटी कैंसर, एंटी हैं। वहीं दूसरी तरफ डीएमआर फिलहाल यह रिसर्च करने में

लगा हुआ है कि इस मशरूम की बताया कि इनोकी मशरूम के करने से कई प्रकार की बीमारियों हिल को कैसे बढ़ाया जाए। वहीं बहुत फायदे हैं। उन्होंने कहा कि से बचा जा सकता है।

हुए सोलन डीएमआर के मशरूम ट्यूमर प्रॉपर्टीज भी मौजूद हैं। वैज्ञानिक डॉ. मनोज नाथ ने ऐसे में इसका नियमित सेवन

पहली बार चिकन के स्वाद वाली मशरूम तैयार, ट्यूमर में रामबाण

सोमदत्त शर्मा

सोलन। देश में पहली बार चिकन का स्वाद और पोषक तत्वों से भरपर मशरूम तैयार की गई है। मशरूम निदेशालय सोलन ने पहली बार जंगली मशरूम की प्रजाति एटिपोरस सल्पयरस (चिकन ऑफ वुड्स) को तैयार करने में सफलता हासिल की है।

अभी तक यह प्रजाति केवल जंगलों में पाई जाती थी। निदेशालय के वैज्ञानिकों ने इस पर शोध करके इसकी बेहतर किस्म तैयार की है। यह मशरूम ट्यमर में रामबाण का काम करेगी। मशरूम निदेशालय सोलन के वैज्ञानिक डॉ. मनोज ने बताया कि खास बात यह है कि इस मशरूम का स्वाद चिकन जैसा होगा। साथ ही जितने पोषक तत्व चिकन से मिलते हैं, उससे कहीं ज्यादा इस मशरूम में मिलेंगे। हालांकि, इस पर आगामी शोध अभी चल रहा है। इसमें अभी कई और औषधीय महत्व भी पता

मशरूम निदेशालय सोलन ने तैयार की चिकन ऑफ वुड्स मशरूम, कैल्शियम और विटामिन-बी भी होगा भरपूर, 25 डिग्री तक तापमान में होगी तैयार, वैज्ञानिकों ने पाई सफलता

मशरूम निदेशालय के वैज्ञानिकों ने चिकन ऑफ वुड्स मशरूम को तैयार करने में सफलता हासिल की है। इस मशरूम का स्वाद चिकन जैसा होगा, साथ ही इसके खाने से चिकन की तरह की पोषक तत्व शरीर को मिलेंगे। ट्यूमर के लिए यह रामबाण का काम करेगी। शुरुआती दौर में इसके बैग में फ्रूट बॉडी मिली है। इस पर और शोध जारी है।

-डॉ. वीपी शर्मा, निदेशक मशरूम निदेशालय सोलन

कि चिकन ऑफ द वुड्स मशरूम ट्यूमर से लड़ने में सहायक होगी। इसमें

किए जा रहे हैं। वैज्ञानिकों का दावा है पॉलिसेकेराइड है, जो शरीर को ट्यूमर से लड़ने में मदद करता है। इसके लगातार सेवन से ट्यूमर कोशिकाएं

फैलती नहीं। वहीं इसमें पाया जाने वाला एब्रीकोरिक एसिड सूजन को कम करने में मंदद कर सकता है। इसमें कैल्शियम, मैगनीशियम, विटामिन बी-12 और विटामिन डी भी पाया जाता है। एंटीऑक्सीडेंट होने से यह शरीर में समय के साथ बनने वाले फ्री रेडिकल्स नामक रसायनों से होने वाले नुकसान को रोकने में मदद करते हैं। 18 से 25 डिग्री तक होगी तैयारचिकन ऑफ वुड्स मशरूम 18 से 25 डिग्री तापमान में पैदा होगी।

