

ANNUAL REPORT

वार्षिक प्रतिवेदन 2020

भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय

चम्बाघाट, सोलन - 173213 (हि.प्र.) भारत

ICAR-Directorate of Mushroom Research

Chambaghat, Solan-173213 (H.P.), India

ANNUAL REPORT वार्षिक प्रतिवेदन

2020

भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय

चम्बाघाट, सोलन - 173213 (हि.प्र.) भारत

ICAR-Directorate of Mushroom Research

Chambaghat, Solan-173213 (H.P.), India

वार्षिक प्रतिवेदन । Annual Report-2020

भाकृअनुप- खुम्ब अनुसंधान निदेशालय वार्षिक प्रतिवेदन - 2020

सही उद्धरण

भाकृअनुप— खुम्ब अनुसंधान निदेशालय, वार्षिक प्रतिवेदन —2020, भाकृअनुप— खुम्ब अनुसंधान निदेशालय, चम्बाघाट, सोलन , हिमाचल प्रदेश , भारत

द्वारा प्रकाशित

डॉ. वी.पी. शर्मा, निदेशक

संपादकीय मंडल

डॉ. श्वेत कमल, प्रधान वैज्ञानिक डॉ. सुधीर कुमार अन्नेपु, वैज्ञानिक डॉ. अनुपम बड, वैज्ञानिक श्रीमती रीता भाटिया, एसीटीओ

छायांकन

श्रीमती शैलजा वर्मा

प्रकाशन : मई 2021 **मुद्रित प्रतियां** : ऑनलाइन प्रिंटिड

संपर्क

फोन : +91-1792 230451 (O)

230131 (R)

फैक्स : +91-1792 231207

ई-मेल : director.mushroom@icar.gov.in वेबसाईट : https://dmrsolan.icar.gov.in/

डिजाईन व मुद्रण

दत्ता ग्राफिक्स एंड ऑफ्सेट प्रिंटर्स, चम्बाघाट, सोलन

संपर्क : 98163 12929, 85808 40902—3—5 ई—मेल: duttagraphics1@gmail.com

ICAR-Directorate of Mushroom Research Annual Report – 2020

Correct Citation

ICAR-DMR Annual Report 2020, ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India.

Published by

Dr. V.P. Sharma, Director

Editorial Team

Dr. Shwet Kamal, Principal Scientist
Dr. Sudheer Kumar Annepu, Scientist
Dr. Annepu Bork, Scientist

Dr. Anupam Barh, Scientist Ms. Reeta Bhatia, ACTO

Photography:

Mrs. Shailja Verma

Published : May, 2021 Copies printed : Online Printed

Contact

Phone : +91-1792 230451 (O)

230131 (R)

Fax : +91-1792 231207

E-mail: director.mushroom@icar.gov.in **Website**: https://dmrsolan.icar.gov.in/

Designed and printed by

Dutta Graphics & Offset Printer, Chambaghat, Solan

Contact: 98163 12929, 85808 40902-3-5 E-mail: duttagraphics1@gmail.com

विषय सूची / Contents

प्रस्तावना		i-ii	Pre	face	i-ii
कार्यकारी सा	रांश	iii-v	Exc	ecutive Summary	iii-v
1. डीएमआर— प	एक परिचय	1-3	1.	DMR- An Introduction	1-3
2. अनुसंधान उप	पलब्धियां		2.	Research Achievements	
2.1 मशरूम	आनुवंशिक संसाधन	4-10		2.1 Mushroom Genetic Resources	4-10
2.2 फसल र्	नुधार	11-21		2.2 Crop Improvement	11-21
2.3 फसल र	उत्पादन	22-26		2.3 Crop Production	22-26
2.4 फसल र्	मुरक्षा	27-32		2.4 Crop Protection	27-32
2.5 फसलोत्त	ार प्रौद्योगिकी	33-48		2.5 Post-Harvest Technology	33-48
3. प्रौद्योगिकी ह	स्तांतरण	49-88	3.	Transfer of Technology	49-88
4. प्रकाशनों की	सूची	89-91	4.	List of Publications	89-91
5. मशरूम पर	अ.भा.स.अ.प.	92-93	5.	AICRP on Mushrooms	92-93
6. स्वीकृत चल	रही अनुसंधान परियोजनाएं	94-95	6.	Approved On-going Research Projects	94-95
7. राजभाषा का	कार्यान्वयन	96-102	7.	Implementation of Official Language	96-102
8. संस्थागत गरि	तेविधियां	103-111	8.	Institutional Activities	103-111
9. समिति की बै	ोठकें	112-119	9.	Committee Meetings	112-119
10. मानव संसाध	न विकास	120-121	10.	Human Reseource Development	120-121
11. समाचार पत्रों	ं में खु.अनु.नि.	122-124	11.	DMR in Newspapers	122-124
अनुबंध			An	nexures	
I आईसीएआर-	-डीएमआर के कार्मिक	125-128	i.	Personnel of ICAR-DMR	125-128
ii. स्टाफ समाच	ार	129	ii.	Staff news	129
iii.पुरस्कार और	मान्यताएं	130	iii.	Awards and Recognitions	130
•	20 के लिए वित्तीय विवरण	131	iv.	Financial Statement for the FY 2020	131
v. खम्ब स्पॉन व		132	v.	Sale of Mushroom Spawn-2020	132

प्रस्तावना Preface

वर्ष 2020 के दौरान भाकृअनुप.खुम्ब अनुसंधान निदेशालय की उपलिख्यों को प्रस्तुत करना बहुत सम्मान की बात है जो कि दशक का सबसे चुनौतीपूर्ण वर्ष है। प्रतिवेदन खुम्ब पर अनुसंधान की विस्तार गतिविधियों पर जोर देने के साथ निदेशालय की उपलिख्यों की एक झलक देता है। निदेशालय के अनुसंधान गतिविधियां और विकास प्रयासों को मशरूम उत्पादकों और उद्यमियों को लिक्षत कर, संरचित, पिरभाषित और समयबद्ध पिरयोजनाओं से प्रमुख प्रोत्साहन मिला है। महत्वपूर्ण वित्तीय सहायता सवसंस्थान बजट के साथ—साथ बाहरी रूप से वित्त पोषित पिरयोजनाओं से आती है। संस्थान लगातार अपने कार्य क्षेत्र में विविधता लाने का प्रयास करता है। इस संबंध में, भारतीय कृषि अनुसंधान परिषद द्वारा समर्थित संस्थागत परियोजनाओं को शुरू करने के अलावा, बाहरी एजेंसियों के सहयोग से कई विस्तार और प्रशिक्षण गतिविधियों की गई और उन्हें लागू किया गया।

महामारी संबंधी प्रतिबंधों के कारण सभी कठिनाइयों के बावजूद, देश के विभिन्न भौगोलिक क्षेत्रों से जंगली मशरूम जर्मप्लाज्म संसाधन एकत्र किए गए हैं और भारतीय मशरूम जर्मप्लाज्म बैंक में 208 नए जंगली मशरूम के नमूने संग्रहीत किए गए हैं। आनुवंशिक सुधार कार्यक्रम के परिणामस्वरूप प्रमुख खाद्य मशरूम जैसे बटन मशरूम, पराली मशरूम, ढींगरी और विशेष मशरूम जैसे शिटाके और मोर्केला मशरूम में कई उच्च उपज वाले उपभेदों और प्रजनन-पूर्व किरमों का विकास हुआ है। हमने एसएसआरए आईरैप और आईएसएसआर मार्करों का उपयोग करके ए. बाइस्पोरस के लिए आनुवंशिक लिंकेज मानचित्र विकसित किया है। यह सफेद बटन मशरूम के जीनोम संगठन में अंतर्दृष्टि प्रदान करेगा जिसका भारतीय बाजार में बहुत व्यावसायिक महत्व है। ढींगरी मशरूम में, उच्च उपज देने वाला कम बीजाणू पैदा करने वाला स्ट्रेन विकसित किया गया है। 51.16 % की जैविक दक्षता के साथ शिटाके में एक नया हाइब्रिड स्ट्रेन विकसित किया गया था। इसके अलावा, धान के पुआल मशरूम में आणविक स्तर पर होमोकैरियोन और हेटेरोकैरियोन के अंतर के लिए एससीएआर आधारित मार्कर विकसित किए गए हैं। इससे आने वाले दिनों में बेहतर संकरों के विकास के लिए मार्कर असिस्टेड ब्रीडिंग में मदद मिलेगी। भारत के इतिहास में पहली बार, भाकुअनुप दृखुम्ब अनुसंधान निदेशालय, सोलन ने अर्ध प्राकृतिक स्थितियां में मोरचेला मशरूम का उत्पादन करने में सफल रहा है। इस उपलब्धि के परिणामस्वरूप, भारत ने संयुक्त राज्य अमेरिका, चीन और फ्रांस जैसे कुछ देशों की सूची में प्रवेश किया है। मूल्यवर्धन के माध्यम से

It is a matter of great honour to present the accomplishments of ICAR-Directorate of Mushroom Research during the year 2020 which is the most challenging year in the decades. The report gives a glimpse of the activities and achievements of the Directorate with emphasis on the research and extension activities on mushroom. Directorate's Research and Development efforts got major impetus from well structured, well defined and time bound projects targeting the mushroom growers and entrepreneurs. The crucial financial support comes from in-house budget as well as from externally funded projects. The institute constantly strives to diversify its area of action. In this regard, apart from undertaking institutional projects supported by Indian Council of Agricultural Research, a number of extension and training activities in collaboration with external agencies were also conceived and implemented.

Despite of all the difficulties due to the pandemic related restrictions, wild mushroom germplasm resources have been collected from the various geographical regions of the country and 208 new wild mushrooms were added to the Indian mushroom germplasm pool. The well designed genetic improvement programme has resulted in development of several high yielding strains and pre breeding lines in major edible mushrooms viz., Button mushroom, Paddy straw mushroom, Oyster and specialty mushrooms such as Shiitake and Morchella mushrooms. We have developed the genetic linkage map for the Agaricus bisporus using SSR, IRAP and ISSR markers. It will provide the insights into genome organization of white button mushroom which have great commercial significance in Indian market. In oyster mushroom, a high yielding low spore producing strain has been developed. A new hybrid strain in shiitake was developed with biological efficiency of 51.16%. Further, SCAR based markers have been developed for differentiation of homokaryon and heterokaryons at molecular level in paddy straw mushroom. This will help in marker assisted breeding for development of superior hybrids in the coming days. For the first time in the history of India, ICAR-DMR, Solan has succeeded in producing the Morchella mushroom under semi natural conditions. As a result of this achievement, India has entered the list of few countries like USA, China and France. In the direction of doubling the farmers income through value addition,

ANNUAL REPORT

किसानों की आय को दोग्ना करने की दिशा में, कई उत्पाद विकसित किए गए हैं, जैसे मशरूम-सब्जी मिश्रित सुप प्रीमिक्स, मशरूम-सब्जी मिश्रित सॉसध्स्प्रेड मशरूम और मिलेट आधारित कुकीज, मशरूम और बाजरा आधारित न्यूट्रीबार, मशरूम और बाजरा आधारित पास्ता और मशरूम और बाजरा आधारित सेंवई जो कि विटामिन डी और अन्य आवश्यक खनिजों से भरपूर थे। इस महामारी की अवधि के दौरान मशरूम की खेती में तकनीकी ज्ञान का प्रसार करने के लिए निदेशालय ने अपने आउटरीच कार्यक्रमों को नया रूप दिया है। वर्चुअल मोड के माध्यम से कुल 29 प्रशिक्षण कार्यक्रम आयोजित किए गए और 2000 से अधिक किसान और युवा लाभान्वित हुए। मैं अनुसंधान सलाहकार समिति, संस्थान प्रबंधन समिति और अन्य हितधारकों को उनके अमूल्य मार्गदर्शन के लिए अपना हार्दिक धन्यवाद देता हूं। डॉ. त्रिलोचन महापात्र, सचिव (डेयर) और महानिदेशक (आईसीएआर), डॉ. ए.के. सिंह, उप महानिदेशक (एचएस) और डॉ. विक्रमादित्य पांडेय, एडीजी (एचएस-1) को निदेशालय की प्रगति को आगे बढाने में उनके निरंतर प्रोत्साहन और सलाह के लिए धन्यवाद देता हूं। संपादकीय टीम, समय पर संकलन, संपादन और द्विभाषी वार्षिक रिपोर्ट प्रकाशित करने के लिए सराहना की पात्र है। मुझे पूरा विश्वास है कि पूरा डीएमआर परिवार अपनी बौद्धिक क्षमताओं, तकनीकी कोशल, उच्च स्तर की प्रतिबद्धता, ईमानदारी और उत्साह के साथ, समाज की अपेक्षाओं को पूरा करने में सक्षम रहेगा ।

several products have been developed viz., Mushroom-vegetable mixed soup premix, mushroom-vegetable mixed sauce/spread mushrooms and millets based cookies, mushrooms and millets based nutribar, mushrooms and millets based pasta and mushrooms and millets based vermicelli rich in Vitamin D and other essential minerals.

The Directorate has reshaped its outreach programmes to disseminate the technical knowledge in mushroom cultivation during this pandemic period. A total number of 29 training programmes were organized through virtual mode and benefitted more than 2000 farmers and educated youth. I wish to place on record my sincere thanks to the Research Advisory Committee, Institute Management Committee and other stakeholders for their invaluable guidance. My sincere gratitude to Dr. TrilochanMohapatra, Secretary (DARE) & DG (ICAR), Dr. A.K. Singh, DDG (HS) and Dr. VikramadityaPandey, ADG (HS-I) for their constant encouragement and advise in carrying forward the progress of the Directorate. The editorial team deserves appreciations for the timely compilation, editing and bringing out the bilingual annual report. I sincerely believe that with the intellectual capabilities, technical skills, high degree of commitment, sincerity and enthusiasm of the entire DMR family, we will be able to meet the expectations of the society.

> न <u>भ</u> वी.पी. शर्मा V.P. Sharma

कार्यकारी सारांश Executive Summary

वार्षिक रिपोर्ट संस्थान की प्रगति और विकास का दर्पण है। यह प्रगाती न केवल विज्ञान और प्रौद्योगिकी के मामले में है बिल्क इसका लक्षय देश की आर्थिक समृद्धि के रूप में भी है। भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (हि.प्र.) की वार्षिक रिपोर्ट 2020 पेश करना मेरे लिए अविश्वसनीय खुशी की बात है। रिपोर्ट निदेशालय में खुम्ब पर होने वाले अनुसंधान और विस्तार के साथ निदेशालय की उपलब्धियों का भी ब्योरा है। यह निदेशालय देश की विशाल भौगोलिक स्थिति से मशरूम जर्मप्लाज्म के अधिग्रहण और रखरखाव के लिए गंभीर प्रयासों पर ध्यान केंद्रित कर रहा है। वर्तमान वर्ष में विभिन्न राज्यों के वन क्षेत्रों से 208 नए जंगली मशरूम जर्मप्लाज्म संग्रह एकत्र किए गए और 24 शुद्ध ऊतक संस्कृतियों को भाकृअनुप—खुम्ब अनुसंधान निदेशालय के जीन बैंक में संरक्षित किया गया। प्रजनन कार्य बटन, ढिंगरी, पराली, शिटाके और मोर्चेला मशरूम में उच्च उपज देने वाले उपभेदों और संकरों के विकास पर केंद्रित है।

इस वर्ष बटन के तीन संकरों तथा एसएसआई एनबीएस—1—129 (25.64 प्रतिशत) एनबीएस—5—210 (25.13 प्रतिशत) एनबीएस—5—7 (25.57 प्रतिशत) का विकास किया गया जिसमे तीन संकरों की पहचान की गई जिसमें सबसे अधिक जैविक प्रभावशीलता 19.12 प्रतिशत दर्ज की गई। बटन खुम्ब में लिंकेज मानचित्र विकसित किया गया इसमें एसएसआर, आईएसएसआर, मार्करों का उपयोग किया गया। ढींगरी मशरूम में एक जल्द उपज देने वाला संकर और एक स्पोरेलेस संकर को विकसित किया गया। शिटाके मशरूम में, 48 क्रॉस बनाए गए और उपज के लिए 14 का परीक्षण किया गया। क्रॉस L15-85 x L7-31 ने दो फ्लश में 51.16 प्रतिशत की जैविक दक्षता दी जो कि थी नियंत्रण की तुलना में ज्यादा थी। पुआल मशरूम में SCAR आधारित मार्करों को बेहतर संकर विकसित करने के लिए और आणविक स्तर पर होमोकैरियोन और हेटेरोकैरियोन को अलग करने के लिए विकसित किया गया था।

मोर्केला मशरूम के तीन जर्मप्लाज्म को उनकी रूपात्मक विशेषताओं और आईटीएस प्राइमर 1 और 4 का उपयोग करके आंतरिक ट्रांसक्राइब्ड स्पेसर (आईटीएस) प्रोफाइलिंग के आधार पर विशेषता दी गई थी। जंगली मशरूम से और एक कोकृत्रिम परिस्थितियों में उत्पादित किया गया था।

Annual report is the mirror of the Institute progress and development. The progress is not only in terms of science and technology but also in form of economic prosperity of country. It is incredible joy for me to introduce yearly report 2020 of the ICAR-Directorate of Mushroom Research, Solan (HP). The report is the rundown of the exercises and accomplishments of the Directorate with accentuation on the research and extensions on mushrooms. This Directorate is focusing and exerting serious efforts for acquiring and maintenance of mushroom germplasm from the vast geographical location of the country. In the present year 208 new wild mushroom germplasm accessions were collected from the forest areas of different states and 24 pure tissue cultures were preserved in the Gene Bank of ICAR-DMR. The breeding work focused on development of high yielding strains and hybrids in button, oyster, paddy straw, shiitake and morchella mushrooms.

In button mushroom, this year three SSIs NBS1-129 (25.64%), NBS5-210 (25.13%) and NBS5-7(24.57) was developed while three promising hybrids were identified H1, H26 and H54 and showed the high biological efficiency (19.12%). In button mushroom linkage map was also developed using SSR, IRAP, ISSR markers. In Oyster mushrooms one early fruiting strain and low spore bearing strain was developed. In shiitake mushroom, 48 crosses were made and 14 were tested for yield. The highest yield was reported for cross L15-85 x L7-31 i.e. 51.16 Biological efficiency from two flushes compared to control. In Paddy straw mushroom SCAR based markers were developed differentiate the homokaryon and heterokaryon at molecular level for developing the superior hybrids.

Three promising germplasms of Morchella mushroom were characterized based on their morphological features and Internal Transcribed Spacer (ITS) profiling using ITS Primer 1 & 4. Among them, one was produced artificial under net house conditions.

In *Morchella* mushroom cultivation trials were conducted under controlled growing conditions using mushroom house and net house conditions to

मोर्केला मशरूम में फल निकायों को प्राप्त करने के लिए मशरूम हाउस और नेट हाउस परिस्थितियों का उपयोग करके नियंत्रित खेती का परीक्षण किया गया था। स्पॉन रन के दौरान, 20—24°C तापमान, 50—55 प्रतिशत मिट्टी की नमी और 80—85 प्रतिशत वायु आर्द्रता सहित पर्यावरणीय परिस्थितियों को बनाए रखा गया था। इसके अतिरिक्त, स्पॉन रन के बाद, बेड का तापमान 20°C से नीचे रखा गया था, मिट्टी की नमी 30—55 प्रतिशत के साथ—साथ सापेक्ष आर्द्रता के स्तर में कोई बदलाव नहीं किया गया था। नियंत्रित मशरूम हाउस और नेट हाउस परिस्थितियों में क्रमशः 18 और 20 दिनों में टेस्ट स्ट्रेन में पूर्ण स्पॉन रन देखा गया। इसके अलावा, नियंत्रित मशरूम हाउस और नेट हाउस स्थितियों के तहत परीक्षण उपभेदों द्वारा पाउडर या शंकुधारी अवस्था तक पहुंचने के लिए क्रमशः 40 और 60 दिनों का समय लगा। नियंत्रित मशरूम हाउस और नेट हाउस लिंग के या वियंत्रित मशरूम हाउस स्थितियों के तहत क्रमशः 10 और 20 दिनों के शंकु चरण के बाद कुशन चरण दर्ज किया गया था।

अन्य प्रयोग में गेहूं के भूसे, पर स्किजोफिलम कम्यून, पैनस वेलुटिप्स और पैनस टीग्रिनस की खेती प्रौद्योगिकियों को मानकीकृत किया गया था। फसल सुरक्षा में एम. पर्निसियोसा के रासायनिक एवं जैविक नियंत्रण पर कार्य किया गया। जैविक नियंत्रण में, बारह बैक्टीरियल आइसोलेटस (BS-1 से 12) को सफेद बटन मशरूम के माइकोस्फीयर से उनके कॉलोनी आकार के आधार पर अलग किया गया था। सभी आइसोलेट्स का मूल्यांकन ए. बाइस्पोरस स्ट्रेन एस-11 और एम. पर्निसियोसा (वेट बबल डिजीज) के खिलाफ ड्यूल कल्चर विधि से किया गया था। उनमें से, बैक्टीरियल आइसोलेट्स BS-3, 5, 8, 9, 10 और 12 को ए. बिस्पोरस स्ट्रेन S-11 के डायमैट्रिक मायसेलियल ग्रोथ को बढाने में प्रभावी पाया गया। रासायनिक उपचार में दो कवकनाशी की प्रभावशीलता, क्रेसोक्सिम मिथाइल (स्ट्रोबिल्रिन) और डिफेनोकोनाजोल (ट्रायजोल) मैंगनीज और मैग्नीशियम का गीले बुलबुले रोग के खिलाफ अध्ययन किया गया और क्रेसोक्सिम मिथाइल (0.4%)+ मैग्नीशियम क्लोराइड (0.2%) और क्रेसोक्सिम मिथाइल (0.4%)+ मैंगनीज क्लोराइड (0.2%) बीमारी के खिलाफ प्रभावी पाया गया।

फसलोत्तर प्रोद्योगिकी में, कटाई उपरांत सफेद बटन मशरूम (एनबीएस—5) और ऑयस्टर मशरूम (प्लुरोटस फ्लोरिडा) भंडारण के दौरान सर्वोत्तम गुणवत्ता पैक्ड पनेट के बाद पॉलीथीलीन बबल रैप पैकेजिंग सामग्री में पाई गई। इसके अलावा मशरूम के दो नए मूल्यवर्धित उत्पादय मशरूम—वेज मिश्रित सूप प्रीमिक्स, मशरूम—वेज मिश्रित सएसध्स्प्रेड मशरूम और बाजरा आधारित

induct the fruit bodies in *Morchella* mushroom. During spawn run, standard set of environmental conditions were maintained including 20-24°C temperature, 50-55 percent soil moisture and 80-85 percent air humidity. Additionally, after spawn run, the bed temperature was kept below 20°C, soil moisture of 30-55 percent along with no change in relative humidity level. Complete spawn run was observed in test strains in 18 and 20 days under controlled mushroom house and net house conditions, respectively. Besides this, 40 and 60 average number of days was taken by the test strains to reach powdery or conidial stage under controlled mushroom house and net house conditions, respectively. Cushion stage was recorded after 10 and 20 days of conidial stage under controlled mushroom house and net house conditions, respectively

In other experiment cultivation technologies of Schizophyllum commune, Panus velutipes and Panus tigrinus using wheat straw, was standardized

In crop protection, Chemical and Biological control of M. perniciosa was worked on. In biological control, twelve bacterial isolates (BS-1 to 12) were isolated from mycosphere of white button mushroom (Agaricus bisporus) on the basis of their colony morphology. All the isolates were evaluated against A. bisporus strain S-11 and M. perniciosa (wet bubble disease) through dual culture method. Among them, bacterial isolates BS-3, 5, 8, 9, 10 and 12 were found effective in enhancing the diametric mycelial growth of A. bisporus strain S-11 over control. In chemical treatment, effectiveness of two fungicides; kresoxim methyl (Strobilurins) and difenoconazole (triazole) manganese and magnesium were studied against wet bubble disease and Kresoxim methyl (0.4%) + magnesium chloride (0.2%) and Kresoxim methyl (0.4%) + manganese chloride (0.2%) was found effective against this disease.

In post-harvest technology, it was found that white button mushroom var. NBS-5 and oyster mushroom (*Pleurotus florida*) packed punnet followed by polyethylene bubble wrap packaging materials showed best quality retention during storage. Moreover two new value added products of mushrooms; Mushroom -Vegetable Mixed Soup Premix, Mushroom -Vegetable Mixed

कुकीज, मशरूम बाजरा आधारित न्यूट्री—बार, मशरूम और बाजरा आधारित पास्ता एवम मशरूम और बाजरा आधारित वर्मीसेली को विकसित किया गया और यह उत्पाद विशेष रूप से खनिज और विटामिन डी में समृद्ध पाए गए।

प्रौद्योगिकी के हस्तांतरण में, 2013 किसानों, उद्यमियों और अधिकारियों के लिए साथ कुल 29 प्रशिक्षण कार्यक्रमों को वर्चुअल और भौतिक मोड में आयोजित किया गया था। वर्चुअल नेशनल मशरूम मेला—2020 में भी हितधारकों की भागीदारी देखी गई। डिजिटल स्क्रीन से अधिकतम दर्शकों तक पहुंचने के लिए और मशरूम की खेती को बढ़ावा देने के लिए प्रौद्योगिकी वृत्तचित्रों और ई—लर्निंग पोर्टल विकसित किया गया था। संस्थान ने राष्ट्रीय विज्ञान दिवस, राष्ट्रीय एकता दिवस, स्वच्छता ही सेवा, और अन्य हिंदी पखवाड़े, सतर्कता जागरूकता सप्ताह आदि का आयोजन किया। निदेशालय में नई बुनियादी सुविधाओं के निर्माण में भी काफी प्रगति हुई है।

इस वार्षिक रिपोर्ट में प्रस्तुत कार्य भाकृअनुप खुअनुनि, सोलन के सभी स्टाफ सदस्यों की कड़ी मेहनत, प्रतिबद्धता और समर्पण का परिणाम है, जिसमें अनुसंधान सलाहकार समिति, संस्थान प्रबंधन समिति और अन्य हितधारक शामिल हैं। मैं ईमानदारी से उनके सहयोग और समर्थन को स्वीकार करता हूं। अंत में, मैं महानिदेशक डॉ. त्रिलोचन महापात्रा, सचिव (डीएआरई) और महानिदेशक (भाकृअनुप) और डॉ. ए के सिंह, उप महानिदेशक (एचएस), और डॉ. वी पांडे, एडीजी (एचएस—आई) भाकृअनुप को अपने मार्गदर्शन और निदेशालय के विभिन्न अनुसंधान एवं विकास गतिविधियों को पूरा करने में निरंतर सहायता के लिए अपना आभार व्यक्त करना चाहूंगा। मैं संपादकीय टीम को समय पर प्रतिवेदन संकलन एवं द्विभाषी प्रकाशन के लिए भी बधाई देता हूं। मुझे पूरा विश्वास है कि बौद्धिक क्षमताओं, तकनीकी कौशल, उच्च स्तर की प्रतिबद्धता, ईमानदारी और पूरे खुअनुनि परिवार के उत्साह के साथ, हम समाज की अपेक्षाओं को पूरा करने में सक्षम होंगे।

Sauce/Spread Mushrooms and Millets based Cookies, Mushrooms and Millets based Nutri-bar, Mushrooms and Millets based Pasta and Mushrooms and Millets based Vermicelli were also developed and found especially rich in Vitamin D and minerals.