हालांकि इसमें अभी शुरुआती दौर में कुछ बैग में फ्रूट बॉडी मिली है। दावा किया जा रहा है कि इससे पहले यह अमेरिका और यूरोप में पैदा हो रही थी। पहली बार भारत में मशरूम निदेशालय में इसे तैयार करने में सफलता हासिल की है। संवाद

डीएमआर चंबाघाट ने इस वर्ष मशरूम की दो नई किस्में तैयार की

मनमोहन वशिष्ठ 🏶 जागरण

सोलन : सोलन के चंबाघाट स्थित देश का एकमात्र मशरूम अनुसंधान निदेशालय (डीएमआर) हर वर्ष नई तकनीकें विकसित कर रहा है। 2023 में डीएमआर ने मशरूम की तीन किस्में विकसित की थीं, जिनमें बटन मशरूम, मिल्कीवे और पैडी स्ट्रा मशरूम शामिल थीं। इस वर्ष जून में डीएमआर ने दो नई किस्में विकसित कर जारी की हैं। इनमें ढींगरी मशरूम की डीएमआर-395 वैरायटी विकसित की है। कमरे में ढींगरी मशस्त्रम के उत्पादन के समय काम करने वालों को स्वास्थ्य संबंधी परेशानी होती थी. लेकिन डीएमआर ने जो अब नई किस्म विकसित की है, उसमें यह भी अधिक होगी।

डीएमआर सोलन में आयोजित २७वें राष्ट्रीय मशरूम मेले में विभिन्न राज्यों के पांच प्रगतिशील मशरूम उत्पादकों को सम्मानित करते राज्यपाल शिव प्रताप शुक्ल 👁 जागरण

वैरायटी डीएमआर-330 विकसित जिसमें काफी हद तक सफलता मिल सफलता मिल चुकी है।

की, जिसमें पैदावार ज्यादा आती है। गई है। कुछ समय बाद यह मशरूम इसके साथ ही मशरूम को घर-घर भी लोगों को उपलब्ध हो जाएगी। पहुंचाने के लिए भी कई तकनीकें डीएमआर स्थापित होने से लेकर समस्या नहीं आएगी। वहीं, पैदावार विकसित की गई हैं। चिकन आफ गुच्छी मशरूम उत्पादन को लेकर वुड्स के नाम से भी नई मशरूम की शोध करता आ रहा है, लेकिन अब वहीं, शिटाके मशरूम में भी नई नई किस्म पर शोध चल रहा है, कुछ वर्षों से इसमें भी संस्थान को

चिकन आफ वुड्स पर चल रहा शोध, गुच्छी में मिली सफलता

• 2023 में बटन, मिल्कीवे और पैडी स्टा-मशरूम किया था तैयार

बाजार उपलब्ध करवाने के किए जाने चाहिए प्रयास

डीएमआर चंबाघाट में मंगलवार को 27वें राष्ट्रीय मशरूम मेले में पहुंचे राज्यपाल शिव प्रताप शुक्ल ने कहा कि वर्ष 1970 के अंत से देश में मशरूम की खेती शुरू हुई और आज विश्व के 100 से ज्यादा देशों में इसकी खेती हो रही है। देश में 2015 से 2023 के दौरान मशरूम का उत्पादन

1.29 लाख टन से बढ़कर 3.51 लाख टन हो गया है। देश मशरूम उत्पादन में चौथे स्थान पर है। उन्होंने डीएमआर प्रबंधन से कहा कि इस मेले को दो दिन का किया जाए। डीएमआर के निदेशक और उपायुक्त से कहा कि मशरूम सिटी आफ इंडिया को दर्शाते हुए साइन बोर्ड भी लगाएं।

850 से अधिक मशरूम उत्पादकों ने लिया भाग

भारतीय कृषि अनुसंधान परिषद नई दिल्ली के उप महानिदेशक (बागवानी विज्ञान) डा. संजय कुमार सिंह ने निदेशालय द्वारा किए जा रहे कार्यों की सराहना की। कहा कि मशरूम को स्कूलों में मिड-डे मील के रूप में शामिल करने का प्रयास करना होगा। नौणी विश्वविद्यालय के कलपति प्रो

राजेश्वर चंदेल ने नई तकनीकों के निदेशालय की सराहना की। डीएमआर के निदेशक डा. वीपी शर्मा ने कार्यों पर प्रस्तुति दी। मेले में 20 राज्यों से 850 से अधिक मशरूम उत्पादकों ने भाग लिया। मेले में पांच राज्यों के पांच प्रगतिशील मशरूम उत्पादकों को सम्मानित भी किया गया।

राज्यपाल ने 27वें राष्ट्रीय मशरूम मेले का शुभारंभ किया

मशरूम की पैदावार बढ़ाने के लिए वैज्ञानिकों, उत्पादकों, उद्यमियों व उद्योगों का एक मंच पर आने का आह्वान

हिमाचल दस्तक ब्यूरो 🏿 सोलन

राज्यपाल शिव प्रताप शुक्ल ने मंगतावार को सोलन में 27वें राष्ट्रीय मशरूम मेले का शुभारंप करते हुए कहा कि मशरूम की जीवन अवधि बढ़ाने के लिए ज्यादा से ज्यादा शोध करने की जरूरत है। स ज्यादा शांध करन का जरूरत हां मेले में बतौर मुख्यअतिथि पहुंचे राज्यपाल ने इस क्षेत्र को प्रोत्साहित करने और अधिक से अधिक लोगों को इसके साथ जोड़ने की आजश्यकता पर बल दिया। मेले का आयोजन भारतीय कृषि अनुसंधान परिषदः और मशरूम अनुसंधान निदेशालय सोलन द्वारा संयुक्त तौर पर किया जा रहा है। निदेशालय को बधाई देते हुए राज्यपाल ने कहा कि यह मेला वर्ष 1998 से लगातार हर वर्ष आयोजित किया जा रहा है। इसी दिन वर्ष 1997 में सोलन को

भारत में 1970 के अंत में शुरू हुई मशरूम की खेती

राज्यपाल ने कहा कि वर्ष राज्यपाल न कहा कि वर्ष 1970 के अंत में भारत में मशरून की खेती शुरू हुई और आज दुनिया के लगभग 100 देशों में इसकी खेती की जा रही है। भारत में जहां 10 वर्ष में मशरूम का उत्पादन एक लाख टन था वह आज 3.50 लाख टन पहुंच गया है। 3.50 लाख टन पहुंच गया है। उन्होंने कहा कि मशरून उत्होंने कहा कि मशरून उप हैं 1 उन्होंने कहा कि भारून की खेती एक छोटे से कहारे से शुरू कर किसान दो तीन माह के भीतर आय अर्भित कर सकते हैं।

ग्रामीण युवाओं के लिए रोजगार का शानदार जरिया

राज्यपाल ने कहा कि वामीण द्वावाओं के लिए यह रोजनार का शानदार जिरेया है। उन्होंने कहा कि महारून अनुसंधान निर्देशालय सोलन, भारत का एकमात्र संस्थान है, जिसके देशभर में 32 महारून समन्वचयक परियोजना केंद्र हैं। उन्होंने निर्देशालय के वैज्ञानिकों से कहा कि वे कृषि विश्वविद्यालयों और कृषि विज्ञान केंद्रों के माध्यम से महारून की उत्पादन तकनीकों को देश के कोन-कोने तक पहुंचाए।

कीड़ा-जड़ी मशरूम की प्रजाति पर शोध की आवश्यकता

राज्यपाल ने कस कि व्यावसायिक उत्पादन के अलावा जनाती मशरून गुप्छी और फीड़ा-जड़ी मशरून की ऐसी प्रजातिया है जिन पर शोध की आवश्यकता है। उनर गुप्छी और कीड़ा-जड़ी के उत्पादन में वृद्धि सेगी तो इसके अपने वाम जिल सकते हैं। उनरेन किसानों को जानरक करने के किस सम्मर-मृत्य पर मेंगे, सीनाह, प्रशिषण और प्रदर्शनियां,आयोजित करने की आवश्यकता पर भी बल दिया।