In transfer of technology, a total of 29 training programmes with 2013 beneficiaries were conducted virtual and physical mode for farmers, entrepreneurs and officials. Virtual National mushroom *mela*-2020 witnessed the enthusiastic participation of stakeholders. Promotion of mushroom cultivation through technology documentaries and e-learning portal was also developed to reach maximum audience from the digital screen. The institute organized workshops, celebrated national science day, national unity day, swachhta hi seva, and other official activities like Hindi fortnight, vigilance awareness week, *etc.* Much progress has been made in creating new infrastructure facilities at the Directorate.

The work presented in this annual report is the hardwork and commitment and dedication of all the staff members of ICAR-DMR, Solan, with the direction of Research Advisory Committee, Institute Management Committee and other stakeholders. I sincerely acknowledge their cooperation and support. My sincere gratitude to Dr. Trilochan Mohapatra, Secretary (DARE) & DG (ICAR), Dr. A. K. Singh, DDG (HS) and Dr. V Pandey, ADG (HS-I) for their encouragement and advise in carrying forward the progress of the Directorate. The editorial team deserves appreciations for the timely compilation, editing and bringing out the bilingual annual report. I sincerely believe that with the intellectual capabilities, technical skills, high degree of commitment, sincerity and enthusiasm of the entire DMR family, we will be able to meet the expectations of society.

1. खुम्ब अनुसंधान निदेशालय - एक परिचय 1.DMR- An Introduction

कृषि हमारे देश की रीढ़ की हड्डी है। हरित क्रांति ने आवश्यक खाद्य दक्षता प्रदान की लेकिन पोषण की पर्याप्तता अभी भी हासिल करने की आवश्यकता है। जलवायु परिवर्तन के साथ कृषि के लिए भूमि और जल संसाधनों की कमी मौजूदा स्थितियों को विपरीत बना रही है। उपरोक्त सभी चुनौतियों के जवाब में खुम्ब एक महत्वपूर्ण भूमिका निभा रहा है। कृषि अपशिष्ट पुनः चक्रण के लिए पर्यावरण के अनुकूल विकल्प के रूप में मशरूम की खेती और विशाल शाकाहारी आबादी के लिए बेहतर पोषण प्रदान करता है। मशरूम की खेती अन्य फसलों की तुलना में ऊर्ध्वाधर स्थान और कम पानी का उपयोग करती है। यह अपशिष्ट कूड़े से समृद्धि उत्तपन्न करने वाली फसल है। मशरूम की खेती लगातार कृषि आय और रोजगार के अवसर पैदा करके किसानों की आजीविका को मजबूत करती है। भारतीय कृषि अनुसंधान परिषद (ICAR) के तत्वावधान में सोलन (HP) में 1983 में मशरूम के लिए राष्ट्रीय अनुसंधान केंद्र की स्थापना के साथ भारत में मशरूम विज्ञान पर एक व्यवस्थित अनुसंधान के महत्व को पहचानने की पहल की गई है। खुम्ब अनुसंधान में उल्लेखनीय उपलब्धियों के साथ 25 वर्षों के बाद, राष्ट्रीय खुम्ब अनुसंधान केंद्र को 26 दिसंबर, 2008 को खुम्ब अनुसंधान निदेशालय (डीएमआर) के रूप में उन्नत किया गया था। यह निदेशालय देश में केवल मशरूम अनुसंधान और विकास के लिए समर्पित संस्थान है। निदेशालय लगातार देश के लिए विशिष्ट प्रौद्योगिकियों को विकसित करने में लगा हुआ है। प्रौद्योगिकियों के मूल्यांकन के लिए मशरूम पर अखिल भारतीय खुम्ब अनुसंधान परियोजना नेटवर्क विकसित किया गया है, जिसकी शुरुआत वर्ष 1983 में की गई थी जिसका मुख्यालय सोलन है।

स्थान

खुम्ब अनुसंधान निदेशालय हिमाचल प्रदेश के सोलन शहर में स्थित है जो कि हिमाचल प्रदेश का प्रवेशद्वार भी कहलाता है। सोलन शहर के पर्वतीय अजूबे अपनी सांस्कृतिक भव्यता, उत्कृष्ट पिकनिक स्थलों, अति प्राचीन मंदिरों और मौसमी सब्जी फसलों के लिए प्रसिद्ध हैं। औद्योगीकरण होने के कारण, सोलन अपने खुम्ब उत्पादन के लिए काफी लोकप्रिय है और इसे 'भारत का खुम्ब शहर' भी कहा जाता है। खुम्ब अनुसंधान, विकास तथा खुम्ब की खेती और इसे लोकप्रिय बनाने में खुम्ब अनुसंधान निदेशालय द्वारा किए गए प्रयासों और इस शहर के योगदान को मानते हुए हिमाचल प्रदेश के माननीय मुख्यमंत्री ने दिनांक 10 सितम्बर, 1997 को खुम्ब अनुसंधान निदेशालय तथा मशरूम सोसायटी ऑफ

The interest for nutritious food and expanding population of the nation will test our agriculture production system to deliver increasingly more food grains to meet the growing demand. The total available land area sets the limits within which the competing human needs have to be met. Under these conditions, vertical farming is decreasing arable land and changing agricultural scenario, vertical farming is probably going to assume an essential part and mushroom fits very well in this classification. Mushrooms are one such segment that utilizes vertical space as well as addresses various problems associated with traditional agriculture. Mushrooms has acquired significance as of late for two principle reasons, the worldwide move towards vegan food, and acknowledgment of mushroom as a nutritious food. Mushroom development offers an additional benefit to reuse agro-waste as carbon pool in to great quality protein, a lot of which in any case is singed in the field. It is a crop of waste to wealth. The mushroom cultivation also strengthens the livelihood of farmers by generating constant farm income and employment opportunities. On recognizing the importance a systematic research on mushroom research science has been initiated in India with the establishment of National Research Centre for Mushroom in 1983 at Solan (HP) under the aegis of Indian Council of Agricultural Research (ICAR). After 25 years, with remarkable achievements in mushroom research, National Research Centre was upgraded as Directorate of Mushroom Research (DMR) on 26th Dec, 2008. This Directorate is the only institute exclusively dedicated to mushroom research and development in the country. The directorate has continuously engaged in developing region specific technologies for country by the year 2020. The technologies are validated developed through All India Coordinated Research Project network on Mushroom, which was initiated in the year 1983 with its headquarters at Solan.

Location

The Directorate of Mushroom Research is located in Solan city of Himachal Pradesh, considered as the gateway of Himachal Pradesh. The mountainous wonder of Solan city is famous for its cultural splendor, excellent picnic spots, numerous old

इंडिया द्वारा संयुक्त रूप से आयोजित भारतीय खुम्ब सम्मेलन में सोलन शहर को ''भारत का खुम्ब शहर'' घोषित किया।

ब्नियादी स्विधाएं

निदेशालय में 17 आधुनिक पर्यावरण नियंत्रित फसलचक कमरे और चार इंडोर बंकरों तथा चार बल्क चैम्बरों वाली आधुनिक कम्पोस्टिंग इकाइयों के साथ एक पॉलीहाउस की सुविधा स्थापित है। निदेशालय में आधुनिक उपकरणों के साथ जैव प्रौद्योगिकी, जननद्रव्य संरक्षण, खुम्ब बीज उत्पादन, पादप संरक्षण और फसलोत्तर प्रौद्योगिकी के लिए बहु सुसज्जित पांच प्रयोगशालाएं हैं। प्रौद्योगिकी हस्तांतरण (TOT) संभाग में एक ही समय पर 250 से भी अधिक प्रशिक्षुओं की क्षमता वाला अति आधुनिक सुविधाओं से युक्त एक प्रशिक्षण केन्द्र है। खुम्ब अनुसंधान निदेशालय में संबंधित क्षेत्रों में अनुसंधान एवं परामर्शी सेवाओं को सहयोग करने हेतु खुम्ब विज्ञान एवं संबंधित विज्ञान में एक विशिष्टीकृत पुस्तकालय संकलन है। पुस्तकालय में कुल 2173 पुस्तकों, पत्रिकाओं के 2500 पिछले अंकों का संग्रह है। यह भारत में खुम्ब साहित्य हेतु एक अकेला संदर्भ पुस्तकालय है।

कार्मिक एवं वित्त

निदेशालय में कुल 18 वैज्ञानिक, एक निदेशक, 13 तकनीकी, 14 प्रशासनिक और 5 कुशल सहायी स्टाफ की स्वीकृत संख्या है। दिनांक 31.03.2020 के अनुसार स्टाफ की स्थिति के तहत कुल 12 वैज्ञानिक, 12 तकनीकी, 14 प्रशासनिक और 4 कुशल सहायी स्टाफ तैनात है। वर्ष 2020 के लिए निदेशालय का वार्षिक बजट रूपये 866.80 लाख था जिसका कि पूरी तरह से सदुपयोग किया गया। संस्थान द्वारा साहित्य, खुम्ब संवर्धन, व्यावसायिक खुम्ब बीज उत्पादन, ताजा खुम्ब, मूल्य वर्धित उत्पादों, परामर्शी सेवाओं, प्रशिक्षण और अन्य सेवाओं के माध्यम से 116.43 लाख रूपये का राजस्व अर्जित किया गया।

विजन

आर्थिक प्रगति, पारिस्थितिकीय स्थिरता एवं पोषण सुरक्षा के लिए खुम्ब का अनुसंधान एवं विकास करना।

मिशन

खुम्ब की गुणवत्ता और उत्पादकता को बढ़ाने, कृषि अपशिष्टों / अपशिष्ट खुम्ब पोषाधार का उपयोग करने और रोजगार उत्पन्न करने, गरीबी का निवारण करने तथा पोषण सुरक्षा सुनिश्चित करने के लिए सेकंण्डरी कृषि को प्रोत्साहित करने हेतु मूलभूत अनुसंधान करने, खुम्ब विविधता को संरक्षित करने तथा प्रौद्योगिकियों / किस्मों को विकसित करने के लिए अनुसंधान व

temples and seasonal vegetable crops. Being quite industrialized, Solan is widely popular for its mushroom cultivation and bearing the title of "Mushroom City of India". Considering the contribution of this city and endeavour of DMR towards mushroom research, development, cultivation and popularization of mushroom, the Hon'ble Chief Minister of Himachal Pradesh declared Solan as the Mushroom City of India on 10th September, 1997 during the Indian Mushroom Conference organized jointly by the DMR and Mushroom Society of India.

Infrastructure

The Directorate has 17 modern environment controlled cropping rooms and one poly house along with modern composting units comprising of four indoor bunkers and four bulk chambers. The centre has five well equipped laboratories for biotechnology, germplasm conservation, spawn production, plant protection and post harvest technology with modern state of the art equipments. The TOT division has well sophisticated training centre with a capacity to accommodate more than 250 trainees at a time. The Directorate of Mushroom Research has a specialized library collection in mushroom science and related sciences to support research and consultancy in the relevant areas. The library has accessioned 2173 books, 2500 back volumes of journals. This is a sole referral library for mushroom literature in India.

Personnel and finance

The Directorate has a sanctioned strength of 18 scientists + one director, 13 technical, 14 administrative and 5 supporting staff. The staff position as on 31.03.2020 was 12 scientists, 12 technical, 14 administrative and 4 skilled staff. The annual budget of the Directorate for the year 2020 was Rs. 866.80 which was fully utilized. The institute earned Rs. 116.43 lakh as revenue during the year by sale of literature, mushroom cultures, spawn, fresh mushrooms, value added products, consultancy, training and other services.

Vision

Mushroom research and development for economic growth, ecological sustainability and nutritional security.

Mission

R & D to undertake basic research, conserve mushroom diversity, develop technologies/ varieties

ANNUAL REPORT

विकास करना।

अधिदेश

- खाद्य एवम् औषधीय खुम्बों के संग्रहण, सरंक्षण, उपयोग एवम् उत्पादन पर सामरिक और अनुप्रयुक्त अनुसंधान।
- स्पान उत्पादन के लिए हितधारकों को प्रौद्यौगिक के हस्तांतरण एवम उनकी क्षमता निर्माण।
- विशिष्ट प्रौद्योगिकियों के सत्यापन एवम् मूल्यांकन के लिए नेटवर्क अनुसंधान पर अखिल भारतीय समन्वित खुम्ब सुधार योजना (एक्रिप) के माध्यम से समन्वित प्रयास।

to enhance mushroom quality and productivity, utilize agro-wastes / spent mushroom substrates and promote secondary agriculture for generating employment, ameliorating poverty and ensuring nutritional security.

Mandate

- 1. Strategic and applied research on collection, conservation, utilization and production of edible and medicinal mushroom.
- 2. Transfer of Technology and capacity building of stakeholders for spawn production.
- 3. Coordination of network research for validation and evaluation of specific technologies through AICRP on Mushroom to enhance productivity.

2. अनुसंधान उपलिह्याँ Research Achievements

2.1. खुम्ब अनुवांशिक संसाधन

हिमाचल प्रदेश के वन क्षेत्रों में कवकीय सर्वेक्षण का कार्य प्रारंभ किया गया। कुल 208 नमूने एकत्र किए गए और वंश स्तर तक 208 नमूनों की पहचान की गई। सभी नमूनों की जांच करने के पश्चात उन्हें भाकृअनुप — खुम्ब अनुसंधान निदेशालय, सोलन के हर्बेरियम में संरक्षित किया गया। इस प्रकार प्राप्त 24 शुद्ध संवर्धनों को भाकृअनुप — खुम्ब अनुसंधान निदेशालय, सोलन के जीन बैंक में जमा किया गया। कुछ अनूठे नमूनों को उनकी वृहद सूक्ष्मदर्शीय विशेषताओं के साथ फोटो सहित नीचे वर्णित किया गया है!

कैंथरेलस सिबेरियस :

आवास और वितरण

उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र में शंकुधारी वन में मिट्टी पर बिखरे हुए या अकेले पाए जाते हैं।

रूपात्मक विवरण:

पाइलस व्यास में 10 सेमी तक चौड़ा, पीले से नारंगी रंग का, उत्तल से कीप के आकार का और सतह चिपचिपी होती है। लैमेली डिक्ररेंट, फोल्डेड, इंटरवेन्ड, हाइमेनफॉर्म फोल्डेड, संकीर्ण, 1–2 मिमी तक मोटा होता है। स्टाइप 8 सेमी तक लंबा, बराबर, ठोस,

नारंगी रंग का होता है।

Mushroom Genetic Resources

Fungal forays were undertaken in the forest areas of Himachal Pradesh. A total number of 208 specimens were collected and 208 were identified up to the genus level. All the specimens were examined and preserved in the herbarium of ICAR-DMR, Solan. The obtained 24 pure cultures were deposited in the Gene bank of DMR, Solan. Some of the interesting specimens including their macroscopic feature in the field along with their photographs were described below.

Cantharellus cibarius Fr.

Habitat and distribution:

Growing solitary to scattered on soil under coniferous forest in subtropical to temperate region.

Morphological details:

Pileus up to 10 cm broad in diameter, yellow to orange in colour, shape convex to funnel shaped, surface glutinous. Lamellae decurrrent, folded, interviened, hymeniform folded, narrow, up to 1-2 mm thick. Stipe up to 8 cm long, equal, solid, orange.

सूक्ष्म विवरण :

बेसिडियोस्पोर्स 8–10 x 5–5.5 µm, दीर्घवृत्ताभ, इनामाइलॉइड | बेसिडिया 35–110 x 8–10µm, क्लैवेट, टेट्रास्पोरिक | पाइलीपेलिस बेलनाकार कोशिकाओं का एक अनियमित टर्फ है जिसका व्यास में 12 माइक्रोन तक होता है | सिस्टिडिया अनुपस्थित | क्लैंप कनेक्शन मौजूद होते हैं |

वोल्वरिएला बॉम्बिसीना

आवास और वितरण

उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र में अखरोट के पेड़ की सड़ी हुई लकड़ी पर छोटे समूहों में बिखरे हुए बढ़ते हुए पाए गए।

Microscopic details:

Basidiospores 8-10 x 5-5.5 μ m, ellipsoid, inamyloid. Basidia 35-110 x 8-10 μ m, clavate, tetrasporic. Pileipellis a irregular turf of cylindrical elements up to 12 μ m in diameter. Cystidia absent. Clamp connections present.

Volvariella bombycina (Schaeff.) Singer Habitat and distribution

Growing scattered to in small groups on rotten wood of Walnut tree in subtropical to temperate region.

5 -20

रूपात्मक विवरण

पाइलस 20 सेमी चौड़ा, बटन चरण में अंडे के आकार का, फिर अंत में उत्तल में विस्तारित होकर कैपेन्यूलेट आकार की टोपी, मलाईदार से पीले रंग में भूरे रंग के रेशमी तंतुमय बालों से ढका होता है। लैमेली मुक्त, शुरू में सफेद, फिर परिपक्व होने पर सैल्मन गुलाबी में बदल जाता है। स्टाइप बेसल सैकेट के आकार के वोल्वा के साथ 15 सेमी लंबा, 1.8 सेमी चौडा, बराबर, सफेद रंग का पाया गया।

Morphological details

Pileus up to 20 cm broad, egg shaped in button stage then finally expanded in to convex to campanulate shaped cap, creamish to yellowish covered with brown coloured silky fibrillose hairs. Lamellae free, initially white then turns to salmon pink on maturity. Stipe up to 15 cm long, 1.8 cm broad, equal, whitish, with basal saccate shaped volva.

सूक्ष्म विवरण

बेसिडियोस्पोरस 7—8.8 x 3.5—5 माइक्रोन, इलिपसॉयड, इनमाइलॉयड। बेसिडिया 20—40 x 6—10 माइक्रोन, क्लैवेट, टेट्रास्पोरिक, स्टेरिग्माटा 4 माइक्रोन तक लंबा प्रयूसिफोर्म और चेइलो सिस्टिडिया दोनों मौजूद हैं, संरचना में समान हैं, आकार में 35—80 x 15—23 µm, असंख्य, सबग्लोबोज, पाइरिफॉर्म से वेंट्रिकोस तक। पाइलीपेलिस बेलनाकार कोशिकाओं की एक कटिस 30 माइक्रोन तक चौड़ी होती है। क्लैंप कनेक्शन अनुपस्थित।

Microscopic details

Basidiospores 7-8.8 x 3.5-5 μ m, ellipsoid, inamyloid. Basidia 20-40 x 6-10 μ m, clavate, tetrasporic, sterigmata up to 4 μ m long. Both pleuro and cheilo Cystidia present, similar in structures 35-80 x 15-23 μ m in size, numerous, subglobose, pyriform to ventricose. Pileipellis a cutis of cylindrical elements up to 30 μ m wide. Clamp connections absent.

लैक्टिफ्लुस वोलेमस

आवास और वितरण

उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र में कोनिफर्स के बीच मिट्टी पर एकान्त से बिखरे हुए बढ़ते हुए पाए गए।

रूपात्मक विवरण

10 सेंटीमीटर व्यास तक का पाइलस, उत्तल से दबे हुए केंद्र तक, शुरू में अंदर की ओर मुड़ा हुआ किनारा, मखमली सतह, झुर्रीदार, भूरा नारंगी से नारंगी भूरा। लैमेली को समवर्ती, मलाईदार से भूरे, गहरे भूरे रंग के संपर्क में आने पर संलग्न किया जाता है। 10 सेमी तक लंबा, 0.5 सेमी चौड़ा, पाइलस के साथ गाढ़ा, खोखला। एक्सपोजर पर भूरा लेटेक्स पाया गया।

Lactifluus volemus Fr (Kuntz)

Habitat and distribution

Growing solitary to scattered, gregariously on soil among conifers in subtropical to temperate region.

Morphological details

Pileus up to 10 cm in diameter, convex to depressed centre, inrolled margin initially, velvety surface, wrinkled, brownish orange to orangish brown. Lamellae adnexed to decurrent, creamish to brown, dark brown on exposure. Stipe up to 10 cm long, 0.5 cm broad, concolourous with pileus, hollow. Brownish latex on exposure.

सूक्ष्म विवरण

बेसिडियोस्पोरस 6–10 x 5.5–9 माइक्रोन, एलिप्सिड से सबग्लोबोज, अलंकृत, पूर्ण जाली के साथ, अमाइलॉइड। प्लुरोसिस्टिडिया असंख्य, बेलनाकार से पयूसीफॉर्म। प्लुरोसिस्टिडिया के समान चेइलोसिस्टिडिया। पाइलेपेलिस सिलिंड्रिक से प्यूसीफॉर्म सिस्टिडिया का ट्राइकोडर्मल टर्फ है जो 5 –7 x 80–100 माइक्रोन तक का होता है

केटरेलस सिनेरेस

रूपात्मक विवरण

पाइलस 4 सेमी चौड़ा, उत्तल से इन्फंडिबुलिफॉर्म, भूरा काला, भूरे काले रंग के शल्कों से ढका, धारियों के साथ मार्जिन, विभाजित। लैमेली डिक्रंटेंट, कम हाइमेनफॉर्म, इंटरवेन्ड, ग्रेयिश ब्लैक। 5.5 सेंटीमीटर तक लंबा, 0.8 सेंटीमीटर चौड़ा, काला भूरा, चिकना से पतला, बालों वाला।

सूक्ष्म विवरण

बेसिडियोस्पोरस 6.5-8.5 x 4-6 μ m, दीर्घवृत्ताभ, इनमाइलॉइड | बेसिडिया 30.5 -55 x 6-8 μ m, बेलनाकार से क्लैवेट, टेट्रास्पोरिक, स्टिरग्माटा 6 μ m तक, लंबा | पाइलीपेलिस 1.5 माइक्रोन तक के शाखित सेप्टेट बेलनाकार कोशिकाओं से बना है, चौड़ा है | सिस्टिडिया अनुपस्थित | क्लैंप कनेक्शन अनुपस्थित |

Microscopic details

Basidiospores 6- 10 x 5.5 -9 μ m, ellipsoid to subglobose, ornamented, with complete reticulation, amyloid. Pleurocystidia numerous, cylindric to fusiform. Cheilocystidia similar to pleurocystidia. Pilepellis a trichodermal turf of cylindric to fusiform cystidia measuring up to 5-7 x 80-100 μ m in size.

Craterellus cinereus (Pers.) Pers.

Morphological details

Pileus up to 4 cm broad, convex to infundibuliform, brownish black, covered with grayish black scales, margin with striations, splittled. Lamellae decurrent, reduced hymeniform, interviened, grayish black. Stipe up to 5.5 cm long, 0.8 cm broad, blackish grey, glabrous to thin, hairy.

Microscopic details

Basidiospores $6.5-8.5 \times 4-6 \,\mu\text{m}$, ellipsoid, inamyloid. Basidia 30.5 -55 x 6-8 μm , cylindric to clavate, tetrasporic, sterigmata up to 6 μm , long. Pileipellis composed of branched septate cylindrical elements up to 1.5 μm , wide. Cystidia absent. Clamp connections absent.

आवास और वितरण

उपोष्णकटिबंधीय क्षेत्र में मिश्रित वन के तहत मिट्टी पर बिखरे हुए पाया गया ।

गेनोडेमा ल्युसिडम वर. कैपेंस लॉयड

आवास और वितरण

उपोष्णकटिबंधीय क्षेत्र में मिश्रित वन में मृत लकड़ी के लड़ों पर बिखरे हुए पाया गया है।

रूपात्मक विवरण

15 सेमी तक लंबे, 1.5 सेमी चौड़े, पाइलेट, पाइलस सतह लाल नारंगी से नारंगी भूरे, चमकदार, बैंगनी भूरे रंग के कार्पोफोर। पोरॉयड सतह सफेद, 5 प्रति मिमी तक गोल छिद्र, 8 मिमी तक ट्यूब।

Habitat and distribution

Growing scattered to gregarious on soil under mixed forest in subtropical region.

Ganoderma lucidum var. capense Lloyd

Habitat and distribution

Growing scattered to gregarious on dead wooden logs in mixed forest in subtropical region.

Morphological details

Carpophores up to 15 cm long, 1.5 cm broad, pileate, pileus surface reddish orange to orangish brown, shiny, purplish brown. Poroid surface whitish, pores up to 5 per mm, rounded, tubes up to 8 mmm.