बिहार की रेखा कुमारी को प्रगतिशील मशरूम उत्पादक पुरस्कार से किया सम्मानित

राज्यपाल ने असम के अनुज, राज्यपाल न असन के अनुज, नहाराष्ट्र के गणेश, ओडिशा के प्रकाश पंद, बिहार की रेखा कुनारी और केरल के शिने को प्रगतिशील मशरून उत्पादक पुरस्कार से सम्मानित किया। इससे पूर्व मशरूम अनुसंधान निदेशालय सोलन के निदेशक डॉ. वीपी शर्मा ने राज्यपाल का स्वागत किया और राष्ट्रीय मशरूम मेले, मशरूम उत्पादन और निदेशालय की उपलब्धियों उत्पादक अन्य गर्धस्यक्ति के उत्पादक के उत्पादक के से अवगत करनाया। गास्तीय कृषि अनुसंधान परिषद, गई दिल्ली के बागवानी उपमहानिदेशक डॉ. संजय सिंह ने कहा कि निदेशालय ने मशरूम की गई किस्में विकसित की हैं।

ह्मरा विभिन्न प्रकार की किस्में वैज्ञानिकों, उत्पादकों, उद्यमियों और विकसित की हैं। उन्होंने कहा कि उद्योगों को एक मंच पर आकर 27 वर्षों में कई उत्पादकों ने मशरूम अपनाया है। उन्होंने कहा कि इस उत्पादकों ने मशरूम अनुसंघान की खेती को रोजगार के तौर पर लंबे अरसे के दौरान मशरूम निदेशालय सोलन की तकनीक के

मशरूम की पैदावार बढ़ाने के लिए प्रयास करने चाहिएं।

मशरूम उत्पादन की बारीकियों से रू-ब-रू हुए सोलन के 50 छात्र

सोलन । बुधवार को-खुंब अनुसंधान निदेषालय, चंबाघाट, सोलन में 38वां 'राष्ट्रीय विज्ञान दिवस'मनाया गया, जिसमें सोलन स्थित सेंट नुक्स स्कूल के 50 छत्र और छत्राओं के अलावा अरूणाचल प्रदेश के 20 मशरूम प्रशिक्षुओं और निदेशलय के समस्त अधिकारियों तथा कर्मचारियों ने भाग लिया। मुख्य तकनीकी अधिकारी डा. सुशील कुमार ने स्कूली बच्चों को मशरूम उत्पादन कक्षों का भ्रमण करवाया एवं खुंब उगाने संबंधी जानकारी दी गई। प्रदर्शनी के माध्यम से विभिन्न मशरूमों को उगाने व इससे बनने वाले उत्पादों के बारे में वैज्ञानिकों डा. अनिल कुमार व डा. अनुराधा श्रीवास्तव द्वारा विस्तार से बताया गया तथ. बच्चों द्वारा पूछे गए प्रश्नों के उत्तर दिए गए।