सुक्ष्म विवरण

बेसिडियोस्पोरस 8—10 x 5.5—7 माइक्रोन, दीर्घवृत्ताभ, ट्रंकेट, मोटी दीवारों वाला। हाइपल सिस्टम ट्रिमिटिक। पाइलीपेलिस पीले भूरे रंग के बेलनाकार से फुले हुए कोशिकाओं (20 µm चौड़े) से बना होता है जो तत्वों को 10 माइक्रोन तक चौड़ा करता है। क्लैंप कनेक्शन मौजूद हैं।

इन्फ्नदीबुलिसाइब गिब्बा

आवास और वितरण

उपोष्णकटिबंधीय क्षेत्र में मिश्रित वन के तहत मिट्टी पर पत्ती कूड़े पर बिखरे हुए बढ़ते हुए पाया गया ।

रूपात्मक विवरण

5 सेंटीमीटर व्यास तक का पाइलस, प्लेन टू डिप्रेस्ड, इनफंडिबुलफॉर्म से कीप के आकार का, मखमली सतह, पीला से गुलाबी रंग का। लैमेला समवर्ती, भीड़—भाड़ वाली, मलाईदार, गलफड़ों के किनारे चिकने से लहराते हुए। 10 सेमी तक लंबा, 0.8 सेमी चौड़ा, बराबर, बेलनाकार स्टाइप मलाईदार से चमड़ा रंग।

Microscopic details

Basidiospores 8-10 x 5.5-7 μ m, ellipsoid, truncate, thick walled. Hyphal system trimitic. Pileipellis a cutis of yellowish brown cylindrical to inflated elements up to 10 μ m, wide. Clamp connections present.

Infundibulicybe gibba (Pers.) Harmaja

Habitat and distribution

Growing scattered to gregariously on leaf litter on soil under mixed forest in subtropical region.

Morphological details

Pileus up to 5 cm in diameter, plane to depressed, infundibuliform to funnel shaped, velvety surface, pale to pinkish buff. Lamellae decurrent, crowded, creamish, gill edges smooth to wavy. Stipe up to 10 cm long, 0.8 cm broad, equal, cylindrical, creamish to pale buff.

सुक्ष्म विवरण

बेसिडियोस्पोरस 5.5-7 x 2.5-4 µm, इनमाइलॉइड, लैसीमॉइड, मल्टीगुट्टुलेट बेसिडिया 20—30 x 4—7 माइक्रोन, क्लैवेट, टेट्रास्पोरिक, हाइलिन। सिस्टिडिया अनुपस्थित। पाइलीपेलिस शाखित, बेलनाकार सेप्टेट कोशिकाओं की एक सतह का एक कटिस 9 माइक्रोन तक चौड़ा होता है।

Microscopic details

Basidiospores 5.5-7 x 2.5-4 μ m, inamyloid, lacymoid, multiguttulate. Basidia 20-30 x 4-7 μ m, clavate, tetrasporic, hyaline. Cystidia absent. Pileipellis a cutis of branched, cylindrical septate elements up to 9 μ m wide.

सरकोस्किफा ऑस्ट्रिया

रूपात्मक विवरण

फलदार शरीर कप से डिस्क के आकार का, व्यास में 7 सेमी तक, ऊपरी सतह चमकदार लाल नारंगी से लाल रंग का झुरींदार होता है । सतह के नीचे नारंगी रंग का फीका पड़ा हुआ, स्टाइप अनुपस्थित।, मांस 2 मिमी तक पतला होता है।

सूक्ष्म विवरण

एस्कोस्पोरस 22—35 x 9—15 माइक्रोन, अंडाकार से ग्लोबोज, मल्टीगुटुलेट, पैराफिसिस फिलीफॉर्म, दानेदार संतरे की सामग्रीय अनियमित, घुमावदार, मुड़ी हुई, बाहरी सतह आपस में जुड़ी हुई।

Sarcoscypha austriaca (O. Beck ex Sacc.) Boud

Morphological details

Fruiting body cup to disc shaped, up to 7 cm in diameter, upper surface bright reddish orange to red in colour, wrinkled. Under surface faded orangish, stipe absent., flesh thin up to 2 mm thick.

Microscopic details

Ascospores 22-35 x 9-15 µm, ellipsoid to globose, multiguttulate, Paraphysis filiform, granular orangish contents; excipular surface with irregular, curved, twisted, intertwined.

आवास और वितरण

उपोष्णकटिबंधीय क्षेत्र में सड़ी हुई लकड़ी की छड़ियों या लड़ों पर एकान्त में बदते हुए पाया जाता है

लेओटिया लुबिका

रूपात्मक विवरण

3 सेमी तक कैप, उत्तल से अनियमित आकार के उत्तल, घुमावदार सिर, घिनौना, झुरींदार जैतून हरा से पीले भूरे रंग का। 8 सेमी तक लंबा, 1 सेमी चौड़ा, मध्य, लगभग बराबर, पतला, चिपचिपा, पीला नारंगी, एक्सपोजर पर हरा, खोखला, अंदर से पतला होता है।

सूक्ष्म विवरण

एस्कोस्पोरस 15-24 x 4-6 μm , पयूसीफॉर्म, इनमाइलॉइड, सेप्टेट | असाई ऑक्टास्पोरिक | पैराफिसिस संकीर्ण रूप से क्लैवेट, बेलनाकार |

Habitat and distribution

Growing solitary to gregariously on rotten wood sticks or logs in subtropical region.

Leotia lubrica (Scop.) Pers.

Morphological details

Cap up to 3 cm across, convex to irregular shaped, convoluted head, slimy, wrinkled olive green to yellowish brown. Stipe up to 8 cm long, 1 cm wide, central, almost equal, slimy, sticky, yellowish orange, greenish on exposure, hollow, slimy inside.

Microscopic details

Ascospores 15-24 x 4-6 µm, fusiform, inamyloid, septate. Asci octasporic. Paraphysis narrowly clavate, cylindric.

आवास और वितरण

उपोष्णकिवंधीय से समशीतोष्ण क्षेत्र में शंकुधारी वन में मिट्टी पर बिखरे हुए और विशाल गुच्छों में पाया जाता है ।

हिदनम रिपेंडम

आवास और वितरण

उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र में मिश्रित वन में मिट्टी पर बिखरा हुआ पाया जाता है ।

रूपात्मक विवरण

10 सेमी चौड़ा पाइलस, मोटे तौर पर समतल से उत्तल, क्रीम से नारंगी रंग का, चोट लगने पर फीके पड़ जाते हैं। हाइमेनोफोर डिकरंट, स्पाइनी, दांत 1 सेमी तक लंबे, सुस्त नारंगी। 10 सेमी तक लंबा, 3 सेमी चौड़ा, मुख्य रूप से उत्सर्जक, पीले नारंगी रंग का डंडल।

Habitat and distribution

Growing scattered and in gregarious clumps on soil in coniferous forest in subtropical to temperate region.

Hydnum repandum L.

Habitat and distribution

Growing scattered on soil in mixed forest in subtropical to temperate zone.

Morphological details

Pileus up to 10 cm wide, broadly convex to plane, cream to buff orange, discolouring on bruising. Hymenophore decurrent, spiny, teeth up to 1 cm long, dull orange. Stipe up to 10 cm long, 3 cm broad, excentric mostly, yellowish orange.

सूक्ष्म विवरण

बेसिडियोस्पोरस 6— 9 x 5.5—8 माइक्रोन, दीर्घवृत्त से गोलाकार, अमाइलॉइड, मोनोगुटुलेट। बेसिडिया 22— 40 x 6—8 माइक्रोन, क्लैवेट, टेट्रास्पोरिक, स्टरिग्माटा 6 माइक्रोन तक लंबा। पाइलीपेलिस इंटरवॉवन, चिकनी, बेलनाकार, पतली दीवारों की एक कटिस, 6 माइक्रोन तक चौडी होती है।

लाइकोपर्डन पर्लेटम

आवास और वितरण

उपोष्णकटिबंधीय से समशीतोष्ण क्षेत्र में कोनिफर्स के तहत काई की मिट्टी या लकड़ी के लॉग पर बिखरे हुए बढ़ते हुए पाया जाता है ।

रूपात्मक विवरण

5 सेंटीमीटर तक के कार्पोफोर्स, 8 सेंटीमीटर लंबे, ग्लोबोज से नाशपाती के आकार के, सफेद से पीले भूरे रंग के, भूरे भूरे रंग के तराजू और दानेदार अधिमांस से ढके हुए। आंतरिक ग्लीबा सफेद, शुरू में स्पंजी, अंत में परिपक्वता पर भूरे रंग में बदल जाता है। बेसल मायसेलिया डोरियों के साथ मोटा, सफेद से भूरा रंग का होता है।

Microscopic details

Basidiospores 6- 9 x 5.5-8 μ m, ellipsoid to rounded, inamyloid, monoguttulate. Basidia 22- 40 x 6-8 μ m, clavate, tetrasporic, sterigmata up to 6 μ m long. Pileipellis a cutis of interwoven, smooth, cylindric, thin walled, up to 6 μ m wide.

Lycoperdon perlatum Pers.

Habitat and distributions

Growing scattered to gregariously on mossy soil or on wooden logs under conifers in subtropical to temperate region.

Morphological details

Carpophores up to 5 cm across, 8 cm long, globose to pear shaped, whitish to yellowish brown, covered with grayish brown scales and granular warts. Internal gleba white, initially spongy, finally turns to brownish on maturity. Stipe thick, whitish to brownish with basal mycelia cords.

सूक्ष्म विवरण

बेसिडियोस्पोरस 3.5—5 माइक्रोन, ग्लोबोज, मस्सानुमा, गहरा भूरा। बेसिडिया 6.5—9 x 4—5.5 माइक्रोन, क्लैवेट, टेट्रास्पोरिक, स्टेरिग्माटा ३ माइक्रोन तक लंबा। कैपिलिटियल थ्रेड्स 7 माइक्रोन तक चौड़े, एस्पेटेट, मोटी दीवार वाले। क्लैंप कनेक्शन अनुपस्थित।

Microscopic details

Basidiospores 3.5-5 μ m, globose, warty, dark brown. Basidia 6.5-9 x 4-5.5 μ m, clavate, tetrasporic, sterigmata up to 3 μ m long. Capillitial threads up to 7 μ m wide, aspetate, thick walled. Clamp connections absent.

2.2 फसल सुधार Crop Improvement

बटन मशरूम का आनुवंशिक सुधार

उपज और गुणवत्ता के लिए NBS – 1 और NBS – 5 स्ट्रेन से नए चुने गए सिंगल स्पोर आइसोलेट्स का मूल्यांकन

800 एसएसआई की स्क्रीनिंग के आधार पर NBS—5 से कुल 32 सिंगल स्पोर आइसोलेट्स का चयन उच्च उपज और अच्छी गुणवत्ता के आधार पर किया गया। उपज और गुणवत्ता के लक्षणों की पुष्टि के लिए इन 32 सिंगल स्पोर आइसोलेट्स की खेती की गई जिनमें से 27 सफलतापूर्वक फलने की अवस्था में पहुंच गए। उच्चतम उपज NBS1–129 (25-64%) से प्राप्त हुई, उसके बाद NBS5—210 (25.13%) और NBS 5-7 (24-57%) का स्थान रहा।

Genetic improvement of Button mushroom Evaluation of newly selected single spore isolates from NBS-1 and NBS-5 strains for yield and quality

A total number of 800 single spore isolates (SSIs) were screened and 32 SSIs have been selected for further trials based on their yield potential and morphological quality. These 32 SSIs were again cultivated to confirm the yield and quality traits. Therefore total 32 SSIs were again cultivated out of which 27 was successfully reached to fruiting stage. The highest yield was obtained from NBS1-129 (25.64%), followed by NBS5-210 (25.13%) and NBS5-7(24.57).

Table-2.2.1Biological efficiency of selected SSIs of button mushroom तालिका – 2.2.1 बदन मशरूम के चयनित सिंगल स्पोर आइसोलेट्स की उपज

Strains	BE(%)	Strains	BE(%)
उपभेद	जैविक दक्षता	उपभेद	जैविक दक्षता
NBS1-4	15.45	NBS1-170	15.80
NBS1-9	13.04	NBS5-7	24.58
NBS1-11	15.60	NBS5-56	21.91
NBS1-17	15.53	NBS5-134	22.53
NBS1-19	17.24	NBS5-148	18.55
NBS1-22	18.19	NBS5-196	17.36
NBS1-32	17.04	NBS5-199	24.19
NBS1-58	18.70	NBS5-200	21.19
NBS1-60	17.11	NBS5-203	23.62
NBS1-102	14.58	NBS5-210	25.13
NBS1-129	25.65	NBS5-242	17.75
NBS1-140	17.53	NBS5-255	16.88
NBS1-144	20.15	NBS5-284	24.26
NBS1-156	15.30	NBS-5 (control)	16.68

उपज और गुणवत्ता के लिए बटन मशरूम में हाइबिड संकरों का विकास और मूल्यांकन

उपज और गुणवत्ता के लिए कुल 232 संकर विकसित किए गए और उनका मूल्यांकन किया गया। इन संकरों की खेती और जांच की गई थी। संकरों में कई संकरों ने बेहतर उपज दिखाई लेकिन उच्च उपज और गुणवत्ता के आधार पर चुने गए तीन संकर H1, H26 और H54 थे।

Hybrid development and evaluation in button mushroom for yield and quality

A total number 232 crosses were developed and further evaluation was done for yield and quality of the fruit bodies. Based on the yield potential under controlled growing conditions, three hybrid combination viz., H1, H26 and H54 have been selected for initial yield evaluation trials.

एगारिकस बाइटॉरिकस के जर्मप्लाज्म की स्क्रीनिंग

उपज और उपज संबंधित गुणों के लिए 11 एगारिकस बाइटॉरिकस की स्क्रीनिंग की गई। स्क्रीनिंग का लक्ष्य एगारिकस बाइटॉरिकस में प्रजनन कार्यक्रम में इसका उपयोग करना और प्रीब्रीडिंग लाइनों की पहचान करना था। स्ट्रेन पहले फ्लश की उपज के लिए स्क्रीन किए गए थे और यह पाया गया कि AB-3 की उपज सबसे अधिक थी उसके बाद AB-5 और AB-2 की उपज अधिक पाई गई। स्ट्रेन AB-10 में हरे फफूंद की बीमारी लग गई थी।

Screening of germplasm of Agaricus bitorquis

A screening trial was conducted with eleven strains of *Agaricus bitorquis* and recorded the yield potential and yield attributing traits. The idea behind the screening was to identify prebreeding lines in *Agaricus bitorquis* to use it in the breeding programme. During the screening trials, it was found that, strain AB-3 recorded highest yield followed by AB-5 and AB-2. Further, it was also observed the green mould infection in one of the strain viz., AB-10.

Table-2.2.2. Biological efficiency of selected SSIs of button mushroom तालिका – 2.2.2 बदन मशरूम के चयनित संकरों की जैविक दक्षता

Strains उपभेद	BE(%) बीई												
H1	16.83	H36	7.03	H69	0.66	H101	8.45	H136	12.46	H169	0.50	H202	5.43
H2	4.10	H39	0.00	H70	10.84	H102	9.39	H138	9.04	H171	0.11	H203	3.60
Н3	5.99	H40	7.60	H72	9.85	H104	5.73	H139	3.70	H174	0.19	H206	2.77
H5	6.18	H41	6.71	H77	8.68	H110	5.59	H140	8.42	H175	0.00	H208	5.68
Н6	9.72	H42	5.80	H78	4.93	H111	7.32	H143	9.73	H176	0.00	H209	3.18
H13	4.47	H43	7.39	H79	12.67	H113	2.84	H146	2.82	H177	0.11	H210	0.89
H17	4.74	H46	4.23	H80	10.20	H116	8.30	H149	0.17	H179	0.15	H214	3.76
H19	10.64	H50	4.74	H85	9.90	H118	7.00	H151	1.32	H181	0.00	H215	8.43
H20	10.49	H51	6.98	H86	6.62	H119	3.17	H152	0.00	H182	0.05	H218	1.03
H21	10.73	H52	3.02	H89	4.85	H120	4.07	H153	0.00	H183	0.00	H219	7.61
H22	11.64	H53	2.75	H90	11.80	H122	2.33	H156	0.00	H185	7.95	H220	6.92
H24	7.78	H54	12.99	H91	8.93	H124	4.25	H157	1.11	H187	11.83	H221	6.33
H25	7.93	H55	9.52	H92	8.98	H125	6.67	H159	0.29	H188	3.72	H222	5.81
H26	14.26	H56	6.88	H93	11.56	H127	3.85	H162	0.44	H190	8.77	H223	5.77
H28	3.39	H58	8.21	H94	11.65	H128	3.60	H163	0.00	H191	7.18	H224	7.95
H30	6.53	H59	9.93	H95	9.50	H129	2.61	H164	0.00	H193	4.11	H228	9.67
H31	4.39	H61	9.19	H97	10.93	H130	4.45	H165	0.59	H194	4.91	H229	10.02
Н33	9.42	H62	10.49	H98	9.57	H131	7.03	H166	0.00	H195	5.61	H230	6.60
H34	8.10	H63	7.26	Н99	8.07	H133	4.10	H167	0.00	H199	3.74	H232	11.24
H35	8.29	H68	4.83	H100	9.29	H134	3.28	H168	1.03	H200	1.40	NBS-5	8.93

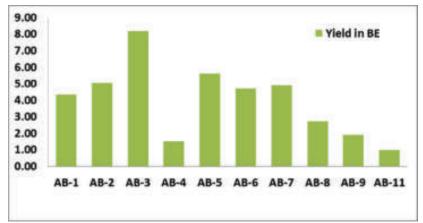


Fig-2.2.1 Graph of Biological efficiency of various strains of *A.bitorquis* चित्र – 2.2.1 एगारिकस बाइटॉरिकस के विभिन्न स्ट्रेन की जैविक दक्षता का ग्राफ

एगारिकस बाइस्पोरस के जर्मप्लाज्म की स्क्रीनिंग

173 एगारिकस बाइस्पोरस की स्क्रीनिंग की गई जिसमें उपज और उपज संबंधित गुणों की जांच की गई। स्क्रीनिंग का लक्ष्य एगारिकस बाइस्पोरस में प्रजनन कार्यक्रम में इसका उपयोग करना और प्रीब्रीडिंग लाइनों की पहचान करना था। DMRA-63 ने उच्चतम उपज पाई गई जिसके बाद DMRA-127 और DMRA-109 का स्थान रहा।

Screening of germplasm of Agaricus bisporus

A screening trial was conducted with 173 strains of *Agaricus bisporus* and recorded the yield potential and yield attributing traits. The idea behind the screening was to identify prebreeding lines in *Agaricus bisporus* to use it in the breeding programme. A screening trial was conducted with 173 strains of *Agaricus bisporus* and recorded the yield potential and yield attributing traits.

Table-2.2.3. Biological efficiency of *Agaricus bisporus* germplasm तालिका – 2.2.3 एगारिकस बाइस्पोरस जर्मप्लाज्म की जैविक दक्षता

Strain उपभेद	BE% बीई	Strain उपभेद	BE% बीई
DMRA1	10.30	DMRA99	12.31
DMRA4	8.39	DMRA103	8.05
DMRA13	7.67	DMRA104	6.58
DMRA17	0.00	DMRA108	1.91
DMRA25	0.00	DMRA109	12.33
DMRA27	0.00	DMRA111	2.66
DMRA29	3.44	DMRA112	0.00
DMRA40	0.00	DMRA115	10.80
DMRA42	1.09	DMRA116	9.48
DMRA47	8.17	DMRA123	0.00
DMRA54	4.93	DMRA125	2.02
DMRA55	12.89	DMRA126	10.04
DMRA58	4.65	DMRA127	13.46
DMRA63	15.17	DMRA129	9.36
DMRA72	0.89	DMRA137	5.59
DMRA76	0.26	DMRA138	0.17
DMRA81	11.26	DMRA152	0.00
DMRA82	2.25	DMRA155	1.75
DMRA87	5.75	DMRA159	3.05
DMRA89	4.72	DMRA162	7.33
DMRA91	9.61	DMRA163	5.02
DMRA96	0.16	DMRA173	4.27
DMRA97	0.00	NBS-5	8.93

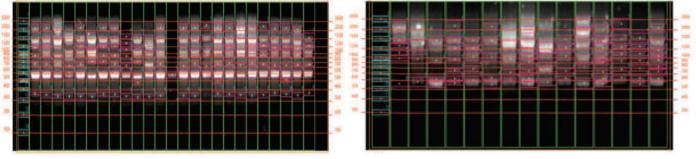
बटन मशरूम का AVT-1 परीक्षण

बटन मशरूम का AVT-1 परीक्षण हेतु मानक फार्मूले का उपयोग करके खाद विकसित की गई और सोलन में छह उपभेदों का उपज मूल्यांकन किया गया था। AVTB-106 से सबसे अधिक उपज दर्ज की गई और उसके बाद AVTB-104 का स्थान रहा। उच्चतम पाइलस चौड़ाई AVTB-103 से दर्ज की गई थी, जबकि AVTB-103 में उच्चतम स्टाइप ऊंचाई और गिल आकार मिला था। AVTB-106 से अधिकतम पाइलस ऊंचाई और स्टाइप चौड़ाई मिली थी।

AVT-1 trial of button mushroom

AVT-1 trial was conducted with six strains of white button mushroom using the standard compost formula prepared by short method of composting. The highest yield was reported from AVTB-106 followed by AVTB-104. The highest pileus width was reported from AVTB-103 while highest stipe length and gill size reported in AVTB-103. The maximum pileus width and stipe length was reported from AVTB-106.

तालिका – 2.2.4. बटन मशरूम की AVT-। की जैविक दक्षता और अन्य पैरामीटर Table-2.2.4. Biological efficiency and other parameters of AVT-1 of button mushroom


Strains	BE(%)	Pileus width	Pileus height	Stipe width	Stipe height	Gill size
स्ट्रेन	जैविक दक्षता	पाइलस की चौड़ाई	पाइलस की ऊंचाई	स्टाइप की चौड़ाई	स्टाइप ऊंचाई	गिल आकार
AVTB-101	10.17	3.21	0.97	2.10	2.07	0.10
AVTB-102	10.11	3.31	1.00	2.17	2.16	0.10
AVTB-103	12.29	3.40	0.95	2.13	2.30	0.12
AVTB-104	12.36	3.30	0.96	1.99	2.16	0.11
AVTB-105	12.16	3.24	0.99	1.94	2.08	0.10
AVTB-106	13.36	3.21	1.00	2.19	2.13	0.12

बटन मशरूम में लिंकेज मैपिंग

NBS-5 स्ट्रेन के लिए एगारिकस बाइस्पोरस का लिंकेज मैप विकसित। NBS-5 के 3000 सिंगल स्पोर आइसोलेट्स (एसएसआई) को अलग किया गया और मानक तरीके से स्पॉन तैयार किया गया। एसएसआई की खेती आरबीडी डिजाइन में पाश्चुरीकृत खाद पर की गई थी। स्क्रीनिंग में कुल 39 गैर-उपजाऊ एसएसआई (एनएफ-एसएसआई) प्राप्त किए गए। इन 39-एसएसआई के जीनोमिक डीएनए निकाला गया जो को माल्ट एक्सट्रैक्ट ब्रोथ माध्यम पर उगाए गए थे। जीनोटाइपिंग के लिए कुल 60 प्राइमरों (SSR, IRAP, ISSR) का उपयोग किया गया था। 474 मार्कर पदों को स्कोर किया गया और विश्लेषण के लिए उपयोग किया गया। जीनोटाइपिक डेटा स्कोर किया गया था

Linkage mapping in button mushroom

The investigation was carried out to develop linkage map of *Agaricus bisporus* for NBS-5 strain. The 3000 single spore isolates (SSIs) of NBS-5 were isolated and spawn was prepared on wheat grains following standard practice. The SSIs were cultivated on pasteurized compost in RBD design. Total of 39 Nonfertile SSIs (NF-SSIs) were obtained in the screening. Genomic DNA of these NF-SSIs was extracted from lyophilized mycelium grown on malt extract broth medium. For genotyping a total 60 primers were used (SSR, IRAP, ISSR). The mapping population was 42 and 474 marker positions were scored and used for analysis. Genotypic data was scored and linkage map

चित्र – 2.2.2 808 का आईएसएसआर प्रोफाइल Fig-2.2.2 ISSR profile of 808

और डेटा को संभालने के लिए RIL मॉडल के साथ ICI मैपिंग सॉफ्टवेयर संस्करण 4.1 का उपयोग करके लिंकेज मैप का निर्माण किया गया था। लिंकेज समूहों को जोड़ी—वार विश्लेषण ('समूह' कमांड) द्वारा निर्धारित किया गया था, जिसमें ऑड्स (एलओडी) स्कोर की संभावना पांच और अधिकतम पुनर्संयोजन आवृत्ति 0.3 थी। कोसंबी फंक्शन का उपयोग पुनर्संयोजन दर को मानचित्र दूरी में बदलने के लिए किया गया था। कुल 13 लिंकेज समूह बनाए गए थे। सबसे लंबा लिंकेज समूह क्रोमोसोम नंबर 4 (567.8) और उसके बाद क्रोमोसोम नंबर 3 था। क्रोमोसोम नंबर 12 (162.3 सेमी) के लिए सबसे छोटा लिंकेज समूह बनाया गया था। बनाए गए मानचित्र का उपयोग पुनर्संयोजन आवृत्ति का उपयोग करके जीन की स्थित जानने के लिए किया जाएगा।

was constructed using ICI mapping software version 4.1 with a RIL model for handling data. Linkage groups were determined by pair-wise analysis ('group' command) with a likelihood of odds (LOD) score of five and a maximum recombination frequency of 0.3. The Kosambi function was used to convert recombination rate into map distance. Total 13 linkage groups were formed. The longest linkage group was chromosome no.4 (567.8) followed by chromosome no.3. The smallest linkage group was formed for chromosome no.12 (162.3 cm). The map constructed will be used to know the position of genes using recombination frequency.

Table-2.2.5 Number of marker positions for each chromosome तालिका – 2.2.5 प्रत्येक गुणसूत्र के लिए मार्कर पदों की संख्या

Chromosome क्रोमोसोम	Number of marker positions मार्कर पदों की संख्या
Chromosome 1	68
Chromosome 2	28
Chromosome 3	49
Chromosome 4	41
Chromosome 5	22
Chromosome 6	32
Chromosome 7	60
Chromosome 8	51
Chromosome 9	38
Chromosome 10	32
Chromosome 11	13
Chromosome 12	21
Chromosome 13	19

ढींगरी मशरूम

प्लुरोटस ओस्ट्रेटस वर फ्लोरिडा भारत में प्रमुख खेती वाले प्लुरोटस में से एक है। यह मशरूम अपने सफेद रंग, समतल पाइलस और 16—25 डिग्री सेल्सियस के तापमान के लिए अनुकूलता के कारण उत्पादकों के बीच पसंदीदा विकल्प है। मशरूम में उत्पादकता बढ़ाने के लिए, ऊर्ध्वाधर स्थान के उपयोग के अलावा छोटी अवधि की किस्में एक अच्छा विकल्प हो सकती हैं। सामान्य तौर पर, 2.5% (गीला आधार) स्पॉन दर के साथ भूसे पर खेती करने पर बिना किसी पूरक तत्वों के प्लुरोटस ओस्ट्रेटस वर फ्लोरिडा फलन को लगभग 19—25 दिनों की आवश्यकता होती है। वर्तमान जांच में,

Oyster mushroom

Pleurotus ostreatus var florida is one of the major cultivated Pleurotus species in India. This mushroom is preferred choice amongst growers because of its white tone, flat pileus and considerable amount of adaptability for temperature ranging from 16-25°C. To increase the productivity in mushrooms, the short duration strains can be one approach to increase the cropping intensity other than utilization. of vertical space. In general, cultivars requires around 19-25 days for achieving primordial stage without any supplementation when cultivated on cereal straws

Fig-2.2.3 Fruit bodies of H27 developed after hybridization चित्र – 2.2.3 संकरण के बाद विकसित H 27 के फल निकाय

ICAR-DMR में प्लुरोटस ओस्ट्रेटस वर फ्लोरिडा में पहचान की गई प्री-ब्रीडिंग लाइनों का उपयोग करके तीव्र फलन का संकर विकसित किया गया था। हमारे अध्ययन में. DMRP-49 में छोटे फलों के साथ उच्च उपज वाला स्ट्रेन है और डीएमआरपी-136 उच्च उपज और मध्यम आकार के फल वाला स्ट्रेन है जो कि पैतृक स्ट्रेन है। प्रत्येक स्ट्रेन से बीस एसएसआई को अलग किया गया और माल्ट एक्सट्रैक्ट अगर माध्यम पर तेजी से विकास वाले एसएसआई के लिए चुना गया। चयनित एसएसआई को हाफ डायलिल दृष्टिकोण का उपयोग करके हाइब्रिड किया गया था और मान्य हाइब्रिंड (क्लैंप कनेक्शन का उपयोग करके जांच की गई) की विशेषता का मूल्यांकन किया गया था। उपज के लिए बहुसंख्यक संकरों में हेटेरीबेल्टियोसिस देखा गया था, लेकिन संकर- H27 [P136(4) × P49(1)] ने पैतृक स्ट्रेन और व्यावसायिक कंट्रोल की तुलना में 14 दिनों में प्रारंभिक उपज हासिल हुई, जबकि पेतृक स्ट्रेन में क्रमशः 22 और व्यावसायिक कंट्रोल में 23 दिन लगे। H27 ने व्यावसायिक जाँच पर उपज श्रेष्ठता देखी गई। अध्ययन में यह भी पाया गया कि प्राइमर्डिया की उपस्थिति स्पॉन रन तापमान से जुडी थी। देर से फलने का कारण 22 डिग्री सेल्सियस तापमान से नीचे with 2.5% (wet basis) spawn rate. In present investigation, the strains were developed for early basidiocarp bearing ability using the pre-breeding lines identified in PF at ICAR-DMR. In our study, strain DMRP-49 having high yielding traits with small fruitbodies and DMRP-136 having high yield and medium size fruit bodies were selected as parents for hybridization. Twenty SSIs from each parental strain were isolated and were selected for fast lateral growth on Malt extract agar medium. The selected SSIs were hybridized using half diallel approach and validated hybrids (checked using clamp connection) were characterized and evaluated. Heterobeltiosis was seen in majority of hybrids for yield but hybrid-H27 [P136(4) \times P49(1)] achieved the primordial stage in 14 days after spawning compared to parental and commercial check that took 22 and 23 days respectively. The H27 showed the significant yield superiority over commercial check. During the cultivation trials it was additionally noticed that the primordia appearance was connected with spawn run temperature. Delayed fruiting was observed below

चित्र – 2.2.4 प्लुरोटस में कम स्पोर उत्पादन करने वाला स्ट्रेन Fig-2.2.4 Low spore producing strain in *Pleurotus*

देखा गया। H27 स्पॉन रन के लिए आवश्यक तापमान 26-27°Cके आसपास देखा गया। H27 में औसत पाइलस लंबाई, पाइलस व्यास स्टाइप लंबाई क्रमशः 6.32 सेमी, 7.11 सेमी और 2.71 सेमी पाई गई। अध्ययन में विकसित स्ट्रेन में प्लुरोटस की खेती में फसल की तीव्रता में तेजी लाने की क्षमता है।

एक अन्य अध्ययन में, प्लुरोटस में लो स्पोर स्ट्रेन विकसित किया गया था। प्लुरोटस स्पोरोकार्प्स अधिक बीजाणुओं को मुक्त करता है और खेती के दौरान श्रमिकों को एलर्जी का कारण बनता है। बीजाणु संबंधी श्वसन एलर्जी प्लुरोटस की खेती को सीमित करती है। बीजाणु संबंधी एलर्जी के सामान्य लक्षण, अग्र-भुजाओं और अंगों में अंकड़न, दर्द, गले में खुजली और कभी-कभी कर्कशता होती है। वर्तमान अध्ययन में, प्लुरोटस ओस्ट्रिएटस में एक निम्न बीजाणु उत्पन्न करने वाला स्ट्रेन को विकसित किया गया था। प्रजनन कार्यक्रम में प्रयुक्त स्ट्रेन DMRP-49 और DMRP-30 थे। दोनों स्ट्रेन के एकल बीजाणु आइसोलेट्स (SSIs) का संकरण किया गया था और DMRP-49(1) × DMRP-30(8) से प्राप्त हाइब्रिड में से एक 🗗 संतति में काइमेरा देखा गया था। विश्लेषण के बाद कोई बीजाणु प्रिंट नहीं दिखाया गया और सूक्ष्म रूप अध्ययन में भी कम बीजाणु प्रिंट देखे गए। विकसित बीजाणु रहित स्ट्रेन को फलने के लिए 20-24°C की आवश्यकता होती है और यह एक गुच्छेदार स्ट्रेन है। डीएमआरपी-49 की तुलना में स्पोरलेस स्ट्रेन में मॉर्फोलॉजिकली स्टाइप अधिक केंद्रीय रूप से जुड़ा होता है। आणविक मार्कर SRAP (अनुक्रम संबंधित प्रवर्धित बहुरूपता) का उपयोग डीएनए फिंगर प्रिंटिंग के लिए किया गया था। बीजाणूरहित स्ट्रेन की उपज वाणिज्यिक जांच की तुलना में काफी बेहतर पाई गई और इसने 65% जैविक दक्षता दिखाई।

लेंटिनुला एडोड्स में उच्च उपज देने वाले स्ट्रेन और हाइब्रिड का विकास

संकरण के लिए कुल 7 सात स्ट्रेन का उपयोग किया गया था और 48 क्रॉस किए गए थे और उपज के लिए 14 का परीक्षण किया गया था। क्रॉस L15-85xL7-31 में अधिक उपज पाई गई। जैविक दक्षता के लिए उच्चतम उपज पाई गई थी। अन्य सभी संकरों ने जैविक दक्षता में हीनता दिखाई। 22°C temperature. The necessary temperature for H27 spawn run was observed around 26-27°C. Quality wise average pileus length, pileus diameter stipe length of H27 was found 6.32 cm, 7.11 cm and 2.71 cm respectively. The strain developed in the study has potential to accelerate the cropping intensity in *Pleurotus* cultivation.

In another study, low spore strain in *Pleuortus* was developed. Pleurotus sporocarps liberates enormous spores and cause allergic reaction to workers during cultivation. Spore-related respiratory allergies in oyster mushroom are limitation for Pleurotus cultivation. Common symptoms of spore related allergies are stiffness/ pain in forearms and limbs, itching throat and sometimes grogginess. In present study, a low spore producing strain was developed in *Pleurotus ostreatus.* The parents used in the breeding programme were DMRP-49 (Pleurotus ostreatus var florida) and DMRP-30 (Pleurotus ostreatus). The Single spore isolates (SSIs) of both parents were hybridized and one of hybrid obtained from DMRP- $49(1) \times DMRP-30(8)$ showed chimeras in the F₁ progeny. The chimera was analysed, shown no spore print and also studied microscopically. The sporeless strain developed requires 20-24°C for fruiting and is a bunchy strain. Morphologically stipe is more centrally attached in the sporeless strain compared to DMRP-49. The molecular marker SRAP (Sequence related amplified polymorphism) was used for DNA fingerprinting of strain. The yield of the sporeless strain found significantly superior than commercial check and showed 65% Biological efficiency.

Genetic improvement of shiitake mushroom Development of hybrid combinations and identification of high yielding strains in Lentinula edodes

Total 7 seven parents were used for hybridization and 48 crosses were made and 14 were tested for yield. The highest yield was reported for cross L15-85xL7-31. All other hybrids showed inferiority in biological efficiency (Table-2.2.6).

तालिका 2.2.6 – शिटाके मशरूम के संकरों में जैविक दक्षता Table 2.2.6- Biological efficiency of hybrids in shiitake mushroom

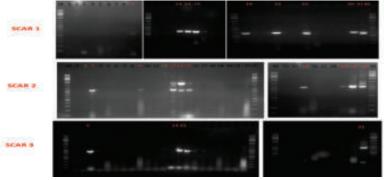
Strain	BE
L15-85xL7-31	51.16
L3-1xL4-1	27.85

L15-85xL3-82 L3 51	22.39
L3-3xL4-2	10.06
L4-2xL4-3	9.05
L15-87xL7-25	8.26
L3-1xL3-2	2.26
L15-87xL7-17	0.00
L15-88xL8-63	0.00
L15-88xL8-4	0.00
L15-85xL8-4	0.00
L15-88xL8-54	0.00
L15-87xL7-2	0.00
L15-100xL12-13	0.00
Control- DMRO-34	41.29

धान पुआल मशरूम नव विकसित संकरों का मूल्यांकन

आठ नए संकरों का परीक्षण नियंत्रित परिस्थितियों में किया गया था। परिणामों से पता चला कि, क्रॉस संयोजन H 18 × 25 ने अन्य संकर संयोजनों की तुलना में 17.3%की उच्चतम जैविक दक्षता दर्ज की। हालांकि, यह भी देखा गया कि, संकरों की पैदावार पैतृक स्ट्रेन की तुलना में कम थी।

वी. वोल्वेसिया जर्मप्लाज्म का एससीएआर विश्लेषण


46 उपभेदों में तीन मार्करों का उपयोग करते हुए एससीएआर मार्कर आधारित विश्लेषण ने विशिष्ट एम्प्लिकॉन आकार के साथ ग्यारह उपभेदों की पहचान की गई, जबिक शेष बीस उपभेदों में आकार की उपस्थिति (एक) और अनुपस्थिति (शून्य) के आधार पर स्कोरिंग की गई (तालिका 2.2.7) | SCAR 1 मार्करों का उपयोग आणिवक स्तर पर होमोकैरियोन और हेटेरोकैरियोन में अंतर करने के लिए किया जा सकता है | SCAR 1 (650bp) और SCAR 2 (1000bp) मार्कर विशिष्ट एम्प्लिकॉन नौ स्ट्रेन में देखे गए, जबिक SCAR 3 (950bp) चार स्ट्रेन (चित्र 2.2.6) में देखे गए।

Genetic improvement of paddy straw mushroom Evaluation of the newly developed hybrids

The cultivation trial of the eight new hybrids was performed under controlled growing conditions. The results indicated that, the cross combination H 18×25 recorded highest biological efficiency of 17.3% as compared with the other hybrid combinations. However, it was also observed that, the yields of the hybrids are low as compared with the parents.

SCAR analysis of the *V. volvacea* germplasm

SCAR based analysis using three markers in 46 strains revealed identification of the eleven strains with specific amplicon size, while in remaining twenty strains no amplicons were observed. SCAR 1 (650bp) and SCAR 2 (1000 bp) markers specific amplicon size was observed in nine strains, while SCAR 3 (950 bp) was observed in the four strains (Fig 2.2.7). Based on the presence (One) and absence (Zero) of the specific amplicon size the scoring was performed (Table 2.2.6). These SCAR markers can be utilized to differentiate the homokaryon and heterokaryon at molecular level.

चित्र 2.2.6 वी. वोल्वेसिया के 31 जर्मप्लाज्म की SCAR आधारित रूपरेखा Fig. 2.2.6 SCAR based profiling of the 31 germplasm of the V. volvacea

चित्र – 2.2.5 – संकरों का परीक्षण Fig. 2.2.5. Cultivation trial of the hybrids

Table 2.2.7 Scoring of the SCAR markers in *V. volvacea* germplasm तालिका 2.2.7 वी. वोल्वेसिया जर्मप्लाज्म में एससीएआर मार्करों का स्कोरिंग

Sl. No. क्रमांक	Germplasm जर्मप्लाज्म	SCAR1	SCAR 2	SCAR3
1	DMRO122	0	1	1
2	DMRO 189	1	1	0
3	DMRO 464	1	1	0
4	DMRO 465	1	1	1
5	DMRO 468	1	1	1
6	DMRO 614	1	0	0
7	DMRO 817	1	0	0
8	DMRO 955	1	1	0
9	DMRO 1072	0	1	0
10	DMRO 1073	1	1	0
11	DMRO 484	1	1	1

^{*(}One represents the presence of the band, while zero represents absence of band.

वी वोल्वेसिया जर्मप्लाज्म में मेटींग टाइप जीन का आणविक लक्षण वर्णन

SCAR के आधार पर, आठ MAT-A विशिष्ट प्राइमरों (चित्र 2.2.7) का उपयोग करके MAT प्रकार के जीन की

Molecular characterization of the mating type genes in the *V. volvacea* germplasm

Based on the SCAR profiling, 11 strains were further screened for the presence of the mating type genes using eight MAT-A specific primers (Fig.

^{*(}एक बैंड की उपस्थिति का प्रतिनिधित्व करता है, जबकि शून्य बैंड की अनुपस्थिति का प्रतिनिधित्व करता है)

उपस्थित के लिए 11 उपभेदों की जांच की गई। पीसीआर—आधारित प्रोफाइलिंग ने पहचाना कि, चार उपभेदों में विषम संभोग प्रकार के जीन होते हैं (चित्र 2.2.8)। इन पीसीआर एम्पलीकॉन्स को NCBI-BLAST विश्लेषण के माध्यम से MAT प्रकार के जीन की पुष्टि के लिए अनुक्रमित और विश्लेषण किया गया था, जो एचडी 1 और एचडी 2 MAT प्रकार के जीन के साथ 94% समरूपता को दर्शाता है और चार जर्मप्लाज्म के MAT प्रकार के जीन की पुष्टि करता है।

2.2.7). PCR-based profiling identified that, four strains containing contrasting mating type genes (Fig. 2.2.8). These PCR amplicons were sequenced and analyzed for the confirmation of the mating type genes through NCBI blast analysis, which shows 94% homology with the HD1 and HD2 mating type genes and further confirm the mating type genes of the four germplasm.

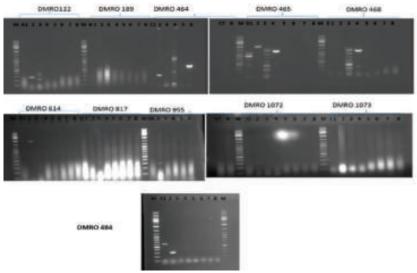


Fig. 2.2.7 Molecular screening of the mating type genes using eight primers of the MAT-A in eleven germplasm of the V. volvacea

चित्र – 2.2.7 – वी. वोल्वेसिया के ग्यारह जर्मप्लाज्म में MAT, के आठ प्राइमरों का उपयोग करके MAT-A प्रकार के जीन की आंशविक जांच

मोर्केला मशरूम

मोर्केला मशरूम के तीन जर्मप्लाज्म को उनकी रूपात्मक विशेषताओं और आईटीएस प्राइमर 1 और 4 का उपयोग करके आंतरिक ट्रांसक्राइब्ड स्पेसर (आईटीएस) प्रोफाइलिंग के आधार पर विशेषता दी गई थी। उनमें से, जंगली आवासों से दो जर्मप्लाज्म एकत्र किए गए थे (चित्र 2.2.9 ए और बी) और एक (चित्र 2.2.9 ग) को कृत्रिम परिस्थितियों में उत्पादित किया गया था। सभी तीन जननद्रव्यों को अस्थायी रूप से एम. स्पोंजियोला (चित्र 2.2.9 ए), एम. क्रैसिप्स (चित्र 2.2.9 बी) और एम. एंगुस्टिसेप्स (चित्र 2.2.9 सी) के रूप में पहचाना गया था। मोर्केला प्रजाति के एस्कोमाटा के रूपात्मक लक्षण दखे और मोर्केला एंगुस्टिसेप्स (चित्र 2.2. 9 सी और ई) का पाइलस 5.5 सेमी लंबा भूरा था यह परिपक्वता पर गहरे भूरे रंग में बदल गया। हैड लम्बे पिट्स वाला था। परिपक्वता से पिट्स और रिब्स एक ही

Genetic improvement of Morchella mushroom

Three promising germplasms of *Morchella* mushroom were characterized based on their morphological features and Internal Transcribed Spacer (ITS) profiling using ITS Primer 1 & 4. Among them, two germplasm were collected from wild habitats (Fig 2.2.9 a & b) and one (Fig 2.2.9 c) was produced artificial under net house conditions. All three germplasms were tentatively identified as *M. spongiola* (Fig 2.2.9 a), *M. crassipes* (Fig 2.2.9b) and *M. angusticeps* (Fig 2.2.9c). Morphological characters of ascomata of *Morchella* spp. showed that, pileus of *Morchella angusticeps* Peck (Fig 2.2.9 c & e) was 5.5cm long, greyish when young turned to dark grey on maturity. Head was with elongated pits. Pits and ribs were of same colour by maturity.

Fruit bodies of *M. crassipes* (vent.) Pers. were collected from organic matter rich soil near the pear trees. Pits were large whereas ribs were thin. Pileus

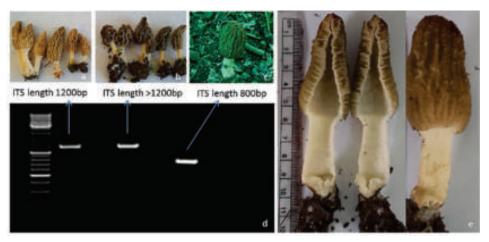
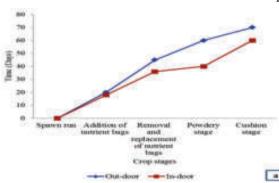


Fig 2.2.9. Characterization of some germplasm of *Morchella* mushroom. a. *M. spongiola*, b. *M. crassipes* and c. *M. angusticeps*, d. ITS profile of 3 species of genus *Morchella* and e. Measurements and internal view of fruit body of *M. angusticeps*.

चित्र 2.2.9 मोर्केला मशरूम के कुछ जर्मप्लाज्म की विशेषता। ए. एम. स्पोंजिओला, बी. एम. क्रैसिप्स और सी. एम.एंगुस्टिसेप्स, डी. जीनस मार्केला की 3 प्रजातियों का आईटीएस प्रोफाइल और ई.एम.एंगुस्टिसेप्स के फलनकाय का माप और आंतरिक दृश्य

रंग की थीं। एम. क्रैसिप्स के फल निकाय नाशपाती के पेड़ों के पास कार्बनिक पदार्थ से समृद्ध मिट्टी से एकत्र किए गए थे। इस प्रजाती में पिट्स बड़े थे जबकि रिब्स पतली थीं। पाइलस उप—शंक्वाकार और 3—4 सेमी लंबा था। स्टाइप सख्त पाया गया। एम. स्पोंजिओला के फलनकाय भी नाशपाती के पेडों के एकत्र किए गए थे।

एम. क्रैसिप्स की तुलना में फलों के पिंडों का पाइलस अधिक पीला था। स्टाइप सफेद या क्रीमी रंग जैसा था। पिट्स की तुलना में रिब्स का रंग गहरा था। सभी चयनित प्रजातियों को माल्ट एक्सट्रेक्ट अगर माध्यम का उपयोग करके पेट्रीप्लेट्स में सुसंस्कृत किया गया था। चयनित प्रजातियों के जीनोमिक डीएनए को सेटिल—ट्राइमिथाइल अमोनियम ब्रोमाइड (सीटीएबी) विधि का उपयोग करके ताजा फफूंद कवकजाल से निकाला गया था। ITS प्रोफाइल (चित्र 8 डी) से पता चला कि सबसे बड़ी ITS लंबाई (1200bp) एम. क्रैसिप्स में प्राप्त की गई थी, उसके बाद एम. स्पोंजियोला (1200 bp) और मोर्केला एंगुस्टिसेप्स (800 bp) में प्राप्त की गई थी।


was sub-conic and 3-4cm long. Stipe was found stout. Fruit bodies of *M. spongiola* were also found near to the pear trees. Pileus of the fruit bodies was more yellow as compared to the *M. crassipes*. The stipe was like whitish or creamish colour. Colour of the ribs was dark as compared to pits. All the selected species were cultured in petriplates using malt extract agar medium. Genomic DNA of the selected species was extracted from fresh fungal mycelium using cetyltrimethyl ammonium bromide (CTAB) method. ITS profile (Fig 8d) revealed that largest ITS length (>1200bp) was obtained in *M. crassipes* followed by *M. spongiola* (1200bp) and *M. angusticeps* (800bp).

2.3 फसल उत्पादन Crop Production

मोर्केला प्रजाति के प्रजनन चरण और लक्षण का वर्णन:

मोर्केला मशरूम में फल निकायों को प्राप्त करने के लिए मशरूम हाउस और नेट हाउस परिस्थितियों का उपयोग करके नियंत्रित खेती का परीक्षण किया गया था। ट्रे और नेट हाउस परिस्थितियों में उभरी क्यारियों में पांच चयनित प्रजातियों की खेती की गई। दोनों परीक्षणों के तहत ताजा गेहुं के दाने और बगीचे की मिट्टी आधारित स्पॉन का उपयोग किया गया था। स्पॉन रन के दौरान, 20—24°C तापमान, 50—55 प्रतिशत मिट्टी की नमी और 80-85 प्रतिशत वायु आर्द्रता सहित पर्यावरणीय परिस्थितियों को बनाए रखा गया था। इसके अतिरिक्त, स्पॉन रन के बाद, बेड का तापमान 20°C से नीचे रखा गया था, मिट्टी की नमी 30-55 प्रतिशत के साथ-साथ सापेक्ष आर्द्रता के स्तर में कोई बदलाव नहीं हुआ था। नियंत्रित मशरूम हाउस और नेट हाउस परिस्थितियों में क्रमशः 18 और 20 दिनों में टेस्ट स्ट्रेन में पूर्ण स्पॉन रन देखा गया। इसके अलावा, नियंत्रित मशरूम हाउस और नेट हाउस स्थितियों के तहत परीक्षण उपभेदों द्वारा पाउडर या शंक्धारी अवस्था तक पहुंचने के लिए क्रमशः 40 और 60 दिनों का समय लगा । नियंत्रित मशरूम हाउस और नेट हाउस स्थितियों के तहत क्रमशः 10 और 20 दिनों के शंकू चरण के बाद कुशन चरण दर्ज किया गया था (चित्र 2.3.1)।

चित्र 2.3.1 मोर्केला मशरूम के विकास के चरण। ए—जीवन चक्र के महत्वपूर्ण विकास चरणों तक पहुँचने के लिए चयनित उपभेदों द्वारा लिया गया औसत समय। बी— वाणिज्यिक स्पॉन, सी— स्पॉन रन, डी— शंकु और कुशन चरण।

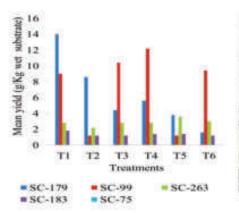
गेहूँ के भूसे का उपयोग करते हुए सिजोफिलम कम्यून के लिए खेती तकनीक का मानकीकरण

गेहूं के भूसे पोषाधार के कुल 6 उपचार अर्थात् टी1— गेहूं के भूसे से गेहूं की भूसी अनुपात 1:0 (नियंत्रण प्रयोग), टी2 — गेहूं के भूसे से

Induction of reproductive stages and characterization of *Morchella* spp.

Cultivation trials were conducted under controlled growing conditions using mushroom house and net house conditions to induct the fruit bodies in *Morchella* mushroom. Five selected strains were cultivated in tray under mushroom house and in raised beds under net house conditions. Fresh wheat grain and garden soil based spawn was used under both the trials. During spawn run, standard set of environmental conditions were maintained including 20-24°C temperature, 50-55 percent soil moisture and 80-85 percent air humidity. Additionally, after spawn run, the bed temperature was kept below 20°C, soil moisture of 30-55 percent along with no change in relative humidity level. Complete spawn run was observed in test strains in 18 and 20 days under controlled mushroom house and net house conditions, respectively. Besides this, 40 and 60 average number of days was taken by the test strains to reach powdery or conidial stage under controlled mushroom house and net house conditions, respectively. Cushion stage was recorded after 10 and 20 days of conidial stage under controlled mushroom house and net house conditions, respectively (Fig 2.3.1).




Fig 2.3.1. Growth stages of *Morchella* mushroom. a. Average time taken by selected strains to reach important growth stages of its life cycle. b. Commercial spawn, c. spawn run, d. Powdery and cushion stage.