शनिवार, २१ सितंबर, २०२४

खुंब अनुसंधान निदेशालय चंबाघाट को उत्कृष्ट अवार्ड से किया सम्मानित

स्टाफ रिपोर्टर-सोलन

ई-संसाधनों के अधिकतम उपयोग अवार्ड ग्रहणे किया।

पर जोर दिया गया, ताकि गुणवत्ता युक्त अनुसंधान किया जा सके। भारतीय कृषि अनुसंधान परिषद् जै-गेट सेरा के सर्वाधिक उपयोग नई दिल्ली दारा जे-गेट सेरा क्षेत्रीय के लिए अवार्ड दिए गए। भारतीय प्रशिक्षण व जागरूकता कार्यक्रम कृषि अनुसंधान परिषद् के उत्तर आयोजित किया गया। शेर-ए- 'भारत स्थित संस्थानों में से खुंब कश्मीर कृषि विज्ञान एवं अनुसंधान निदेशालय चंबाघाट प्रौद्योगिकी विश्वविद्यालय श्रीनगर सोलन के पुस्तकालय को जे-गेट में दो सितंबर को आयोजित डिस्कवरी प्लेटफार्म-2023 पर कार्यक्रम में उत्तर भारत के कृषि सर्वाधिक प्रोफाइल क्रिएशन के अनुसंधान परिषद के संस्थानों तथा लिए उत्कृष्ट अवार्ड दिया गया। कृषि विश्वविद्यालयों के पुस्तकालय पुस्तकालय अध्यक्ष रीता भाटिया ने अध्यक्षों ने भाग लिया। कार्यक्रम में इस कार्यक्रम में भाग लिया व

Annexure - 1 PERSONNEL OF ICAR-DMR, SOLAN

अनुबंध - 1 आईशीपुआर-डीपुमआर, शोलन के कार्मिक

Cadre Strength of Scientific Staff of ICAR-DMR, Solan as on 31-12-2024

31.12.2024 तक भा.कृ.अनु.प.—खुम्ब अनुसन्धान निदेशालय, सोलन के वैज्ञानिक कर्मचारियों का कैडर

Name of the discipline	Pay band and grade pay	Sanctioned strength	Scientist		tist	Sr.Scientist		Principal Scientist			t	Total		
	graue pay		In posi- tion	Vac- ant	Total	In posi- tion	Vac- ant	Total	In posi- tion		Total	In posi- tion		Total
Agricultural Biotechnology	57700-182400 (L-10) 79800-211500 (L-12)	1 Scientist 1 Sr. Scientist	1	-	1	-	1	1	-	-	-	1	1	2
Agricultural Economics	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
Agricultural Entomology	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	_	-	-	-	1	-	1
Agril.Extension	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
Agrl.Engg.(ASPE)	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
Economic botany & PGR	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
Food Technology	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
Fruit Science	144200-218200 (L-14)	1 Pri. Scienti	st -	-	-	-	-	-	1	-	1	1	-	1
Genetics & Plant breeding	57700-182400 (L-10)	2 Scientists	-	2	2	-	-	-	-	-	-	-	2	2
Plant Biochemistry	57700-182400 (L-10)	1 Scientist	1	-	1	-	-	-	-	-	-	1	-	1
Plant Pathology	57700-182400 (L-10) 79800-211500 (L-12) 144200-218200 (L-14)	1 Scientist 3 Sr. Scientist 1 Pri. Scientist	1	-	1	1	2	3	-	1	1	2	3	5
Soil Science	57700-182400 (L-10)	1 Scientist	-	1	1	-	-	-	-	-	-	-	1	1
G.Total		18 posts	8	4	12	1	3	4	1	1	2	10	8	18

CADRE STRENGTH OF TECHNICAL, ADMINISTRATIVE AND SUPPORTING CATEGORY AS ON 31-12-2024

31.12.2024 तक तकनीकी, प्रशासनिक और सहायक संवर्ग का कैडर

SN	Designation	Pay band and Grade Pay	Sanctioned posts	In position posts	Vacant posts	Total			
	TECHNICAL POSTS								
1 2	T-3 T-1	29200-92300 (L-5) 21700-69100 (L-3)	4 8*	3 5	1 2	4 7			
		GRAND TOTAL	12	8	3	11			
ADMINISTRATIVE POSTS									
1 2 3 4 5 6 7 8	Administrative Officer Fin. & A/Cs Officer Private Secretary Asstt.Admn.Officer Assistant Personal Assistant UDC LDC	56100-177500 (L-10) 56100-177500 (L-10) 47600-151100 (L-8) 44900-142400 (L-7) 35400-112400 (L-6) 35400-112400 (L-7) 25500-81100 (L-4) 19900-63200 (L-2)	1 1 1 1 4 2 2	1 1 1 1 3 1 2	- - - - 1 1 -	1 1 1 1 4 2 2 2			
		GRAND TOTAL	14	12	2	14			
		SKILLED SUPPO	ORT STAFF						
1	Skilled Support Staff	18000-56900 (L-1)	5	1	4	5			