Standardization of cultivation technology for Schizophyllum commune using wheat straw

Total 6 treatments of wheat straw substrate namely T_1 - Wheat straw to wheat bran ratio 1:0 (control

गेहूं की भूसी का अनुपात 6:1, टी3 — गेहूं के भूसे से गेहूं की भूसी का अनुपात 5:1, टी4 — गेहूं के भूसे से गेहूं की भूसी का अनुपात 4:1, टी5 — गेहूं के भूसे से गेहूं की भूसी का अनुपात 2:1, टी6 — गेहूं के भूसे से गेहूं की भूसी का अनुपात 2:1, टी6 — गेहूं के भूसे से गेहूं की भूसी के अनुपात 1:1 का मूल्यांकन मशरूम हाउस परिस्थितियों में एस. कम्यून मशरूम की फसल उपज पर उनके प्रभाव का आकलन करने के लिए किया गया था। एससी—179 को एस. कम्यून के सर्वश्रेष्ठ स्ट्रेन के रूप में पहचाना गया जो कि केवल गेहूं के भूसे उगाई गई (14 ग्राम/किलोग्राम गीला सब्सट्रेट)। एससी—99 को जल्दी फलन के लिए पहचाना गया और इसने टी4 में 12—20 ग्राम/किलोग्राम की उच्चतम उपज दी (चित्र 2.3.2)।

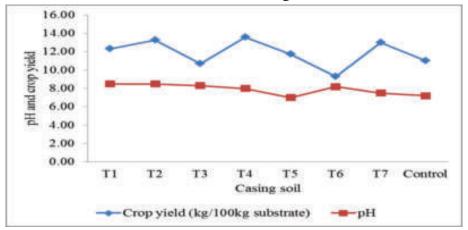
चित्र 2.3.2 गेहूं के भूसे के विभिन्न अनुपातों के साथ पोषाधार पर एस. कम्यून मशरूम की औसत उपज और गेहूं के भूसे पोषाधार पर एस. कम्यून मशरूम के विभिन्न फसल विकास चरण

बटन मशरूम की आवरण सामग्री का मूल्यांकन

विभिन्न आवरण सामग्री और पीएच के प्रभाव का अध्ययन करने हेतु (चित्र 2.3.3) ए. बाइस्पोरस (एनबीएस —5) की खेती गेहूं के भूसे पोषाधार पर की गई। कुल 8 आवरण उपचार जैसे, टी1—खेत की खाद और बगीचे की मिट्टी (9:1) चूने (0.5%), जिप्सम (2%) और फॉर्मेलिन (1%), टी2— कॉयर पिथ और बगीचे की मिट्टी (9:1 के साथ पूरक) चूने (0.5%) और जिप्सम (2%), टी3— चूने (0.5%) और जिप्सम (2%), टी3— चूने (0.5%), जिप्सम (2%), के साथ पूरक और फॉर्मेलिन (1%), टी5— स्पेंट मशरूम सब्सट्रेट के साथ चूना (0.5%), जिप्सम (2%) और फॉर्मेलिन (1%), टी6— फार्मयार्ड खाद और कॉयर पिथ (4:1), टी7—फार्मयार्ड खाद और बगीचे की मिट्टी (9:1) को चूने (0.5%), जिप्सम (2%) और फॉर्मेलिन (1%) और कंट्रोल—गोबर खाद और कॉयर पिथ (1.5:1) के साथ ए. बाइस्पोरस (एनबीएस— 5) का फसल उपज के लिए मूल्यांकन किया गया था। परीक्षण उपचारों का पीएच स्तर क्रमशः 8.5 8.5, 8.5, 8.3, 8.1, 7.0, 8.2, 7.5 और 7.2

experiment); T₂ - Wheat straw to wheat bran ratio 6:1; T₃ - Wheat straw to wheat bran ratio 5:1; T₄ - Wheat straw to wheat bran ratio 4:1; T⁵ - Wheat straw to wheat bran ratio 2:1; T6 - Wheat straw to wheat bran ratio 1:1 were evaluated under mushroom house conditions to assess their effect on crop yield of *S. commune* mushroom. SC-179 was identified as best strain of *S. commune* to obtain highest yield (14g/kg wet substrate) on wheat straw alone. SC-99 was identified for early fruiting and it gave highest yield of 12.20 g/kg in T4 i.e. 4:1 ratio of wheat straw and wheat bran (Fig 2.3.2).

Fig 2.3.2 Mean yield of *S. commune* mushroom on substrates with different ratios of wheat straw to wheat bran and different crop growth stages of *S. commune* mushroom on wheat straw substrate


Evaluation of casing material for button mushroom

Effect of different casing material and pH was studied on A. bisporus NBS-5 colonized wheat straw substrate under mushroom house conditions (Fig 2.3.3). Total 8 casing treatments viz., T₁-Farmyard manure and garden soil (9:1) supplemented with lime (0.5%), gypsum (2%) and formalin (1%), T_2 -Coir pith and garden soil (9:1) supplemented with lime (0.5%) and gypsum (2%), T_3 - Farmyard manure supplemented with lime (0.5%) and gypsum (2%), T_4 -Coir pith supplemented with lime (0.5%), gypsum (2%) and formalin (1%), T₅- Spent mushroom substrate supplemented with lime (0.5%), gypsum (2%) and formalin (1%), T_6 - Farmyard manure and coir pith (4:1), T₇-Farmyard manure and garden soil (9:1) supplemented with lime (0.5%), gypsum (2%) and formalin (1%) and Control- Farmyard manure and coir pith (1.5:1) were evaluated for crop yield of A. bisporus NBS-5. pH levels of the test treatments were recorded as 8.5, 8.5, 8.5, 8.3, 8.1, 7.0, 8.2, 7.5

दर्ज किया गया। । सभी उपचारों टी4 (13.39 किग्रा/100 किग्रा पोषाधार) में सबसे अधिक उपज प्राप्त हुई, जिसके बाद टी2 (13.26 किग्रा/100 किग्रा पोषाधार) में उपज ज्यादा पाई गई । विशेष रूप से सभी आवरण उपचारों में कोई रोग दर्ज नहीं किया गया।

and 7.2, respectively. Among all the treatments highest yield was obtained in T_4 (13.39 kg/100kg substrate) followed by T_2 (13.26 kg/100kg substrate). Notably no disease incidence was recorded in all the casing treatments.

चित्र 2.3.3 सफेद बटन मशरूम की फसल उपज पर विभिन्न आवरण सामग्री और पीएच का प्रभाव (ए.बास्पोरस एनबीएस—5)

लेंटिनस टीग्रिनस की खेती

लेंटिनस की विभिन्न प्रजातियों की भाकृअनुप— खुअनुनि सोलन में खेती करने की कोशिश की गई थी। लेंटिनस के कल्चर को MEA की परख नलियों में 28±1°C में रखा गया था। मानक प्रक्रिया का पालन करते हुए गेहूं आधारित स्पॉन तैयार किया गया था। पोषाधार संरचना 80% चौड़ी पत्ती वाले लकड़ियों का चूरा + 20% गेहूं की भूसी से पोषाधार तैयार किया गया था। स्पॉनिंग 3% गीले पोषाधार के दर पर कि गई थी।

प्रत्येक स्ट्रेन के छह बैग तीन प्रतिकृतियों में लगाए गए थे और विकास मापदंडों के लिए डेटा दर्ज किया गया था जैसे कि कवकजाल उपनिवेशीकरण के लिए लिया गया समय, बेसिडियोकार्प गठन समय, फलनकाय की उपज, पाइलस लंबाई, पाइलस चौड़ाई, स्टाइप की लंबाई और स्टाइप चौड़ाई दर्ज की गई. एक स्ट्रेन लेंटिनस टीग्रिनस कवकजाल उपनिवेषण 15 दिनों के भीतर पूरा हो गया था और प्राइमर्डिया गठन बीजाई के बाद का 22—25 दिनों में 24 ± 2°C के तापमान, 80 ± 2% के आरएच, और 200 लक्स के कृत्रिम प्रकाश के 10—12 घंटे के बाद शुरू हुआ। पूर्ण विकसित फलनकाय स्पॉनिंग के 25—28 दिनों के बाद विकसित हो जाते हैं। लेंटिनस टीग्रिनस के फलनकाय के विभिन्न लक्षण जैसे आकार, आकार, रंग, वजन, जैविक दक्षता दर्ज की गई। औसत टोपी व्यास, औसत तने की लंबाई, फलनकाय का औसत

Fig 2.3.3 Effect of different casing material and pH on crop yield of white button mushroom (A. bisporus NBS-5)

Cultivation of *Lentinus tigrinus*

The species of *Lentinus* were tried to cultivate in ICAR-DMR, Solan. Cultures were raised and maintained on MEA slants at $25 \pm 1^{\circ}$ C. Spawn was prepared on wheat grains following the standard procedure. The substrate composition was 80% broad leaf sawdust + 20% wheat bran. The substrate was prepared and sterilized as per the procedure. Spawning was done under aseptic condition@ 3% of the wet substrate.

Six bags each of strains were planted in three replications and data was recorded for growth parameters such as days taken for mycelial colonization, basidiocarp formation, fruit body yield and yield attributing factors such as pileus length, pileus breath, stipe length and stipe breath were recorded. One strain of Lentinus tigrinus mycelial colonization was completed within 15 days and primordia formation started after 22-25 days of inoculation at a temperature of 24 ± 2°C, RH of 80±2%, and 10-12 hrs of artificial light of 200 lux. Fully grown fruit bodies were developed 25-28 days after spawning. Different traits of fruiting bodies of Lentinus tigrinus viz., shape, size, colour, weight, biological efficiency were recorded. The average cap diameter, average stems length, average fruit body weight was found 6.0 cm, 1.5cm, and 6.9 g, respectively. Fruit body appeared to round and flat

वजन क्रमशः 6.0 सेमी, 1.5 सेमी और 6.9 ग्राम पाया गया। फलनकाय गोल और चपटा दिखाई देता है, जिसमें भूरे रंग के फलनकाय होते हैं, बीच में सफेद धब्बे होते हैं। लेंटिनस टीग्रिनस के स्ट्रेन की जैविक दक्षता 18% पाई गई।

shaped with greyish brown young fruit bodies with whitish patch in centre and mature yellowish fruit bodies with brownish scales. The biological efficiency of strain of *Lentinus tigrinus* was found 18%.

चित्र 2.3.4 नियंत्रित परिस्थितियों में लेंटिनस टीग्रिनस के फलन के विकास चरण ए) पिनहेड चरण बी) युवा चरण और सी) परिपक्व चरण

पेनस वेल्टिनस की खेती

एक और प्रजाति की खेती की गई थी यानी पैनस वेलुटिनस जिसे लेंटिनस वेलुटिनस भी कहा जाता है। लकड़ी सड़ने वाले कवक की खेती के लिए बुरादा सबसे अधिक इस्तेमाल किया जाने वाला पोषाधार है। कई लेंटिनोइड मशरूम जैसे कि लेंटिनस स्क्वेरोसुलस, एल टीग्रिनस और पैनस स्ट्रिगेलस को विभिन्न लिग्नोसेल्यूलोसिक पोषाधार पर सफलतापूर्वक खेती की गई है। अध्ययन में, पी. वेलुटिनस की खेती के लिए कुछ संशोधनों के साथ भाकृअनुप—खुअनुनि, सोलन द्वारा विकसित एक कृत्रिम बैग लॉग तकनीक का उपयोग किया गया था। चौड़ी पत्ती वाले लकड़ियों का चूरा और गेहूं की भूसी से समृद्ध CaCO3 को आधार पोषाधार के रूप में इस्तेमाल किया गया था।

स्पॉनिंग के दिन से 30—40 दिनों की अवधि के भीतर पोषाधार पूरी तरह से पी वेलुटिनस के कवकजाल द्वारा उपनिवेशित हो गया था। कवकजाल उपनिवेशण के पूरा होने पर, 10—15 दिनों के भीतर छोटे सींग के आकार के उभार के रूप में दिखाई देने लगे। इस चरण को पिन हेड गठन चरण के रूप में माना जाता है। कमरों में 28±1°C के तापमान और 79±2% की सापेक्ष आर्द्रता को बनाए रखा गया था।

Fig. 2.3.4 Stages in development of *Lentinus tigrinus* fruiting bodies under controlled growing conditions a) pinhead stage b) young stage and c) Mature stage

Cultivation of Panus velutinus

One more species was cultivated i.e. *Panus velutinus* also known as Lentinus velutinus. Sawdust is the most commonly used substrate for cultivation of wood rotting fungus. Several lentinoid mushrooms such as Lentinus squarrosulus, L. tigrinus and Panus strigellus have been successfully cultivated on different lignocellulosic substrates with relatively higher BE in sawdust substrates. In study, an artificial bag log technology developed by ICAR-DMR, Solan for wood rotting mushrooms was used with some modifications for cultivation of P. velutinus. Saw dust obtained from the broad leaved trees enriched with wheat bran and CaCO₃ was used as the base substrate. The substrate was fully colonized by the mycelia of *P*. velutinus within a period of 30-40 days from the day of spawning. On completion of mycelial colonization, within 10-15 days primordial in form of small horn shaped protuberances appeared. This stage is regarded as the pin head formation stage. The growing conditions such as temperature of 28±1°C,

एक दिन में 10—12 घंटे की अवधि के लिए कृत्रिम प्रकाश की व्यवस्था प्रदान की गई थी। इन परिस्थितियों में, पिन हेड पूरी तरह से 7—10 दिनों के भीतर बेसिडियोकार्प्स में विकसित हो गए थे। सभी फ्लश से औसत बीई 33.3% दर्ज किया गया था।

and relative humidity of $79 \pm 2\%$ were maintained in the cultivation rooms. Artificial lighting was provided for a period of 10-12 hours in a day. In the provided growing conditions, the pin heads were fully grown into basidiocarps within 7-10 days. An average BE of 33.3% was recorded from all the flushes.

चित्र 2.3.5 पैनस वेलुटिनस (ए) पिन हेड चरण (बी) पोषाधार पर पैनस वेलुटिनस के परिपक्व फल निकाय Fig. 2.3.5 Panus velutinus (A) Pin head stage of Fruiting body (B) mature fruit bodies on saw dust substrate of Panus velutinus

2.4 फसल सुरक्षा Crop Protection

एम. पर्निसियोसा (गीला बुलबुला रोग) का जैविक नियंत्रण

बारह बैक्टीरियल आइसोलेट्स (BS-1 से 12) को उनके कॉलोनी आकार के आधार पर सफेद बटन मशरूम के माइकोस्फीयर से अलग किया गया था। उन्हें 4°C पर पोषक तत्व अगर माध्यम वाले परखनिलयों में संग्रहित किया गया था। सभी आइसोलेट्स का मूल्यांकन ए. बाइस्पोरस स्ट्रेन एस-11 और एम. पर्निसियोसा (वेट बबल रोग) के खिलाफ ड्यूल कल्चर विधि से किया गया था। उनमें से, बैक्टीरियल आइसोलेट्स BS-3, 5, 8, 9, 10 और 12 को ए. बाइस्पोरस स्ट्रेन S-11 ओवर कंट्रोल के डायमैट्रिक मायसेलियल ग्रोथ को बढ़ाने में प्रभावी पाया गया। (चित्र 2.4.1.)

Biological control of *M. perniciosa* (wet bubble disease)

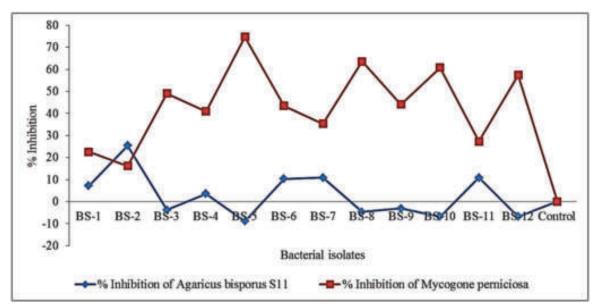
Twelve bacterial isolates (BS-1 to 12) were isolated from mycosphere of white button mushroom (*Agaricus bisporus*) on the basis of their colony morphology. They were stored at 4°C in slants containing nutrient agar medium. All the isolates were evaluated against *A. bisporus* strain S-11 and *M. perniciosa* (wet bubble disease) through dual culture method. Among them, bacterial isolates BS-3, 5, 8, 9, 10 and 12 were found effective in enhancing the diametric mycelial growth of *A. bisporus* strain S-11 over control (Fig 2.4.1)

चित्र 2.4.1 इन विट्रो इनिहबिशन परख में "डुअल कल्चर मेथड" द्वारा सफेद बटन मशरूम (ए. बाइस्पोरस स्ट्रेन एस—11) के माइकोस्फीयर से जुड़े 12 बैक्टीरियल आइसोलेट्स का प्रभाव।

पांच सबसे प्रभावी प्रतिपक्षी बैक्टीरियल आइसोलेट्स को ग्राम स्टेनींग द्वारा अस्थायी रूप से पहचाना गया था और उनकी रूपात्मक और शारीरिक विशेषताओं के आधार पर वर्गीकृत किया गया । बीएस—4 की विशेषता है कि मार्जिन—एरोज, कलर—लाइट ब्राउन, एलिवेशन—उठा, बनावट—चमकदार चिपचिपा, आकार—गोल और ग्राम पाजिटिव है । बीएस—5 की विशेषता है कि मार्जिन—इरोज, रंग—गहरा भूरा, ऊंचाई—उत्तल, बनावट—चमकदार चिपचिपा, आकार—राइजोइड, छोटी रोड टाइप और ग्राम पाजिटिव है । बीएस—8 की विशेषता है कि मार्जिन—इरोज, रंग—गहरा भूरा, ऊंचाई—पलैट, बनावट—चमकदार चिपचिपा, आकार—राइजोइड,

Fig 2.4.1 Effect of *In vitro* inhibition assay by "Dual Culture method" of mushroom mycosphere associated 12 bacterial isolates against white button mushroom (A. bisporus strain S-11).

Five most effective antagonistic bacterial isolates were tentatively identified by gram staining and also characterized based on their morphological and physiological features. BS-4 was characterized as, margin-entire, colour-light brown, elevation-raised, texture-shiny viscous, shape-round and Gram staining- gram -vecocci,BS-5 as: margin- erose, colour-dark brown, elevation-convex, texture-shiny viscous, shape-rhizoid and gram staining-gram +ve small rods, BS-8 as, margin-erose, colour-dark brown, elevation-flat, texture-shiny viscous, shape-



छड़ प्रकार का और ग्राम नेगटिव है । बीएस—10 की विशेषता है कि मार्जिन—अंडुलेट, रंग—पीला पीला, ऊंचाई—पुलवीनेट, बनावट—मेट भंगुर, आकार—अनियमित, रॉड प्रकार का और ग्राम नेगटिव है और बीएस—12 की विशेषता है कि मार्जिन —लोबेट, रंग—पीला पीला, ऊंचाई—उत्तल, बनावट—सूखा म्यूकॉइड, आकार—अनियमित और ग्राम नेगटिव प्रकार का पाया गया था। पांच चयनित बैक्टीरियल आइसोलेट्स में से तीन आइसोलेट्स नामतः बीएस—5 बीएस—10 और बीएस—12 ग्राम पाजिटिव पाया गया, जबकि बीएस—4 और 8 ग्राम नेगटिव पाया गया।

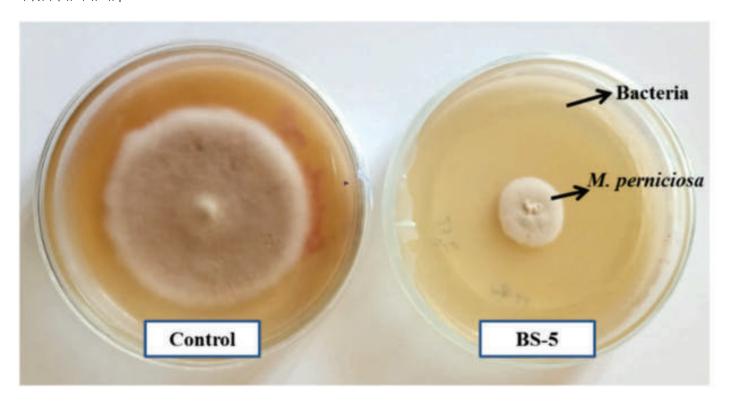
ए. बाइस्पोरस एस—11 के प्रतिशत निषेध पर डेटा से पता चला है कि छह बैक्टीरियल आइसोलेट बीएस—3, 5, 8, 9, 10 और 12 ने मशरूम कवक के विकास को बढ़ावा दिया (चित्र 2.4.2)। उनमें से सबसे अधिक वृद्धि को बढ़ावा देने की क्षमता पर नियंत्रण बीएस—5 में देखी गई, इसके बाद बीएस—10 और बीएस—12 का स्थान रहा। हालांकि, शेष आइसोलेट्स ने मशरूम कवक के विकास को 3.57 से 25.34 प्रतिशत तक बाधित किया।

rhizoid and Gram staining- Gram -ve rods, BS-10 as, margin-undulate, colour-pale yellow, elevation-pulvinate, texture- matte brittle, shape-irregular and gram staining- gram +ve rods and in case of BS-12, margin-lobate, colour-pale yellow, elevation-convex, texture-dry mucoid, shape- irregular and Gram staining- Gram +ve rods. Out of five selected bacterial isolates, three isolates namely BS-5, 10 and 12 showed positive gram staining test whereas BS-4 and 8 found negative in gram staining.

Data on percent inhibition of *A. bisporus* S-11 showed that, six bacterial isolate BS-3, 5, 8, 9, 10 and 12 promoted the growth of mushroom fungus as evidenced by the negative data of growth inhibition(Fig. 2.4.2). Among them highest growth promoting ability over control was observed in BS-5 followed by BS-10 and BS-12. However,remaining isolates inhibited the growth of mushroom fungus from 3.57 to 25.34 percent.

चित्र 2.4.2 डूल कल्चर प्रक्रिया द्वारा मशरूम माइकोस्फीयर से जुड़े बैक्टीरिया का गीले बुलबुले की बीमारी रोग के खिलाफ एंटिफंगल गतिविधि का अध्ययन

डूल कल्चर प्रक्रिया (चित्र 2.4.3) द्वारा एम. पर्निसियोसा (गीला बुलबुला रोग) के खिलाफ उनकी ऐंटिफंगल गतिविधियों के लिए बैक्टीरियल आइसोलेट्स का भी मूल्यांकन किया गया था। एम. पर्निसियोसा के शुद्ध कल्चर की एक 5 —िममी विस्क को पीडीए (आलू डेक्सट्रोज एगर) युक्त पेट्री डिश के केंद्र में रखा गया था।


Fig 2.4.2 Dual culture assay to study the antifungal activity of mushroom mycosphere associated bacterial isolates against *M. perniciosa*

Bacterial isolates were also evaluated for their antifungal activities against *M. perniciosa* (wet bubble disease) by Dual Culture method(Fig 2.4.3). One 5-mm² disk of a pure culture of *M. perniciosa* was placed at the center of a petri dish containing PDA (Potato Dextrose Agar). A circular line, made

चयनित आइसोलेट्स (2x10°cfu/ml) के 7 सेमी व्यास पेट्री डिश को जीवाणु निलंबन में डूबाया गया और एक गोलाकार रेखा, फंगल इनोकुलम (चित्र 2.4.3) के आसपास बनाई गई थी। प्लेटों को 20 दिनों के लिए 25±2°C पर ऊष्मायन किया गया था और रोगजनक (कवक वृद्धि) के विकास व्यास को मापा गया था और विकास को नियंत्रित करने की तुलना में जीवाणु निलंबन को पोषक तत्व ब्रॉथ से बदल दिया गया था।

with a 7-cm diameter Petri dish dipped in bacterial suspension of (2×10°cfu/mL) of the selected isolates, was placed surrounding the fungal inoculum (Fig 3). Plates were incubated at 25±2°C for 20 days and growth diameter of the pathogen (fungal growth) was measured and compared to control growth where the bacterial suspension was replaced with nutrient broth.

चित्र 2.4.3 डुअल कल्चर मेथड" द्वारा इन विट्रो इनहिबिशन में मशरूम माइकोस्फीयर से जुड़े बैक्टीरियल आइसोलेट बीएस—5 की एंटिफंगल गतिविधि को एम. पर्निसियोसा, गीला बुलबुला रोग के कारक एजेंट के खिलाफ दिखाया गया है।

चित्र 2.4.2. में प्रस्तुत डुअल कल्चर मेथड के परिणामों से पता चला है कि एम. पर्निसियोसा का उच्चतम प्रतिशत अवरोध (74.72%) बैक्टीरियल आइसोलेट्स बीएस—5 में दर्ज किया गया था उसके बाद बीएस—8 (63-57%) और बीएस—10 (60-69%) में पाया गया था। जबिक बीएस—2 आइसोलेट ने एम. पर्निसियोसा (16—20%) का सबसे कम प्रतिशत निषेध दिखाया। इसके अतिरिक्त अन्य आइसोलेट्स ने एम. पर्निसियोसा की 27.31 से 49.08 प्रतिशत वृद्धि अवरोध दिखाया। कुल मिलाकर बैक्टीरियल आइसोलेट बीएस—5 एम. पर्निसियोसा के विकास को रोकने और ए. बिस्पोरस एस—11 की वृद्धि को बढ़ाने में सबसे प्रभावी पाया गया।

Fig 2.4.3 In vitro inhibition assay by "Dual Culture method" showing the antifungal activity of mushroom mycosphere associated bacterial isolate BS-5 against *M. perniciosa*, the causal agent of wet bubble disease.

Results of dual culture assay presented in Figure 2.4.2 showed that, highest percent inhibition (74.72%)of *M. perniciosa* was recorded in bacterial isolates BS-5 followed by BS-8 (63.57%) and BS-10 (60.69%). Whereas, BS-2 isolate showed lowest percent inhibition of *M. perniciosa* (16.20%). Additionally, other isolates showed 27.31 to 49.08 percent growth inhibition of *M. perniciosa*. Overall, bacterial isolate BS-5 was found most effective in inhibiting the growth of *M. perniciosa* and increasing the growth of *A. bisporus* S11.