^{*}The post of Boiler Attendent is in dying cadre

Staff in position at ICAR-DMR, Solan (H.P.) as on 31.12.2024 31.12.2024 तक आईसीएआर—डीएमआर, सोलन (एच.पी.) में कार्यरत कर्मचारी

Name	Designation	Email ID Official
Scientific staff		
Dr V.P. Sharma	Director	Ved.Sharma@icar.gov.in
Dr B.L.Attri	Principal Scientist	BL.Attri@icar.gov.in
Dr Satish Kumar	Principal Scientist	Satish.Kumar6@icar.gov.in
Dr Shwet Kamal	Principal Scientist	Shwet.Kamal@icar.gov.in
Dr Anil Kumar	Senior Scientist	Anil.Kumar14@icar.gov.in
Dr Anuradha Srivastava	Scientist	Anuradha.Srivastava@icar.gov.in
Dr Reetu	Scientist	reetu@icar.gov.in
Dr Manoj Nath	Scientist	manoj.nath@icar.gov.in
Dr Anarase Dattatray Arjun	Scientist	anarase.arjun@icar.gov.in
Dr Shweta Bijla	Scientist	shweta.bijla@icar.gov.in
Dr Jagdish Goyanka	Scientist	Jagdish.goyanka@icar.gov.in

Name	Designation	Email ID Official					
Administrative staff							
Dr Ashish Dhangar	FAO	Ashish.dhangar@icar.gov.in					
Ms. Harnoor Kaur	АО	harnoor.kaur@icar.gov.in					
Sh. T.D. Sharma	AAO	Tulsi.Sharma@icar.gov.in					
Sh. Bhim Singh	Asstt.	Bhim.Singh1@icar.gov.in					
Smt. Sunila Thakur	Private Secretary	Sunila.Thakur@.icar.gov.in					
Sh. Deep Kumar Thakur	PA	Deep.Thakur@icar.gov.in					
Sh. N.P. Negi	Asstt.	Nawang.Negi@icar.gov.in					
Sh. Satinder Kumar Thakur	Asstt.	Satinder.Thakur@icar.gov.in					
Sh. Dharam Dass	UDC	Dharam.Dass@icar.gov.in					
Smt. Shashi Poonam	UDC	Shashi.Poonam@icar.gov.in					
Sh. Roshan Negi	LDC	Roshan.Negi@icar.gov.in					
Sh. Sanjeev Sharma	LDC	Sanjeev.Sharma2@icar.gov.in					
Technical staff							
Dr Sushil Kumar	сто	Sushil.Kumar@icar.gov.in					
Smt. Reeta Bhatia	сто	Reeta.Bhatia@icar.gov.in					
Smt. Shailja Verma	сто	Shailja.Verma@icar.gov.in					
Sh. Deepak Sharma	то	Deepak.Sharma1@icar.gov.in					
Sh. Ram Lal	ТО	ram.lal@icar.gov.in					
Sh. Jeet Ram	ТО	Jeet.Ram@icar.gov.in					
Sh. Guler Singh Rana	ТО	Guler.Rana@icar.gov.in					
Smt. Meera Devi	Technician (w.e.f. 07.06.2024)	meera.devi1@icar.gov.in					
Skilled supporting staff	Skilled supporting staff						
Sh. Naresh Kumar (upto 31.03.2024)	SSS	naresh.kumar16@icar.gov.in					
Sh. Vinay Sharma	SSS	vinay.sharma@icar.gov.in					

Annexure - 2 STAFF NEWS

अनुबंध - 2

श्टाफ समाचार

Joining

1. Ms. Harnoor Kaur joined as Administrative Officer at this Directorate w.e.f. 22.04.2024 (FN).

MACP

1. Smt. Sunila Thakur, Private Secretary granted Modified Assured Career Progression Scheme in the next higher Pay Level— 9 w.e.f 06.12.2023.