2. एम. पर्निसियोसा (गीला बुलबुला रोग) का रासायनिक नियंत्रण

दो कवकनाशी की प्रभावशीलता, क्रेसोक्सिम मिथाइल (स्ट्रोबिलूरिन) और डिफेनोकोनाजोल (ट्राईजोल) और दो प्रमुख पोषक तत्व, मैंगनीज और मैग्नीशियम का अध्ययन गीले बूलबूले रोग (एम. पर्निसियोसा) के खिलाफ किया गया था। कुल 20 उपचार अर्थात टी1- डिफेनोकोनाजोल (0.4%)+मैंगनीज क्लोराइड (0. 2%)+मैग्नीशियम क्लोराइड (0.4%), टी2 – डिफेनोकोनाजोल (0. 8%)+मैंगनीज क्लोराइड (0.4%)+मैग्नीशियम क्लोराइड (0.4%), टी3- क्रेसोक्सिम मिथाइल (0.4%)+मेंगनीज क्लोराइड (0.2%) मैग्नीशियम क्लोराइड (0.2%), टी4 – क्रेसोक्सिम मिथाइल (0. 8%)+ मैंगनीज क्लोराइड (0.4%)+मैग्नीशियम क्लोराइड (0.4%), टी5- डिफेनोकोनाजोल (0.4%)+मैंगनीज क्लोराइड (0.2%), टी6— डिफेनोकोनाजोल (0.8%) + मैंगनीज क्लोराइड (0.4%), टी7- क्रेसोक्सिम मिथाइल (0.4%)+मैंगनीज क्लोराइड (0.2%), टी8- क्रेसोक्सिम मिथाइल(0.8%)+मैंगनीज क्लोराइड (0.4%), टी९ – डिफेनोकोनाजोल(0.4%)+मैग्नीशियम क्लोराइड(0.2%), टी10-डिफेनोकोनाजोल(0.8%)+मैग्नीशियम क्लोराइड(0.4%), टी11 - क्रेसोक्सिम मिथाइल(0.4%)+मैग्नीशियम क्लोराइड (0. 2%), टी12- क्रेसोक्सिम मिथाइल(0.8%)+मैग्नीशियम क्लोराइड(0.4%), टी13 –डिफेनोकोनाजोल (0.4%), टी14 -डिफेनोकोनाजोल(0.8%), टी15- क्रेसोक्सिम मिथाइल(0.4%), टी16 – क्रेसोक्सिम मिथाइल (0.8%), टी17– मैंगनीज क्लोराइड (0.4%), टी18— मैग्नीशियम क्लोराइड (0.4%), टी19— अन-इनोक्युलेटेड कंट्रोल (पानी) और टी20- टीका-नियंत्रण (बीजाणु निलंबन) का मूल्यांकन व्यक्तिगत रूप से और संयोजनों में किया गया था। सभी उपचारों को 1.5 किग्रा की आवरण वाली मिट्टी में 100 मि.ली. उपचार घोल मिलाकर छिडका गया। सभी उपचारों के सुरक्षात्मक अनुप्रयोगों के बाद, ताजा शुद्ध संवर्धन से तैयार एम. पर्निसियोसा (3x10⁴ बीजाणू/एमएल) के बीजाणू को आवरण मिट्टी साथ इनोकुलेट किया गया था। 5 मि.ली. बीजाणु सस्पेन्शन प्रति 1.5 किग्रा केसिंग मिट्टी को हैंड हेल्ड स्प्रेयर के साथ समान रूप से छिड़का गया था। रोग नियंत्रण प्रतिशत और फसल उपज का अध्ययन किया गया। इनोकुलेट उपचार के तहत, फलनकाय पूरी तरह से माइकोपैरासाइट (एम. पर्निसियोसा) द्वारा विकृत हो जाते हैं, जैसा कि स्क्लेरोडर्मोइड द्रव्यमान (चित्र 2.4.4ए) के गठन से स्पष्ट है। तथापि, अनइनोकुलेट थैलियों में रोग नहीं देखा गया था (चित्र 2.4.4बी)।

2. Chemical control of *M. perniciosa* (wet bubble disease)

Effectiveness of two fungicides; kresoxim methyl (Strobilurins) and difference on a zole (triazole) and two key nutrients; manganese and magnesium were studied against wet bubble disease (M. perniciosa) under mushroom house conditions. Total 20 treatments namely T1-Difenoconazole (0.4%) + manganese chloride (0.2%) + magnesium chloride (0.2%), T2- Difenoconazole (0.8%) + manganese chloride (0.4%) + magnesium chloride (0.4%), T3-Kresoxim methyl (0.4%) + manganese chloride (0.2%) + magnesium chloride (0.2%), T4- Kresoxim methyl (0.8%) + manganese chloride (0.4%) + magnesium chloride (0.4%), T5-Difenoconazole (0.4%) + manganese chloride (0.2), T6-Difenoconazole (0.8%) + manganese chloride (0.4%), T7- Kresoxim methyl (0.4%) + manganese chloride (0.2), T8- Kresoxim methyl (0.8%) + manganese chloride (0.4%), T9- Difenoconazole (0.4%) + magnesium chloride (0.2%), T10 Difenoconazole (0.8%) + magnesium chloride (0.4%), T11- Kresoxim methyl (0.4%) + magnesium chloride (0.2%), T12- Kresoxim methyl (0.8%) + magnesium chloride (0.4%), T13-Difenoconazole (0.4%), T14-Difenoconazole (0.8%), T15-Kresoxim methyl (0.4%), T16- Kresoxim methyl (0.8%), T17-Manganese chloride (0.4%), T18- Magnesium chloride (0.4%), T19- Un-inoculated Control (water) and T20- Inoculated- control (spore suspension)were evaluated individually and in combinations. All the treatments were applied immediately after casing (preventive application) by adding 100ml of treatment solution in 1.5kg casing soil. After protective applications of all the treatments, casing soil was inoculated with spore suspension of M. perniciosa (3x10⁴ spore/ml) prepared from fresh pure culture. 5ml of spore suspension per 1.5kg casing soil was applied uniformly with hand held sprayer. Observations were recorded on percent disease control and crop yield. Under inoculated treatment, fruit bodies are completely deformed by the mycoparasite (M. perniciosa) as evidenced by the formation of sclerodermoid masses (Fig 2.4.4a). However, disease was not noticed in the uninoculated bags (Fig 2.4.4b).

चित्र 2.4.4 : पहली कटाई के समय प्रायोगिक बैगों की स्थितियाँ। ए-टीका नियंत्रण को इंगित करता है और बी-असंक्रमित नियंत्रण को इंगित करता है

एम. पर्निसियोसा द्वारा वर्टिसिलियम जैसे कोनिडियोफोर्स पर छोटी पतली दीवार वाले कोनिडिया (जिन्हें फियालोकोनिडिया या फियालोस्पोर कहा जाता है) का उत्पादन किया और साथ में माल्ट एक्सट्रेक्ट अगर माध्यम (चित्र 2.4.5) पर बहुत बड़े बाइसेलुलर कोनिडिया (आमतौर पर या तो एल्यूरियोस्पोर्स या क्लैमाइडोस्पोर्स के रूप में जाना जाता है) का उत्पादन किया । फियालोकोनिडिया पारदर्शी और एकल कोशिका पाए गए। जबिक, अल्यूरियोस्पोरस परिपक्वता पर बहुकेन्द्रीय, एकल, शीर्षस्थ, हाइलिन या हल्के एम्बर रंग में दिकोशिकीय-शीर्ष कोशिका ग्लोबोज और वार्टेड या वर्रुकोज निचली कोशिका चिकनी स्थिति में पाए गए।

Fig 2.4.4 Conditions of experimental bags at the time of first harvest, a. indicates inoculated control and b. indicates un-inoculated control

M. perniciosa produced small thin walled conidia (referred to as phialoconidia or phialospores) on Verticillium-like conidiophores together with much larger bicellular conidia (commonly referred to as either aleuriospores or chlamydospores) on malt extract agar medium(Fig 2.4.5). Phialoconidiawere found hyaline and single celled whereas, aleuriosporeswere multinucleate, single, apical, hyaline or light amber in colour on maturity, bicellular- apical cell globose and wartedor verrucose and lower cell smooth.

चित्र 2.4.5 एम. पर्निसियोसा का कोनिडिया। ए. फियालोकोनिडिया या फियालोस्पोर को इंगित करता है और बी. अल्यूरियोस्पोर्स या क्लैमाइडोस्पोर को इंगित करता है।

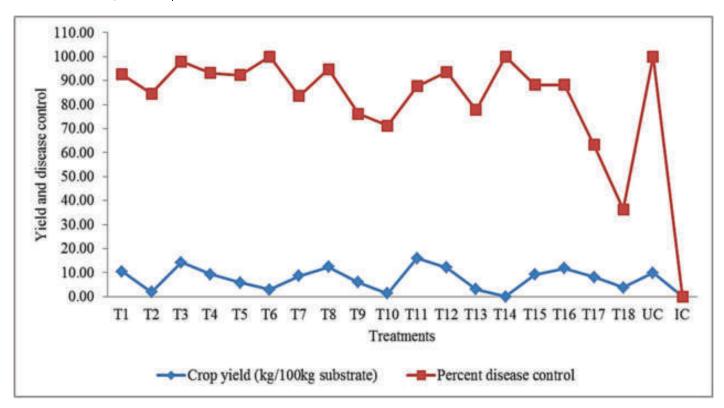


Fig 2.4.5 Conidia of M. perniciosa.; a. indicatesPhialoconidia or phialospores and b. indicatesaleuriospores or chlamydospores.

फसल उपज और रोग नियंत्रण पर डेटा (चित्र2.4.6) से पता चला है कि उच्चतम फसल उपज (15.99 किग्रा प्रति 100 किग्रा पोषाधार) टी11 में प्राप्त की गई थी, इसके बाद टी3 (14.18किग्रा प्रति 100 किग्रा पोषाधार) और टी8 (12.30 किग्रा प्रति 100 किग्रा पोषाधार) प्राप्त हुई थी। सबसे कम फसल उपज (शून्य) टी 14 में दर्ज की गई, उसके बाद टी 10 (1.31 किग्रा प्रति 100 किग्रा पोषाधार) और टी2 (1.91 किग्रा प्रति 100 किग्रा सब्सट्रेट) दर्ज की गई। गीला बुलबुला रोग (एम. पर्निसियोसा) के खिलाफ विभिन्न परीक्षण उपचारों की प्रभावकारिता के परिणामों से पता चला कि टी14 और टी19 (बिना टीका नियंत्रण) में रोग प्रकट नहीं हुआ था। हालांकि, टी 14 ने मशरूम कवक और माइकोपैरासाइट (एम. पर्निसियोसा) दोनों को पूरी तरह से रोक दिया। इसके अलावा, टी 6 भी पूरी तरह से रोग को नियंत्रित करता है लेकिन खराब फसल उपज (2.93 किग्रा प्रति 100 किग्रा पोषाधार) का उत्पादन करता है। वांछित फसल उपज और रोग नियंत्रण के आधार पर टी 11 और टी 3 को सबसे प्रभावी उपचार के रूप में पहचाना गया।

Data on crop yield and disease control (Fig 2.4.6) revealed that highest crop yield (15.99 kg/100kg substrate) was obtained in T11 followed by T3 (14.18 kg/100kg substrate) and T8 (12.30 kg/100kg substrate). Lowest or no crop yield (nil) was recorded in T14 followed by T10 (1.31 kg/100kg substrate) and T2 (1.91 kg/100kg substrate). Results of efficacy of different test treatments against wet bubble disease (M. perniciosa) showed that disease was not appeared in T14 and T19 (un-inoculated control). However, in case of T14 it completely inhibited both mushroom fungus and mycoparasite (M. perniciosa). Besides this, T6 also completely control the disease but produced poor crop yield (2.93 kg/100kg substrate). Based on the desirable crop yield and disease control T11 and T3 were identified asmost effective treatments.

चित्र 2.4.6 अर्ध—नियंत्रित परिस्थितियों में दो कवकनाशी (क्रेसोक्सिम मिथाइल और डिफेनोकोनाजोल) और दो पोषक तत्वों (मैंगनीज और मैग्नीशियम) का गीला बुलबुला रोग (एम. पर्निसियोसा) और सफेद बटन मशरूम (ए. बाइस्पोरस) के खिलाफ प्रभावशीलता। UC अनइनोकुलेटेड कंट्रोल को इंगित करता है और IC इनोकुलेटेड कंट्रोल को इंगित करता है।

Fig 2.4.6 Control efficacies of two fungicides (kresoxim methyl and difenoconazole) and two nutrients (manganese and magnesium) against wet bubble disease (*M. perniciosa*) and white button mushroom (*A. bisporus*) under semi-controlled conditions. UC indicates un-inoculated control and IC is inoculated control.

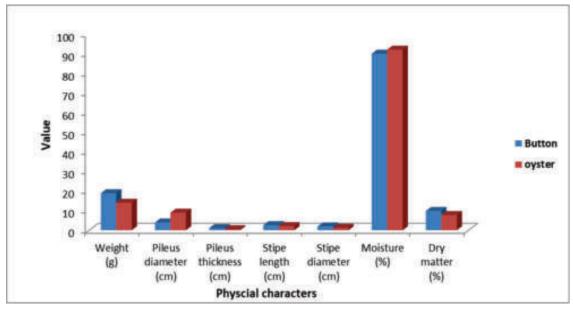
2.5 फसलोत्तर प्रौद्योगिकी Post-Harvest Technology

अधिक श्वसन क्रिया एवं नमी के कारण खुम्ब में पौष्टिक तत्व ज्यादा होने के बावजूद यह एक नाशवान फसल है इन्हीं कारणों से खुम्ब बहुत जल्दी खराब हो जाती है जिसकी वजह से इसे दूरस्थ जगहों व मंडियों में नहीं भेजा जा सकता है । खुम्ब का उत्पादन एवं उत्पादकता प्रति वर्ष बढ़ रही है लेकिन लम्बे समय तक इसकी पूर्ति बनाये रखने के लिए फसलोत्तर खराबी को रोकना जरुरी है तािक उन क्षेत्रों के उपभोक्ताओं तक पहुँच सके जहाँ इसका उत्पादन नहीं होता । खुम्ब उत्पादक उत्पादन बढ़ाने के अनिच्छुक हैं क्योंकि उनके उत्पाद की भण्डारण आयु कम होने के कारण उन्हें इसकी बिक्री निम्न दर पर करनी पड़ती है खुम्ब की फसलोत्तर खराबी को कम करने के तथा भण्डारण आयु बढ़ाने के लिए अनेक प्रयोग किये गए जिनके परिणाम नीचे दिए गए हैं:

भण्डारण के दौरान बटन एवं ओएस्टर खुम्ब के अचल जीवन पर विभिन्न पैकेजिंग सामग्री का प्रभाव :

श्वेत बटन (अगेरिकस बाईस्पोरस) किस्म एन बी एस-5 और ओएस्टर (प्लयूरोट्स ओस्ट्रेटस किस्म पलोरिडा) खुम्ब को अलग–अलग पैकेजिंग सामग्री जैसे पॉलिथीन (150 गेज), जूट बैग, बबल रैप, गैर अवशोषित कॉटन बैग, कोरुगेटेड रेशा बोर्ड (CFB), भूरा पेपर, कॉटन बैग, समाचार पत्र, पन्नेट एवं कंट्रोल (बिना किसी पैकिंग के) का उपयोग किया गया। 400 ग्राम खुम्ब फलनकाय के भौतिक लक्षणों से पता चला की ओएस्टर खुम्ब के मुकाबले श्वेत बटन खुम्ब में कहीं अधिक भार, खुम्ब छत्रक की मोटाई, तने व डंटल की लम्बाई, तने तथा डंटल का व्यास और शुष्क सामग्री पाई गई। डंठल की मोटाई एवं नमी श्वेत बटन खुम्ब के मुकाबले ओएस्टर खुम्ब में अधिक पाई गयी (चित्र 2.5.1)। भण्डारण के दौरान दोनों श्वेत बटन एवं ओएस्टर खुम्ब में कंट्रोल (बिना किसी रसायन में ड्बोने) में (परिवेशी तापमान में 72 घन्टे तथा कम तापमान पर 16-20 दिनों तक) शरीरक्रिया भार नुकसान (%PLW) को दर्ज किया गया जो दोनों परिस्थितियों में भण्डारण अवधि बढने के साथ साथ उल्लेखनीय रूप से बढा । यद्यपि यह परिवेशी तापमान पर बटन एवं ओएस्टर खुम्ब में कंट्रोल से सर्वाधिक पाया गया जिसके बाद समाचार पत्र, कॉटन बैग, भूरा पेपर, तथा जूट में रहा जबिक कम तापमान में बटन में (कंट्रोल में) सबसे अधिक तथा पॉलिथीन व बबल रैप में कम पाया गया लेकिन ओएस्टर खुम्ब में कोरुगेटेड रेशा

Mushroom is nutritionally rich but highly perishable crop owing to its respiration rate and moisture content. Because of high respiration rate and moisture content, the mushrooms are spoiled very fast restricting their supply and availability at the distant places and markets. The production and productivity of mushrooms are increasing every year but to maintain the supply for a longer duration the postharvest spoilage is to be checked so that it reaches to maximum consumers at the places where it is not grown. The mushroom growers are reluctant to increase the production as the shelf life of their produce is very low forcing them to sale it at minimum prices. To restrict the postharvest spoilage and increasing the shelf life of mushroom a series of experiments have been conducted and the results are presented below.


Effect of different packaging material on the shelf life of button and oyster mushrooms during storage

The white button mushroom (Agaricus bisporus) var. NBS-5 and oyster (Pleurotus ostreatus var. Florida) mushrooms were subjected to storage in different packaging material viz., Polyethylene (150 gauge), jute bag, bubble wrap, non-absorbent cotton bag, corrugated fibre board (CFB), brown paper bag, cotton cloth bag, newspaper, punnet along with control (without packing) at ambient (25°C) and low temperature (4-6°C) in 400 gm capacity. The physical characters of the fruit bodies of the white button and oyster mushroom showed higher weight, pileus thickness, stipe length, stipe diameter and dry matter in former compared to latter. The pileus diameter and moisture content was recorded more in oyster compared to button mushroom (Fig.2.5.1) The physiological loss in weight (%PLW) in both the mushrooms (button oyster mushroom) in control (without any chemical dip) was recorded during the storage (72 hours at ambient conditions and 16-20 days at low temperature) which was found to increase significantly with the storage period at both the conditions. However, it was found maximum in control followed by newspaper, cotton cloth, brown paper and jute whereas minimum in polyethylene, punnet and bubble wrap at ambient storage conditions in button and oyster mushrooms whereas at low temperature maximum in control and minimum in

बोर्ड (CFB) में उच्चतम तथा पन्नेट में सबसे कम रिकॉर्ड किया गया (तालिका 2.5.1 से 2.5.4)।

punnet followed by PE and bubble wrap in button and highest in CFB and lowest in punnet in case of oyster mushroom (Table 2.5.1 to 2.5.4).

चित्र 2.5.1 बटन (एनबीएस—5) तथा ऑयस्टर (प्लूरोट्स ओस्ट्रेटस किस्म फ्लोरिडा) खुम्ब के भौतिक लक्षण

Fig. 2.5.1. Physical characters of button (NBS-5) and oyster (*P. ostreatus* var. Florida) mushroom

तालिका 2.5.1 श्वेत बटन (400 ग्राम) किस्म एनबीएस – 5 को परिवेशी तापमान (कंट्रोल) पर भण्डारण के दौरान विभिन्न पैकेजिंग सामग्रियों में शरीरक्रिया भार में कमी

Table. 2.5.1 Physiological loss in white button mushroom (400gm) var. NBS-5 stored in different packaging material at ambient temperature (Control)

Packaging material		Storage period (hours)											
	0	6	12	18	24	30	36	42	48	54	60	66	72
Polyethylene	0.0	0.65	1.55	3.03	4.84	6.30	7.07	7.67	8.30	9.20	9.98	10.52	11.05
Jute	0.0	1.70	3.14	5.23	6.50	8.52	10.79	12.18	13.50	14.43	15.32	16.08	16.50
Bubble wrap	0.0	1.26	2.23	3.77	5.44	6.90	7.65	8.69	9.39	10.78	11.64	12.41	13.11
Cotton (Non abs)	0.0	1.48	2.70	3.99	6.21	8.21	10.20	11.11	12.31	13.23	14.08	15.17	16.09
CFB	0.0	1.59	3.30	5.36	7.24	8.45	10.30	11.55	12.78	13.85	14.79	15.49	15.90
Brown paper	0.0	2.45	4.20	6.98	8.76	11.2 5	13.25	15.71	16.04	17.91	18.93	19.69	20.29

ANNUAL REPORT

Cotton cloth	0.0	3.00	5.75	8.58	10.98	12.9 2	14.6 5	16.0 0	17.1 2	18.2 4	19.1 7	19.7 9	20.68
Newspaper	0.0	3.05	4.75	7.93	10.70	12.0 1	14.9 0	16.0 7	18.3 9	19.4 9	20.1 9	21.7 0	21.87
Punnet	0.0	1.28	2.26	3.40	5.30	6.70	7.49	8.19	9.24	10.4 3	11.2 8	12.1 2	12.82
Control	0.0	3.20	5.78	8.70	11.52	14.0 1	15.3 9	17.0 0	19.0 4	21.8 4	22.7 2	23.2 0	23.80
CD (0.05)	0.0	0.17	0.29	0.43	0.58	0.64	0.75	0.84	0.92	1.04	1.12	1.15	1.19

तालिका 2.5.2 कम तापमान पर विभिन्न पैकेजिंग सामग्री में संग्रहित सफेद बटन मशरूम (400 ग्राम) एनबीएस – 5 किस्म के शरीरक्रिया भार में कमी (नियंत्रण)

Table 2.5.2 Physiological loss in white button mushroom (400gm) var. NBS-5 stored in different packaging material at low temperature (Control)

Packaging material		Storage period (Days)										
	0	2	4	6	8	10	12	14	16	18	20	
Polyethylene	0.0	0.70	1.20	1.45	1.69	2.42	2.88	3.09	3.40	4.06	4.17	
Jute	0.0	3.20	4.18	6.09	7.80	9.32	11.58	13.10	15.54	16.54	17.78	
Bubble wrap	0.0	1.09	1.32	1.60	1.93	2.71	3.20	4.04	4.17	4.64	4.90	
Cotton (Non abs)	0.0	2.80	3.63	4.57	6.10	7.62	9.01	26.78	30.78	32.89	35.25	
CFB	0.0	4.90	8.05	11.05	13.91	17.10	22.06	25.12	27.03	27.50	28.17	
Brown paper	0.0	1.82	3.45	4.44	6.09	8.87	10.78	14.94	18.07	19.41	21.10	
Cotton cloth	0.0	3.05	5.15	6.93	9.37	11.03	14.23	17.08	20.05	22.69	25.67	
Newspaper	0.0	2.20	4.19	6.24	8.70	10.81	12.54	15.50	16.98	18.48	20.80	
Punnet	0.0	0.22	0.24	0.32	0.45	0.75	1.25	1.80	2.08	2.52	2.90	
Control	0.0	6.22	11.03	15.07	19.98	26.05	30.42	35.90	41.54	44.12	46.68	
CD (0.05)	0.0	0.18	0.30	0.38	0.46	0.52	0.61	0.75	0.81	0.89	0.97	

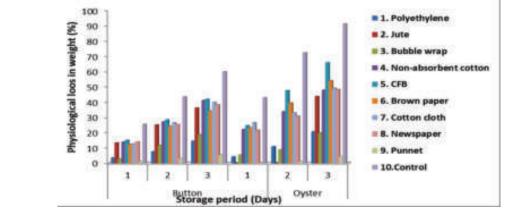
तालिका 2.5.3 परिवेश तापमान पर विभिन्न पैकेजिंग सामग्री में संग्रहित ओएस्टर (प्लुरोटस ओस्ट्रेटस किस्म "फ्लोरिडा) (400 ग्राम) के शरीरक्रिया भार में कमी (नियंत्रण)

Table 2.5.3. Physiological loss in oyster (*Pleurotus ostreatus* var. Florida) mushroom (400gm) stored in different packaging material at ambient temperature (Control)

Packaging		Storage period (hours)														
material	0	6	12	18	24	30	36	42	48	54	60	66	72			
Polyethylene	0.0	0.8 5	2.01	3.75	5.20	6.2 4	7.10	7.80	8.60	9.7 0	10.4 4	11.15	11.79			
Jute	0.0	1.8	3.59	5.75	7.69	8.9 8	11.12	13.1 4	14.2 5	15. 55	16.3 0	17.67	18.22			
Bubble wrap	0.0	1.3	2.56	4.11	5.54	6.9 0	7.93	8.75	9.89	11.6 2	12.4 8	13.60	14.54			
Cotton (Non abs)	0.0	1.8	3.45	4.95	7.32	8.7 2	11.06	12.8 4	14.2 0	15. 34	16.5 9	17.37	18.12			
CFB	0.0	2.0	3.52	5.55	7.80	9.8 8	11.05	12.9 3	13.3 3	14. 27	15.4 0	16.50	17.98			
Brown paper	0.0	2.7 8	4.86	7.63	9.00	12. 49	14.60	16.7 5	17.9 2	18. 98	19.8 1	21.08	21.90			
Cotton cloth	0.0	3.2	6.65	9.09	11.81	13. 80	16.05	17.9 8	18.1 0	19. 10	20.1 7	21.26	22.15			
Newspaper	0.0	3.3	5.60	8.22	12.00	14. 12	16.32	18.3 0	19.3 4	20. 40	21.1 5	22.80	23.08			
Punnet	0.0	1.4 4	2.51	4.05	5.75	7.3 0	8.87	9.75	10.5 5	11.2 9	11.8 7	14.22	14.10			
Control	0.0	3.6 5	6.58	9.85	12.98	14. 70	16.15	18.9 4	20.2	22. 28	23.4 5	25.18	26.03			
CD (0.05)	0.0	0.1 9	0.31	0.45	0.60	0.6 9	0.78	0.87	0.97	1.0 9	1.17	1.23	1.28			

तालिका 2.5.4 कम तापमान पर विभिन्न पैकेजिंग सामग्री में संग्रहित ओएस्टर (प्लुरोटस ओस्ट्रेटस किस्म "फ्लोरिडा) (400 ग्राम) के शरीरक्रिया भार में कमी (नियंत्रण)

Table 2.5.4. Physiological loss in oyster (Pleurotus ostreatus var. Florida) mushroom (400gm) stored in different packaging material at low temperature (Control)


Packaging material		Storage period (Days)										
material	0	2	4	6	8	10	12	14	16			
Polyethylene	0.0	1.34	1.75	2.43	3.82	6.79	7.92	8. 92	10.40			

Jute	0.0	6.84	12.02	15.96	21.85	27.78	33.50	38.96	45.07
Bubble wrap	0.0	1.47	2.78	4.07	5.95	9.90	10.21	10.71	11.05
Cotton (Non abs)	0.0	4.90	8.92	13.64	18.78	28.09	34.82	41.09	48.85
CFB	0.0	16.04	32.07	47.12	66.04	73.87	78.90	84.04	87. 80
Brown paper	0.0	10.64	19.10	25.40	32.08	36.42	41.10	45.14	49.69
Cotton cloth	0.0	4.47	10.40	16.08	22.60	28.63	35.77	41.82	48.60
Newspaper	0.0	6.78	13.07	19.04	25.32	32.06	39.15	44.80	49.04
Punnet	0.0	0.10	0.52	0.77	1.10	1.78	2.04	2.27	3.04
Control	0.0	20.02	32.05	45.05	56.38	65.15	72.02	78.90	85.50
CD (0.05)	0.00	0.32	0.39	0.48	0.57	0.65	0.77	0.89	0.96

बटन (एनबीएस—5) और ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) मशरूम के फल निकायों को 0.05% KMS के जलीय घोल से उपचारित कर विभिन्न पैकेजों में पैकिंग कर परिवेश और कम तापमान पर भंडारण किया गया। डेटा ने दोनों मशरूमों में शरीरक्रिया भार में कमी (%) में एक महत्वपूर्ण नुकसान को दर्शाया (परिवेश में 3 दिन और कम तापमान पर 10—12 दिन) जिसमें अधिकतम नियंत्रण के साथ समाचार पत्र, ब्राउन पेपर, सीएफबी, जूट बैग, सूती कपड़े जबिक यह पन्नेट में न्यूनतम होने के बाद पॉलीइथाइलीन एवं बबल रैप में रहा (चित्र 2.5.2)। बटन मशरूम के साथ—साथ ऑयस्टर मशरूम (तालिका 2.5.5 और 2.5.6) में शरीरक्रिया भार में कमी (%) सबसे अधिक नियंत्रण और सबसे कम पन्नेट के साथ बढ़ती प्रवृत्ति दिखाई।

The fruit bodies of button (NBS-5) and oyster (*P. ostreatus* var. Florida) mushrooms were treated with aqueous solution of 0.05% KMS followed by packing in different packages and storage at ambient and low temperature. The data revealed a significant loss in PLW (%) in both the mushrooms at both the storage (3 days at ambient and 10-12 days at low temperature) conditions with maximum in control followed by newspaper, brown paper, CFB, jute bag, cotton cloth whereas it was minimum in punnet followed by polyethylene bubble wrap (Fig. 2.5.2). The PLW (%) showed an increasing trend with highest in control and lowest in punnet in button mushroom as well as oyster mushroom (Table 2.5.5 and 2.5.6).

चित्र 2.5.2 बटन (एनबीएस—5) और ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) मशरूम में 0.05% KMS के उपचार के बाद परिवेशी तापमान पर शरीरक्रिया वजन में कमी

Fig. 2.5.2 Physiological loss in weight in button (NBS-5) and oyster (*P. ostreatus* var. Florida) mushroom at ambient temp. after treating with 0.05% KMS

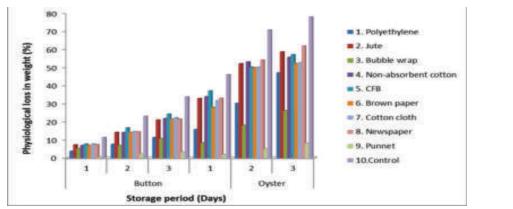
तालिका 2.5.5. सफेद बटन मशरूम (400 ग्राम) किस्म एनबीएस – 5 में 0.05% KMS के उपचार के बाद अलग – अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरक्रिया वजन में कमी

Table 2.5.5. Physiological loss in white button mushroom (400gm) var. NBS-5 stored in different packaging material at low temperature after 0.05% KMS dip treatment

Packaging material			Storage p	eriod (Day	rs)	
	0	2	4	6	8	10
Polyethylene	0	1.30	1.89	2.38	3.43	5.09
Jute	0	6.80	11.45	15.20	18.39	23.70
Bubble wrap	0	1.10	2.23	2.52	2.89	4.75
Cotton (Non abs)	0	8.90	14.78	18.94	23.35	28.78
CFB	0	7.14	13.43	18.40	24.22	29.92
Brown paper	0	6.54	11.45	16.65	22.63	28.40
Cotton cloth	0	8.08	13.28	17.20	23.10	28.80
Newspaper	0	6.95	11.17	14.92	19.35	25.07
Punnet	0	0.75	1.80	2.00	2.57	3.13
Control	0	15.45	25.86	35.77	45.15	52. 17
CD (0.05)	0.00	0.30	0.41	0.47	0.55	0.62

तालिका 2.5.6 ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म "फ्लोरिडा) मश्रूम (400 ग्राम) में 0.05% KMS के उपचार के बाद अलग – अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरिक्रिया वजन में कमी

Table 2.5.6. Physiological loss in oyster (*Pleurotus ostreatus*. Florida) mushroom (400 gm) stored in different packaging material at low temperature after 0.05% KMS dip treatment


Packaging material			St	orage period (Days)							
	0	0 2 4 6 8 10 12										
Polyethylene	0	2.38	4.33	7.17	8.92	9.67	13.49					
Jute	0	11.75	23.15	31.29	41.14	45.15	54.12					
Bubble wrap	0	1.80	2.48	3.82	7.67	10.18	13.78					

Cotton (Non abs)	0	11.87	25.24	33.96	54.24	58.98	68.90
CFB	0	14.84	27.90	37.70	56.72	59.97	71.25
Brown paper	0	16.28	28.89	38.98	57.19	60.30	67.22
Cotton cloth	0	17.20	31.36	40.30	58.30	61.75	65.82
Newspaper	0	16.15	28.49	38.52	57.00	60.08	71.90
Punnet	0	0.26	0.75	1.20	1.95	2.15	3.29
Control	0	48.03	68.14	84.45	93.07	93.07	93.07
CD (0.05)	0	0.48	0.59	0.76	0.92	1.02	1.14

बटन (एनबीएस—5) और ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) के मशरूम फल निकायों को 0.3% साइट्रिक एसिड के जलीय घोल से उपचारित करने के बाद 400 ग्राम क्षमता के विभिन्न पैकेजों में परिवेश और निम्न तापमान पर भंडारण किया गया। परिणामों ने दोनों मशरूमों में शरीरक्रिया वजन में कमी (%) में एक महत्वपूर्ण नुकसान दिखाया (परिवेश में 3 दिन और कम तापमान पर 12—16 दिन) जिसमें अधिकतम नियंत्रण के साथ सीएफबी, सूती कपड़े और बटन में पन्नेट में न्यूनतम जबिक परिवेशी परिस्थितियों में यह सबसे अधिक नियंत्रण में था और ऑयस्टर मशरूम में पनेट में सबसे कम था (चित्र 2.5.3)। कम तापमान पर शरीरक्रिया वजन में कमी (%) नियंत्रण में अधिकतम होने के साथ दोनों मशरूमों में पन्नेट में तुलनात्मक रूप से बेहतर एवं न्यूनतम था (तालिका 2.5.7 और 2.5.8)।

The mushroom fruit bodies of button (NBS-5) and oyster (*P. ostreatus* var. Florida) were treated with aqueous solution of 0.3% citric acid followed by storage at ambient and low temperature in different packages of 400 g capacity. The results showed a significant loss in PLW (%) in both the mushrooms at both the storage (3 days at ambient and 12-16 days at low temperature) conditions with maximum in control followed by CFB, cotton cloth and minimum in punnet in button mushroom whereas it was highest in control and lowest in punnet in oyster mushroom at ambient conditions (Fig. 2.5.3). At low temperature the PLW (%) was comparatively better with maximum loss in control and minimum in punnet in both the mushrooms (Table 2.5.7 & 2.5.8).

चित्र 2.5.3 बटन (एनबीएस—5) और ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) मशरूम में 0.3%साइट्रिक एसिड के उपचार के बाद परिवेशी तापमान पर शरीरक्रिया वजन में कमी

Fig. 2.5.3. Physiological loss in weight in button (NBS-5) and oyster (*P. ostreatus* var. Florida) mushroom at ambient temp. after treating with 0.3% citric acid

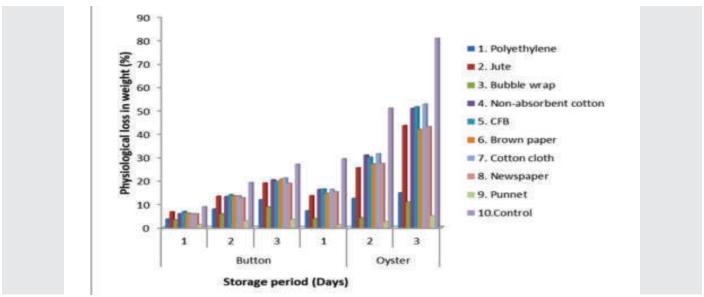
तालिका 2.5.7 सफेद बटन मशरूम (400 ग्राम) किस्म एनबीएस – 5 में 0.3 % साइट्रिक एसिंड के उपचार के बाद अलग – अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरिकया वजन में कमी

Table 2.5.7. Physiological loss in white button mushroom (400gm) var. NBS-5 stored in different packaging material at low temperature after 0.3% citric acid dip treatment

Packaging material		Storage period (Days)											
	0	2	4	6	8	10	12	14	16				
Polyethylene	0.0	2.45	3.55	4.63	6.15	7.57	9.15	11.12	12.70				
Jute	0.0	7.05	12.39	18.94	26.24	32.64	37.47	41.64	49.60				
Bubble wrap	0.0	4.10	6.17	7.64	9.45	11.70	13.20	15.87	16.95				
Cotton (Non abs)	0.0	10.05	21.27	23.45	29.20	35.94	45.96	53.23	59.50				
CFB	0.0	9.65	18.25	27.69	33.47	41.15	48.94	55.09	61.74				
Brown paper	0.0	8.15	15.74	23.98	29.76	35.60	44.36	48.15	55.72				
Cotton cloth	0.0	7.48	14.85	22.47	29.13	38.29	46.23	52.50	57.80				
Newspaper	0.0	8.85	16.09	23.24	29.85	36.88	45.70	49.40	54.57				
Punnet	0.0	0.22	0.49	1.14	1.65	2.63	3.58	4.14	5.17				
Control	0.0	17.40	25.84	34.07	40.48	49.90	54.79	61.20	67.50				
CD (0.05)	0.0	0.46	0.58	0.61	0.79	0.85	0.93	1.09	1.16				

तालिका 2.5.8 ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म "फ्लोरिडा) मशरूम (400 ग्राम) में 0.3 % साइट्रिक एसिड के उपचार के बाद अलग — अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरिकया वजन में कमी

Table 2.5.8. Physiological loss in oyster (*Pleurotus ostreatus* var. Florida) mushroom (400gm) stored in different packaging material at low temperature after 0.3% citric acid dip treatment


Packaging material			Sto	orage pei	riod (Days)		
	0	2	4	6	8	10	12
Polyethylene	0	1.37	2.93	11.74	13.14	14.76	16.40
Jute	0	7.67	14.75	24.53	35.74	45.23	53.73
Bubble wrap	0	2.03	3.98	6.03	7.04	8.32	9.74
Cotton (Non abs)	0	8.39	18.71	31.12	40.03	52.15	63.87

CFB	0	6.72	17.38	28.78	38.85	50.78	61.98
Brown paper	0	8.55	17.79	27.26	37.77	47.90	58.88
Cotton cloth	0	9.12	18.09	32.87	42.50	55.65	66.77
Newspaper	0	10.09	23.15	35.74	44.89	56.19	67.54
Punnet	0	0.29	0.97	1.67	2.59	3.10	3.74
Control	0	14.86	50.42	66.22	81.20	88.24	89.68
CD (0.05)	0	0.37	0.60	0.77	0.89	0.97	1.04

बटन मशरूम (एनबीएस—5) और ऑयस्टर मशरूम (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) को 0.3% एस्कॉर्बिक एसिड के जलीय घोल में डुबोया गया जिसके बाद 400 ग्राम क्षमता के विभिन्न पैकेजों में पैकिंग की गई और परिवेश (25°C) और कम तापमान (4–6°C) पर भंडारण किया गया। । प्रयोग के परिणामों ने दोनों मशरूमों के फलन में शरीरक्रिया वजन में कमी (%) में दोनों भंडारण (परिवेश पर 3 दिन और कम तापमान पर 14–18 दिन) की स्थिति में एक महत्वपूर्ण नुकसान दिखाया, जिसमें अधिकतम नियंत्रण के साथ समाचार पत्र, ब्राउन पेपर, सीएफबी, जूट बैग, सूती कपड़ा था जबिक पॉलीथीन, बबल रैप और पन्नेट में यह न्यूनतम पाया गया (चित्र 2.5.4 और तालिका 2.5.9 एवं 2.5.10)।

The button mushroom (NBS-5) and oyster mushroom (*P. ostreatus* var. Florida) were dipped in aqueous solution of 0.3% ascorbic acid followed by packing in different packages of 400 g capacity and storage at ambient (25°C) and low temperature (4-6°C). The results of the experiment showed a significant loss in PLW (%) in fruit bodies of both the mushrooms at both the storage (3 days at ambient and 14-18 days at low temperature) conditions with maximum in control followed by newspaper, brown paper, CFB, jute bag, cotton cloth whereas it was minimum in polyethylene, bubble wrap and punnet (Fig.2.5.4 and Table 2.5.9 & 2.5.10).

चित्र 2.5.4 बटन (एनबीएस—5) और ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म फ्लोरिडा) मशरूम में 0.3% एस्कॉर्बिक एसिड के उपचार के बाद परिवेशी तापमान पर शरीरक्रिया वजन में कमी

Fig. 2.5.4. Physiological loss in weight in button (NBS-5) and oyster (*P. ostreatus* var. Florida) mushroom at ambient temp. after treating with 0.3% ascorbic acid

तालिका 2.5.9 सफोद बटन मशरूम (400 ग्राम) किस्म एनबीएस – 5 में 0.3% एस्कॉर्बिक एसिड के उपचार के बाद अलग – अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरिकया वजन में कमी

Table 2.5.9. Physiological loss in white button mushroom (400gm) var. NBS-5 stored in different packaging material at low temperature after 0.3% ascorbic acid dip treatment

Packaging material	Storage period (Days)								
	0	2	4	6	8	10	12	14	
Polyethylene	0.0	4.06	6.42	10.59	13.70	17.13	21.52	25.58	
Jute	0.0	7.86	14.66	20.61	27.73	33.79	40.80	47.29	
Bubble wrap	0.0	1.51	1.94	3.13	4.65	5.73	6.92	7.68	
Cotton (Non abs)	0.0	9.65	18.24	26.28	30.36	39.59	46.13	52.46	
CFB	0.0	10.41	19.95	30.26	37.63	46.09	54.44	59.21	
Brown paper	0.0	13.16	16.33	22.17	27.12	33.46	39.50	45.34	
Cotton cloth	0.0	10.23	18.51	24.94	30.71	38.45	45.53	52.17	
Newspaper	0.0	8.47	14.45	21.08	25.65	31.84	39.02	47.77	
Punnet	0.0	0.93	1.70	2.47	3.24	4.01	5.10	5.71	
Control	0.0	2.38	18.43	31.85	39.81	49.37	58.47	64.39	
CD (0.05)	0.00	0.65	0.81	1.06	1.14	1.18	1.25	1.32	

तालिका 2.5.10 ऑयस्टर (प्लुरोटस ओस्ट्रेटस किस्म "फ्लोरिडा) मशरूम (400 ग्राम) में 0.3% एस्कॉर्बिक एसिड के उपचार के बाद अलग – अलग पैकेजिंग सामग्री में संग्रहित कम तापमान पर शरीरिक्रया वजन में कमी

Table 2.5.10. Physiological loss in oyster (*Pleurotus ostreatus* var. Florida) mushroom (400gm) stored in different packaging material at low temperature after 0.3% ascorbic acid dip treatment

Packaging material	Storage period (Days)									
materiai	0	2	4	6	8	10	12	14	16	18
Polyethylene	0.0	2.41	3.50	5.04	6.66	7.67	8.90	9.78	11.44	13.20
Jute	0.0	1.22	14.31	19.42	26.83	31.32	37.62	43.44	49.25	54.05
Bubble wrap	0.0	1.01	1.94	3.49	4.20	5.40	6.06	6.86	7.70	8.36

Cotton (Non abs)	0.0	7.61	16.20	23.19	29.96	35.94	45.06	51.61	57.19	63.30
CFB	0.0	7.67	18.56	24.65	30.47	38.74	45.60	52.52	59.04	63.57
Brown paper	0.0	8.63	17.07	23.12	27.13	34.97	42.51	50.88	56.25	61.05
Cotton cloth	0.0	12.13	19.48	26.92	34.67	42.42	50.57	55.00	60.47	65.01
Newspaper	0.0	7.63	16.77	23.21	28.05	35.86	42.52	48.37	54.32	60.05
Punnet	0.0	0.33	0.83	1.24	1.65	2.06	2.56	3.14	3.63	3.88
Control	0.0	19.17	38.58	50.17	58.80	70.68	76.94	81.98	83.95	85.05
CD (0.05)	0.0	0.43	0.52	0.61	0.69	0.78	0.87	0.95	1.05	1.14

बटन के साथ—साथ ऑयस्टर मशरूम में सभी पैकेजों में भंडारण के दौरान प्रोटीन, कुल शर्करा, फिनोल और पॉलीफेनोल ऑक्सीडेज गतिविधि में एक महत्वपूर्ण अंतर दर्ज किया गया जिसमें दोनों बटन और ऑयस्टर में कम तापमान की तुलना में परिवेश में कुल प्रोटीन, कुल शर्करा और फिनोल में अधिक कमी के साथ पॉलीफेनोल गतिविधि में उल्लेखनीय वृद्धि हुई।

मूल्य वर्धित उत्पादों का विकास

ए.) मशरूम – सब्जी मिश्रित सूप प्रीमिक्स

टमाटर, गाजर, मटर, प्याज और लहसुन जैसी सब्जियों के साथ शिटाके मशरूम का उपयोग करके मशरूम सब्जी मिश्रित सूप मिश्रण के पांच फॉर्मूलेशन तैयार किए गए थे और एक मानक फॉर्मूलेशन विकसित करने के लिए संवेदी, पोषण और एंटीऑक्सीडेंट गुणों को आधार लिया गया। सब्जियों के मिश्रण (टमाटर पाउडर, सूखे गाजर के टुकड़े, आंशिक रूप से पके और सूखे मटर, प्याज पाउडर और लहसुन पाउडर युक्त) (15%), मकई का आटा (27.5%) के साथ शिटाके मशरूम पाउडर (20%) का उपयोग करके विकसित मशरूम सब्जी सूप प्रीमिक्स संवेदी विश्लेषण के आधार पर दूध पाउडर (22.5%), नमक (9%), चीनी (3%), काली मिर्च (2%) और अजवायन (1%) सबसे स्वीकार्य पाया गया। इस मशरूम सब्जी मिश्रित सूप प्रीमिक्स में 2.8% नमी, 8. 62% प्रोटीन, 71.44% कार्बोहाइड्रेट, 4.02% वसा, 13.12% राख, 3.47% फाइबर और 2681.48 IU/g विटामिन डी पाया गया। यह देखा गया कि एंटीऑक्सीडेंट गतिविधि (DPPH और FRAP

A significant difference in the protein, total sugars, phenols and polyphenol oxidase activity was recorded in button and oyster mushroom during storage with more reduction in total protein, total sugars and phenols at ambient as compared to low temperature whereas a significant increase in polyphenol activity was observed in all the packages at both the storage in button as well as oyster

Development of value added products

a.) Mushroom-vegetable mixed soup premix

Five formulations of mushroom vegetable mixed soup mix using shiitake mushroom along with vegetables such as tomato, carrots, peas, onion and garlic were prepared and subjected to sensory, nutritional and antioxidant properties analysis in order to develop a standard formulation. Mushroom vegetable soup premix developed by using shiitake mushroom powder (20%) along with vegetables mix (containing tomato powder, dried carrot shreds, partially cooked and dried peas, onion powder and garlic powder) (15%), corn flour (27.5%), milk powder (22.5%), salt (9%), sugar (3%), black pepper (2%) and oregano (1%) was found to be most acceptable based on sensory analysis. This mushroom vegetable mixed soup premix contained 2.8 % moisture, 8.62% protein, 71.44% carbohydrate, 4.02% fat, 13.12% ash, 3.47% fiber and 2681.48 IU/g vitamin D. It was observed that

दोनों) सब्जी मिश्रण की बढ़ती सांद्रता के साथ सूप मिश्रण में वृद्धि देखी गई।

विकसित मशरूम सब्जी मिश्रित सूप प्रीमिक्स को एल्युमिनियम लैमिनेट हवा बंद डिब्बे में पैक किया गया और शैल्फ लाइफ का अध्ययन किया गया। यह पाया गया कि यह मशरूम सब्जी मिश्रित सूप प्रीमिक्स उत्पाद की संवेदी, समीपस्थ, विटामिन डी, एंटीऑक्सीडेंट और माइक्रोबियल गुणवत्ता में बिना किसी भी महत्वपूर्ण बदलाव के 6 महीने तक संग्रहित किया जा सकता है। antioxidant activity (both DPPH and FRAP) of the soup mix showed an increase with increasing concentration of vegetable mix.

The developed Mushroom vegetable mixed soup premix was packed in aluminum laminate air tight pouch and subjected to shelf life study. It was found that this mushroom vegetable mixed soup premix can be stored for 6 months at ambient temperature without any significant changes in sensory, proximate, Vitamin D, antioxidant and microbial qualities of the product.

चित्र 2.5.5 मशरूम—सब्जी मिश्रित सूप प्रीमिक्स Fig 2.5.5. Mushroom-vegetable mixed soup premix

बी.) मशरूम – सब्जी मिश्रित सॉस / स्प्रेड

एक पौष्टिक और स्वादिष्ट मशरूम-सब्जी मिश्रित सॉस/स्प्रेड विकसित करने के लिए छह फॉर्मूलेशन तैयार किए गए जिसमें लहसून, अदरक, मिर्च, नमक, चीनों, सिरका, वनस्पति तेल, काली मिर्च और अजवायन के साथ ओएस्टर मशरूम और टमाटर का उपयोग किया गया था। मशरूम स्प्रेड जिसे ब्रेड, सैंडविच, बर्गर, पिज्जा, आदि के साथ इस्तेमाल किया जा सकता है। अध्ययन से पता चला है कि मशरूम (10 ग्राम) और टमाटर (90 ग्राम) के साथ लहसून (२ ग्राम), अदरक (१ ग्राम), मिर्च (संवेदी विश्लेषण के आधार पर 1 ग्राम), नमक (1 ग्राम), चीनी (1 ग्राम), सिरका (2 मिली), वनस्पति तेल (२ मिली), काली मिर्च (०.५ ग्राम) और अजवायन (०.५ ग्राम) सबसे स्वीकार्य पाया गया। इस मशरूम सब्जी मिश्रित स्प्रेड में 70.03% नमी, 2.97% प्रोटीन, 14.77% कार्बोहाइड्रेट, 7.78% वसा, 4.44% राख, 2.45% फाइबर और 240.07 आईयू / जी विटामिन डी। ऑयस्टर मशरूम स्प्रेड के विभिन्न फॉर्मूलेशन में कुल घुलनशील ठोस (टीएसएस) (डिग्री ब्रिक्स) और अम्लता (%)के प्रतिशत में कमी (क्रमश: 8.83 से 5.17 और 1.58 से 0.77%) दर्ज की गई।

विकसित मशरूम सॉस / स्प्रेड को हवा बंद प्लास्टिक डिब्बे में पैक किया गया था और शैल्फ लाइफ का अध्ययन किया गया। भंडारण

b. Mushroom-vegetable mixed sauce/spread

Six formulations of mushroom -vegetable mixed sauce/spread using variable quantity of oyster mushrooms and tomato along with garlic, ginger, chilli, salt, sugar, vinegar, vegetable oil, black pepper, and oregano were prepared in order to develop a nutritious and tasty mushroom spread which can be used with bread, sandwiches, burgers, pizza, etc. The study revealed that mushroom spread prepared by using oyster mushroom (10g) and tomato (90g) along with garlic (2g), ginger (1g), chilli (1g), salt (1g), sugar (1g), vinegar (2ml), vegetable oil (2ml), black pepper (0.5g) and oregano (0.5g) was found most acceptable based on sensory analysis. This mushroom vegetable mixed spread contained 70.03% moisture, 2.97% protein, 14.77% carbohydrate, 7.78% fat, 4.44% ash, 2.45% fiber and 240.07 IU/g vitamin D. Total soluble solids (TSS) (°Brix) and acidity (%) of different formulations of oyster mushroom spread showed a decrease (8.83 to 5.17 and 1.58 to 0.77 %, respectively).

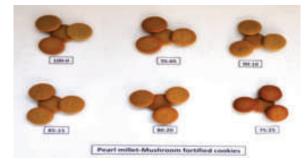
The developed mushroom sauce/spread was packed in airtight plastic jar and subjected to shelf life study. The storage study revealed that this mushroom

अध्ययन से पता चला है कि इस मशरूम स्प्रेड को उत्पाद के संवेदी, समीपस्थ, विटामिन डी, एंटीऑक्सीडेंट और माइक्रोबियल गुणवत्ता में किसी भी महत्वपूर्ण बदलाव के बिना परिवेश के तापमान पर 3 महीने तक संग्रहित किया जा सकता है।

spread can be stored for 3 months at ambient temperature without any significant changes in sensory, proximate, Vitamin D, antioxidant and microbial quality of the product.