Transfer

1. On promotion Dr. Ashish Dhangar, Finance & Accounts Officer transferred from ICAR-DMR, Solan to ICAR Headquarter w.e.f. 31.12.2024 (AN)

Promotion

- 1. Dr. Anuradha Srivastava, Scientist promoted as Sr. Scientist under CAS w.e.f. 01.01.2023 in Level-12.
- 2. Smt. Meera Devi, SSS promoted as Technician (T-1) under Promotion Quota of 33.3% vacancies in T-1 w.e.f. 07.06.2024 (AN).

कार्यभार ग्रहण

1. सुश्री हरनूर कौर ने इस निदेशालय प्रशासनिक अधिकारी के रूप में दिनांक 22.04.2024 (पूर्वाह्र) को कार्यभार ग्रहण किया।

एमएसीपी

2. श्रीमती. सुनीला ठाकुर, निजी सचिव ने 06.12.2023 से अगले उच्च वेतन स्तर— 9 में संशोधित सुनिश्चित कैरियर प्रगति योजना प्रदान की।

स्थानांतरण

 पदोन्नित पर डॉ. आशीष धनगर, वित्त एवं लेखा अधिकारी को आईसीएआर—डीएमआर, सोलन से 31.12.2024 (अपराह्न) भारतीय कृषि अनुसन्धान परिषद्, मुख्यालय नई दिल्ली में स्थानांतरित किया गया।

पदोन्नति

- डॉ अनुराधा श्रीवास्तव, वैज्ञानिक को CAS के तहत वरिष्ठ वैज्ञानिक के रूप में 01.01.2023 से लेवल-12 में पदोन्नत किया गया।
- 2. श्रीमती. मीरा देवी, एसएसएस को टी—1 में 33.3ः रिक्तियों के प्रमोशन कोटा के तहत तकनीशियन (टी—1) के रूप में 07.06.2024 (अपराह्न) से पदोन्नत किया गया।

Annexure - 3 AWARDS AND RECOGNITIONS

अनुबंध - 3

पुरश्कार और मान्यताएँ

CeRA awarded ICAR -Directorate of Mushroom Research, Solan (Himachal Pradesh)

CeRA awarded ICAR —Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh for "Highest Profile Creation on J-Gate Discovery Platform among ICAR Institutions for Northern Region (2023) in J-Gate@CeRA Regional Training cum Awareness Workshop for Northern Region (Date: 2nd September 2024)" at Sher-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar. This Training cum Awareness Workshop was organized by Informatics Publishing Limited, Bangalore in collaboration with Agricultural Division, Indian Council of Agricultural Research, New Delhi.

सीईआरए द्वारा भाकृअनुप—खुम्ब अनुसंघान निदेशालय, सोलन (हिमाचल प्रदेश) से सम्मानित किया गया

सीईआरए ने शेर-ए-कश्मीर कृषि विज्ञान और प्रौद्योगिकी विश्वविद्यालय, कश्मीर, श्रीनगर में जे-गेट/सीईआरए क्षेत्रीय प्रशिक्षण सह जागरूकता कार्यशाला (दिनांकः 2 सितंबर 2024) में उत्तरी क्षेत्र के लिए आईसीएआर संस्थानों (2023) के बीच जे-गेट डिस्कवरी प्लेटफॉर्म पर जे-गेट डिस्कवरी प्लेटफॉर्म पर उच्चतम प्रोफाइल निर्माण के लिए भाकृअनुप-खुम्ब अनुसंधान निदेशालय, चंबाघाट, सोलन, हिमाचल प्रदेश को सम्मानित किया। यह प्रशिक्षण सह जागरूकता कार्यशाला कृषि प्रभाग, भारतीय कृषि अनुसंधान परिषद, नई दिल्ली के सहयोग से इंफॉर्मेटिक्स पब्लिशिंग लिमिटेड, बैंगलोर द्वारा आयोजित की गई थी।

Annexure - 4 FINANCIAL STATEMENT FOR THE YEAR 2024 (01-01-2024 TO 31-12-2024)

अनुबंध - 4

वर्ष 2024 के लिए वित्तीय विवश्ण (01-01-2024 से 31-12-2024)

S.No.	Heads of Accounts	Allocation 2024	Exp.2024
i	Lands	-	-
ii	Works	89.25	89.25
iii	Equipment	41.40	40.40
iv	Information Technology	5.84	4.21
V	Library	1.11	0.99
vi	Furniture & Fixture	-	-
vii	Vehicles	-	-
viii	Others (SC-SP Equipments)	-	-
	Total Capital Assets	137.60	134.85
i	Establishment Expenses	589.60	562.46
ii	Establishment Charges	-	-
iii	Wages	-	-
iv	O.T.A	-	-
	Total Estt. Charges	589.60	562.46
П	General Revenue	-	-
1	Pension and Other retirement Benefits	109.70	98.21
2	TA domestic/ TA transfer	8.00	6.77
3	Research and Operational expenses	75.17	75.17
4	Administrative expenses	204.05	204.05
5	Misc. Expenses	33.00	32.18
	Total Revenue	424.87	414.15
	NEH	1.25	1.25
	TSP	6.25	4.78
	SCSP	50.00	41.39
	Grand Total (Capital and Revenue)	1209.57	1156.88

S. No.	Head of Account	Allocation	Expenditure
1	DMR-Budget 2024	1209.57	1156.88
2	AICRP Mushroom	535.75	535.75
3	Revenue Receipt	150.00	115.54

Annexure - 5 SALE OF MUSHROOM SPAWN-2024

अनुबंध – 5 श्वुम्ब श्पॉन की बिक्री – 2024

Revenue (Rs.)	0006	12000	42000	21000	30000	27000	33000	24000	36000	21000	24000	33000	312000
No. of trainees participated in spawn training	8	4	14	7	10	6	11	8	12	7	8	11	104
Revenue (Rs.)	1000	0009	Ι	Ι	Ι	0009	200	500	4000	1500	1500	I	21000
Mother spawn (250 g bottle)	2	12	1	Ι	_	12	1	1	8	3	3	_	42
Revenue (Rs.)	315600	525600	1241680	67520	159440	401920	125440	422880	122960	418320	411520	956240	5169120
Total quantity (kg)	3945	6570	15521	844	1993	5024	1568	5286	1537	5229	5144	11953	64614
Hericium (kg)	30	13	13	20	-	2	-	44	1	3	-	-	126
Ganoderma (kg)	25	3	2	105	409	100	200	220	2	Ī	12	200	1338
Shiitake (kg)	104	45	1	1	10	2	121	135	9	114	225	43	805
Milky (kg)	_	_	1	48	352	165	76	100	_	-	10	_	751
Oyster (kg)	2917	6065	15421	583	1213	4519	1103	4747	1454	4429	3536	11700	57687
Button (kg)	869	444	85	88	6	236	8	40	74	683	1361	10	3907
Month	Jan. 24	Feb. 24	Mar. 24	Apr. 24	May 24	Jun. 24	Jul. 24	Aug. 24	Sep. 24	Oct. 24	Nov. 24	Dec. 24	Total

भा.कृ.अनु.प. - खुम्ब अनुसन्धान निदेशालय ICAR-DIRECTORATE OF MUSHROOM RESEARCH CHAMBAGHAT, SOLAN -173213 (H.P)