चित्र 2.5.6 मशरूम का स्प्रेड Fig 2.5.6 Mushroom spread

सी.) मशरूम और मिलेट आधारित कुकीज


तीन अलग—अलग प्रकार के मिलेट बाजरा, रागी और ज्वार के साथ ओएस्टर मशरूम पाउडर को मिलाकर तीन प्रकार की कुकीज का मानकीकरण किया गया। जिनका विवरण नीचे दिया गया है:

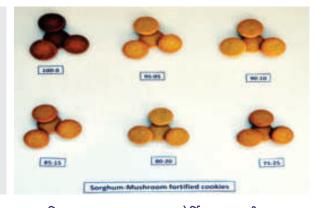
मशरुम फोर्टिफाइड बाजरा कुकीज को छह अलग—अलग फॉर्मूलेशन से अनुकूलित किया गया था, जो ओएस्टर मशरूम पाउडर (0—25%) के विभिन्न स्तरों के साथ तैयार किए गए थे, जो बाजरा के आटे के साथ संयुक्त थे और यह पाया गया कि बाजरा में ओएस्टर मशरूम पाउडर का 25% तक समावेश उत्पाद के ऑर्गेनोलेप्टिक गुणों का बढ़ा देता है । इस प्रकार विकसित मशरूम फोर्टिफाइड बाजरा कुकीज में 2% नमी, 9.8% प्रोटीन, 55.14% कार्बोहाइड्रेट, 30.38% वसा और 2.68% राख होती है।

c.) Mushrooms and millets based cookies

Three types of cookies were standardized by combining oyster mushroom powder with three different types of millets; pearl-millet, finger-millet and sorghum, the details of which have been given below:

i. Mushroom fortified pearl-millet cookies were optimized out of six different formulations prepared with varying levels of oyster mushroom powder (0-25%) combined with pearl-millet flour and it was found that upto 25% incorporation of oyster mushroom powder in pearl-millet flour was acceptable based on organoleptic properties of the product. Mushroom fortified pearl-millet cookies thus developed contained 2 % moisture, 9.8 % protein, 55.14% carbohydrate, 30.38 % fat and 2.68% ash.

चित्र 2.5.7 बाजरा—मशरूम फोर्टिफाइड कुकीज Fig 2.5.7. Pearl millet-mushroom fortified cookies



- ii) मशरूम फोर्टिफाइड रागी कुकीज को ओएस्टर मशरूम पाउडर (0—25%) के विभिन्न स्तरों के साथ तैयार किए गए छह अलग—अलग फॉर्मूलेशन से अनुकूलित किया गया था और यह पाया गया कि रागी के आटे में ऑयस्टर मशरूम पाउडर का 20% तक समावेश संवेदी विश्लेषण के आधार पर स्वीकार्य था। इन मशरूम फोर्टिफाइड रागी कुकीज में 1.9% नमी, 8.3% प्रोटीन, 56.48% कार्बोहाइड्रेट, 30.57% वसा और 2.74% राख होती है।
- ii) Mushroom fortified finger-millet cookies were optimized out of six different formulations prepared with varying levels of oyster mushroom powder (0-25%) and it was found that upto 20% incorporation of oyster mushroom powder in finger millet flour was acceptable based on sensory analysis. These mushroom fortified pearl-millet cookies contained 1.9% moisture, 8.3% protein, 56.48% carbohydrate, 30.57% fat and 2.74% ash.

चित्र 2.5.8 फिंगर बाजरा—मशरूम फोर्टिफाइड कुकीज Fig 2.5.8. Finger millet-mushroom fortified cookies

- गंगः. मशरूम फोर्टिफाइड ज्वार कुकीज को ऑयस्टर मशरूम पाउडर (0—25%) के विभिन्न स्तरों के साथ तैयार किए गए छह अलग—अलग फॉर्मूलेशन में से अनुकूलित किया गया था और यह पाया गया कि ज्वार के आटे में ऑयस्टर मशरूम पाउडर का 20% तक समावेश संवेदी विश्लेषण के आधार पर स्वीकार्य था। इन मशरूम फोर्टिफाइड ज्वार कुकीज में 2.0% नमी, 9.48% प्रोटीन, 56.30% कार्बोहाइड्रेट, 30.22% वसा और 2.01% राख होती है। इन सभी मशरूम—ज्वार कुकीज के एंटीऑक्सीडेंट गुणों में मशरूम पाउडर के बढ़ते फोर्टिफिकेशन के साथ सुधार देखा गया।
- iii.) Mushroom fortified sorghum cookies were optimized out of six different formulations prepared with varying levels of oyster mushroom powder (0-25%) and it was found that upto 20% incorporation of oyster mushroom powder in sorghum flour was acceptable based on sensory analysis. These mushroom fortified sorghum cookies contained 2.0% moisture, 9.48% protein, 56.30% carbohydrate, 30.22% fat and 2.01% ash. Antioxidant properties of all these mushroommillet cookies also improved with increasing fortification of mushroom powder in the cookies.

चित्र 2.5.9 ज्वार—मशरूम फोर्टिफाइड कुकीज Fig 2.5.9. Sorghum-mushroom fortified cookies

डी.) मशरूम और बाजरा आधारित न्यूट्री – बार

एक स्वादिष्ट और पौष्टिक मशरूम बाजरा न्यूट्री—बार विकसित करने के लिए, ज्वार और बाजरा के साथ ओएस्टर मशरूम पाउडर (0—10%) का उपयोग करते हुए मशरूम बाजरा न्यूट्री—बार के तीन सूत्र तैयार किए गए और उनके संवेदी गुणों का विश्लेषण किया गया। 10% ऑयस्टर मशरूम पाउडर फोर्टीफिकेशन के साथ मशरूम बाजरा न्यूट्री—बार संवेदी विश्लेषण के आधार पर मानकीकृत किया गया था। इस न्यूट्री बार में 17.75% प्रोटीन, 9. 27% वसा, 76.12% कार्बोहाइड्रेट, 25.48% आहार फाइबर, 182.5 मिलीग्राम / 100 ग्राम कैल्शियम, 2.89 मिलीग्राम / 100 ग्राम आयरन, 11.41 मिलीग्राम विटामिन डी / 100 ग्राम और ऊर्जा मूल्य 355 किलो कैलोरी / 100 ग्राम है।

d.) Mushrooms and millets based nutri-bar

Three formulations of mushroom millets nutri-bar utilizing oyster mushroom powder (0-10%) along with millets such as sorghum and finger millet were prepared and analysed for their sensory properties to develop a tasty and nutritious mushroom millet nutria-bar. Mushroom millet nutria-bar with 10% oyster mushroom powder fortification was standardized based on sensory analysis. This nutri bar showed nutritional composition of 17.75% protein, 9.27% fat, 76.12% carbohydrate, 25.48% dietary fiber, 182.5 mg/100g calcium, 2.89 mg/100g iron, 11.41mg Vitamin D/100g and energy value of 355 Kcal/100g.

चित्र 2.5.10 मशरूम बाजरा न्यूट्री बार Fig 2.5.10. Mushroom millets nutri bar

इ.) मशरूम और बाजरा आधारित पास्ता

तीन प्रकार के मशरूम पाउडर बटन मशरूम (0—15%), ऑयस्टर मशरूम (0—15%) और शिटाके मशरूम (0—15%) को ज्वार, बाजरा और सूजी के साथ मिलाकर मशरूम बाजरा पास्ता के दस सूत्र तैयार किए गए और मशरूम बाजरा के निर्माण को मानकीकृत करने के लिए संवेदी और खाना प्रकान की गुणवत्ता विश्लेषण का अध्ययन किया गया। संवेदी गुणों और खाना प्रकान की गुणवत्ता परीक्षणों के आधार पर यह पाया गया कि ऑयस्टर और बटन मशरूम पाउडर को 15% के स्तर तक शामिल किया जा सकता है जबकि शिटाके मशरूम पाउडर अपने कड़क स्वाद के कारण केवल 10% तक पूरक किया जा सकता है।

e.) Mushrooms and millets based pasta

Ten formulations of mushroom millets pasta utilizing three types of mushroom powders; button mushroom (0-15%), oyster mushroom (0-15%) and shiitake mushroom powder (0-15%) combined with sorghum, millet, semolina were prepared and were subjected to sensory and cooking quality analysis to standardize the formulation of mushroom millets pasta. Based on sensory properties and cooking quality tests it was found that oyster and button mushroom powder can be incorporated upto a level of 15 % while shiitake mushroom powder due to its strong flavor can only be supplemented upto 10% into the millet to develop nutritious and tasty mushroom millet pasta products.

एफ.) मशरूम और बाजरा आधाारित सेंवई

मशरूम बाजरा सेंवई के चार सूत्र ऑयस्टर मशरूम पाउडर (0—15%) के विभिन्न स्तरों के साथ ज्वार सूजी से तैयार किए गए थे और मशरूम बाजरा सेंवई के सर्वोत्तम सूत्र को मानीकृत करने के लिए संवेदी और खाना पकाने की गुणवत्ता विश्लेषण का अध्ययन किया गया। खाना पकाने की गुणवत्ता विश्लेषण और संवेदी परिणामों के आधार पर यह पाया गया कि मशरूम बाजरा सेंवई विकसित करने के लिए ऑयस्टर मशरूम पाउडर को ज्वार में 15% के स्तर तक शामिल किया जा सकता है।

f.) Mushrooms and millets based vermicelli

Four formulations of mushroom millet vermicelli were prepared with different levels of oyster mushroom powder fortification (0-15%) into sorghum semolina and were subjected to sensory and cooking quality analysis to optimize the best formulation of mushroom millet vermicelli. Based on cooking quality analysis and sensory results it was found that oyster mushroom powder can be incorporated upto a level of 15 % into sorghum to develop mushroom millet vermicelli.

चित्र 2.5.11. मशरूम फोर्टिफाइड ज्वार पास्ता Fig 2.5.11. Mushroom fortified jowar pasta

चित्र 2.5.12 मशरूम फोर्टिफाइड ज्वार सेंवई Fig 2.5.12. Mushroom fortified jowar vermicilli

3. प्रौद्योगिकी हस्तांतरण Transfer of Technology

3.1 आयोजित प्रशिक्षण कार्यक्रम

वर्ष 2020 के दौरान निदेशालय ने विभिन्न घटक योजनाओं के अंतर्गत किसानों, कृषक महिलाओं, उद्यमियों तथा बेरोजगार युवाओं के लिए 9 ऑनलाइन, 9 ऑफ कैंपस तथा 11 ऑनलाइन प्रशिक्षण आयोजित किये (तालिका 3.1)। कुल 29 प्रशिक्षणों में से 4 जनजातीय उपयोजना (TSP), पूर्वोत्तर पर्वतीय क्षेत्र (NEH) तथा भारतीय कृषि कौशल परिषद् (ASCI) के अंतर्गत एक एवं अनुसूचित जाति उपयोजना (SC & SP) में 8 प्रशिक्षण आयोजित किये गए। कोविड—19 महामारी के दौरान निदेशालय ने ई—लिनंग उपकरण तथा डिजिटल वृतचित्र के माध्यम से ऑनलाइन प्रशिक्षण कार्यक्रम आयोजित करने की पहल की। इस वर्ष निदेशालय द्वारा आयोजित प्रशिक्षण कार्यक्रमों से 2013 प्रतिभागी लाभान्वित हुए।

तालिका 3.1 वर्ष 2020 के दौरान भा.कृ.अनु.प. – खुम्ब अनुसन्धान निदेशालय सोलन द्वारा आयोजित प्रशिक्षण कार्यक्रमों की सूची

3.1 Training programmes conducted

During the year 2020, the Directorate had organized nine on-campus, nine off campus and 11 online training programmes for farmers, farmwomen, entrepreneurs and unemployed youth under various component schemes. Out of these 29 training programmes, four were organized for farmers under Tribal Sub Plan (TSP), one each under north-east hill region (NEH) and Agriculture Skill Council of India (ASCI) and eight under scheduled caste sub plan (SC-The Directorate has taken a new initiative during the COVID-19 pandemic to conduct the training programmes through online mode using various e learning tools and digital documentaries. During the reporting year, a total number of 2013 participants have been benefitted from the training programmes organized by the Directorate.

Table 3.1 List of the training programmes organized by the ICAR-DMR, Solan during 2020

S. No.	Training	Date	No. of participants	Venue of the training	Course Director, Course Coordinator & Co-Coordinator
1.	Review workshop on mushroom cultivation training under SC-SP	8 January	20	ICAR-DMR, Solan	Dr Yogesh Gautam Mrs ShailjaVerma
2.	Spawn production	8-10 January	7	ICAR-DMR, Solan	Dr Shwet Kamal
3.	Mushroom cultivation training under SC-SP	9-10 January	60	ICAR-DMR, Solan	Dr Yogesh Gautam Mrs Shailja Verma
4.	Mushroom cultivation training under SC-SP	24-25 January	146	ICAR-DMR, Solan	Dr Yogesh Gautam
5.	Cordyceps cultivation	24-26 January	4	ICAR-DMR, Solan	Dr Satish Kumar
6.	Mushroom cultivation training under TSP	3-6 February	36	ICAR-DMR, Solan	Dr Anupam Barh
7.	Spawn production	5-7 February	6	ICAR-DMR, Solan	Dr Shwet Kamal

ANNUAL REPORT

8.	Mushroom cultivation training under TSP	16-18 February	100	RPCAU, Samastipur (Bihar)	Dr Shwet Kamal
9.	Mushroom cultivation training under ASCI	17 February -12 March	20	ICAR-DMR, Solan	Dr Yogesh Gautam
10.	Spawn production	11-13 March	9	ICAR-DMR, Solan	Dr Shwet Kamal
11.	Mushroom cultivation training under TSP	22-23 February	130	Jharkhand Rai University, Ranchi	Dr ManojNath
12.	Mushroom cultivation training under NEH	2-4 March	60	ICAR Complex for Eastern Region, Manipur Centre	Dr Anupam Barh
13.	Online mushroom cultivation training for farmers	21-23 May	100	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam
14.	Online mushroom cultivation training for farmers	15-20 June	87	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam
15.	Online mushroom cultivation training for farmers	20-25 July	100	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam
16.	Online mushroom cultivation training for farmers	17-22 August	97	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam
17.	Mushroom cultivation training under SC-SP	5 September	125	Vijaynagar, Bilaspur (HP)	Dr VP Sharma Dr Shwet Kamal
18.	Mushroom cultivation training under SC-SP	21 October	58	Vijaynagar, Bilaspur (HP)	D VP Sharma Dr Anupam Barh
19.	Online mushroom cultivation training for farmers	14-19 September	84	ICAR-DMR, Solan	D VP Sharma Dr Yogesh Gautam
20.	Online mushroom cultivation training for farmers	12-17 October	67	ICAR-DMR, Solan	Dr VP Sharma Dr Manoj Nath
21.	Mushroom cultivation training under TSP	21 October	12	Vijayapur, Samoh, Bilaspur (HP)	Sh Rakesh Bairwa

22.	Online mushroom cultivation training for farmers	19-24 October	78	ICAR-DMR, Solan	Dr VP Sharma Dr Anil Kumar Rao
23.	Online mushroom cultivation training for farmers	2-7 November	49	ICAR-DMR, Solan	Dr VP Sharma Dr Anupam Barh
24.	Mushroom cultivation training under SC-SP	10 November	61	Vijaypur, Samoh, Bilaspur (HP)	Dr Anil Kumar
25.	Online mushroom training cultivation for farmers	23-28 November	100	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam
26.	Online mushroom cultivation training for farmers	1-7 December	93	ICAR-DMR, Solan	D VP Sharma Sh Rakesh Bairwa Mrs Shailja Verma
27.	Online mushroom cultivation training for farmers	14-19 December	104	ICAR-DMR, Solan	Dr VP Sharma Dr Yogesh Gautam Mrs ShailjaVerma
28.	Mushroom cultivation training under SC-SP	18 December	100	Ghaniach, Piplughat, Solan (HP)	Sh Rakesh Bairwa Mrs Shailja Verma
29.	Mushroom cultivation training under SC-SP	18 December	100	Chadna, Haripurdhar, Sirmour (HP)	Dr Anil Kumar Mrs Shailja Verma
Total			2013		

3.2 टीएसपी एवं एनईएच के तहत प्रशिक्षण कार्यक्रम

टीएसपी के तहत कुल चार प्रशिक्षण कार्यक्रम आयोजित किए गए। उनमें से एक निदेशालय में आयोजित किया गया था और शेष तीन राजेंद्र प्रसाद केंद्रीय कृषि विश्वविद्यालय, समस्तीपुर, झारखंड, राय विश्वविद्यालय, रांची और विजयपुर, समोह, बिलासपुर (हि.प्र.) में ऑफ—केंपस कार्यक्रमों के रूप में आयोजित किए गए थे। इन प्रशिक्षण कार्यक्रमों में महाराष्ट्र, बिहार, झारखंड और हिमाचल प्रदेश जैसे विभिन्न राज्यों के कुल 278 आदिवासी किसानों / कृषि महिलाओं ने भाग लिया। विभिन्न मशरूम की खेती की तकनीक पर व्याख्यान के अलावा, व्यावहारिक प्रदर्शन भी आयोजित किए गए। प्रतिभागियों को मशरूम की खेती के लिए आवश्यक महत्वपूर्ण इनपुट्स का वितरण किया गया। इसके अलावा, मशरूम की खेती से संबंधित साहित्य का एक पूरा सेट भी लाभार्थियों को प्रदान किया

3.2 Training programmes under TSP and NEH

A total number of four training programmes were organized under TSP. Out of them, one was organized at the Directorate and the remaining three were conducted as off-campus programmes at Rajendra Prasad Central Agricultural University, Samastipur, Jharkhand; Rai University, Ranchi and Vijaypur, Samoh, Bilaspur (HP). A total number of 278 tribal farmers/ farmwomen from various states such as Maharashtra, Bihar, Jharkhand and Himachal Pradesh participated in these training programmes. Apart from the lectures on cultivation technology of various mushrooms, practical demonstrations were also conducted. The critical inputs required for mushroom cultivation were distributed to the participants. Further, a complete set of the literature related to mushroom farming was also provided to the

गया। एनईएच के तहत, आईसीएआर-पूर्वोत्तर क्षेत्र के लिए अनुसंधान परिसर, मणिपुर केंद्र में एक प्रशिक्षण कार्यक्रम आयोजित किया गया था जिसमें 60 प्रतिभागियों ने भाग लिया था। प्रशिक्षण कार्यक्रम के अलावा, सभी प्रतिभागियों को मशरूम की खेती पर साहित्य सहित महत्वपूर्ण जानकारी प्रदान की गई।

beneficiaries. Under NEH, one training programme was organized at ICAR- Research Complex for North Eastern Region, Manipur Centre in which 60 participants were participated. Apart from the training programme, the critical inputs including the literature on mushroom cultivation were provided to all the participants.

चित्र 3.1 एनईएच के अंतर्गत प्रशिक्षण कार्यकम

Fig. 3.1 Training under NEH Programme

3.3 एससी – एसपी के तहत प्रशिक्षण कार्यक्रम

वर्ष 2020 के दौरान अनुसूचित जाति के किसानों / कृषि महिलाओं के लिए कुल आठ प्रशिक्षण कार्यक्रम आयोजित किए गए। तीन प्रशिक्षण आईसीएआर—डीएमआर, सोलन में ऑन—कैंपस कार्यक्रमों के रूप में और पांच हिमाचल प्रदेश के विभिन्न स्थानों पर

3.3 Training programmes under SC-SP

During the year 2020, a total number of eight training programmes were organized for the farmers/farmwomen belonging to scheduled caste under SC-SP. Three trainings were conducted as on-campus programmes at ICAR-DMR, Solan and five at

ऑफ-कैंपस कार्यक्रमों के रूप में आयोजित किए गए। प्रशिक्षण कार्यक्रमों में कुल 670 किसानों / किसान महिलाओं ने भाग लिया, जिसमें उन्हें मशरूम की खेती पर साहित्य के साथ-साथ मशरूम की खेती के लिए महत्वपूर्ण जानकारी प्रदान की गई। इन प्रशिक्षण कार्यक्रमों के प्रतिभागियों के साथ भाकृअनुप-खुअनुनि, सोलन में एक समीक्षा बैठक आयोजित की गई। मशरूम की खेती में प्रतिभागियों को हो रही समस्याओं से संबंधित चर्चा की गई और विभिन्न मशरूम के सफल उत्पादन के लिए आवश्यक समाधान प्रदान किए गए।

different places of Himachal Pradesh as off-campus programmes. A total number of 670 farmers/farmwomen attended the training programmes in which they were provided with the critical inputs for the mushroom farming along with literature on mushroom cultivation. A review meeting was conducted with the participants of these training programmes at ICAR-DMR, Solan. Discussions were held related to the problems being faced by the participants in mushroom farming and provided the necessary solutions for successful production of the different mushrooms.

3.4 मशरूम की खेती पर ऑनलाइन प्रशिक्षण कार्यक्रम

कोविड—19 महामारी के लॉकडाउन के कारण ऑनलाइन मोड के माध्यम से मशरूम प्रशिक्षण कार्यक्रम आयोजित करने के लिए निदेशालय ने एक नई पहल की है। लॉकडाउन से पहले आईसीएआर—डीएमआर, सोलन ने चार प्रशिक्षण (तीन स्पॉन उत्पादन पर और एक कॉर्डिसेप्स मशरूम की खेती तकनीक पर) आयोजित किए थे, जिसमें 26 प्रतिभागियों ने भाग लिया था। ऑनलाइन मोड के माध्यम से 11 प्रशिक्षण कार्यक्रम आयोजित किए गए, जिसमें देश के विभिन्न हिस्सों से 959 प्रतिभागियों ने भाग लिया। प्रतिभागियों को विशेषज्ञ व्याख्यान, वीडियो और डिजिटल वृत्तचित्र फिल्मों के माध्यम से मशरूम उत्पादन तकनीकों से अवगत कराया गया। संवाद सत्र में संबंधित वैज्ञानिकों द्वारा मशरूम की खेती के विभिन्न पहलुओं से संबंधित सभी प्रश्नों का उत्तर दिया गया।

3.4 Online training programmes on mushroom cultivation

The Directorate has taken a new initiative to conduct the mushroom training programmes through online mode due to the COVID-19 pandemic induced lockdown. Before lockdown ICAR-DMR, Solan had conducted four trainings (three on spawn production and one on Cultivation technology of Cordyceps mushroom) which were attended by 26 participants. Through online mode 11 training programmes were organized through which were attended by 959 participants from different parts of the country. The participants were exposed to mushroom production techniques through the expert lectures, videos and digital documentary films. In the interactive session all the queries related to various aspects of mushroom cultivation were clarified by the concerned scientists. As and when the situation improves the participants will be called for the practical demonstration as most of them have expressed their desire to see the mushroom cultivation techniques in person.

3.5 हैन्ड्स ऑन प्रशिक्षण

सफंद बटन मशरूम उत्पादन में शामिल महत्वपूर्ण गतिविधियां जैसे खाद तैयार करना, स्पॉन उत्पादन और फसल प्रबंधन के लिए अधिक व्यवहारिक जानकारी की आवश्यकता होती है जो नियमित प्रशिक्षण कार्यक्रमों के दौरान संभव नहीं है। बटन के पूरे फसल चक्र के साथ-साथ अन्य विशेषता मशरूम की प्रत्यक्ष जानकारी और व्यावहारिक अनुभव प्रदान करने के लिए, निदेशालय ने तीन महीने की अवधि के लिए प्रशिक्षण शुरू किया है। इन तथ्यों के साथ-साथ प्रतिभागियों की मांग को ध्यान में रखते हुए मशक्तम की खेती पर तीन महीने का व्यावहारिक कार्यक्रम आयोजित किया गया जिसमें प्रशिक्षुओं ने मशरूम की खेती के सभी पहलुओं को व्यावहारिक रूप से सीखा। इसके अलावा, उन्होंने बटन और ऑयस्टर मशरूम से स्पॉन उत्पादन, बटन मशरूम के लिए खाद बनाने की प्रक्रिया, स्पॉनिंग, केसिंग, हार्वेस्टिंग / पैकेजिंग और विभिन्न उत्पादों का मूल्यवर्धन भी सीखा। प्रशिक्षणार्थियों को अन्य मशरूम जैसे दूधिया, धान पुआल मशरूम, शिटाके, गैनोडर्मा और कॉर्डिसेप्स की खेती की तकनीकों से भी अवगत कराया गया। जैसे-जैसे प्रतिभागियों ने प्रत्येक गतिविधि को स्वयं किया, इसने उनमें स्वतंत्र रूप से मशरूम उगाने का विश्वास पैदा किया।

3.6 भारतीय कृषि कौशल परिषद के तहत मशरूम की खेती का प्रशिक्षण

भारतीय कृषि कौशल परिषद (एएससीआई) द्वारा 200 घंटे की अवधि का एक प्रशिक्षण कार्यक्रम प्रायोजित किया गया था जो आईसीएआर—डीएमआर, सोलन में 25 दिनों के लिए आयोजित किया गया था। इस कार्यक्रम में देश के विभिन्न हिस्सों से 20 प्रतिभागियों ने भाग लिया। व्याख्यान के अलावा, प्रतिभागियों को मशक्तम की खेती के विभिन्न पहलुओं पर व्यावहारिक प्रदर्शन दिया गया। इस प्रशिक्षण के प्रतिभागियों के उत्साह से पता चला कि मशक्तम की खेती की अपनाने की दर पहले की तुलना में अपेक्षाकृत अधिक है।

3.7 राष्ट्रीय मशरूम मेला – 2020

देश में लॉकडाउन और जनता की आवाजाही पर लगाए गए प्रतिबंधों के कारण, निदेशालय ने वर्चुअल मोड के माध्यम से 10 सितंबर, 2020 को 24वें राष्ट्रीय मशरूम मेला—2020 का आयोजन किया था। इस कार्यक्रम में देश भर से 100 से अधिक प्रतिभागियों ने भाग लिया। इस कार्यक्रम की अध्यक्षता डॉ ए के सिंह, डीडीजी (बागवानी विज्ञान), आईसीएआर, नई दिल्ली, ने की। इस कार्यक्रम

3.5 Hands-on training

The critical operations involved in the white button mushroom production such as compost preparation and spawn production and crop management requires more practical exposure which is not possible during the regular training programmes. In order to provide the first hand information and practical experience of the entire cropping cycle of button as well as other specialty mushroom, the Directorate has initiated a hands on training for a period of three months. Keeping in view these facts as well as demand of the participants, three months hands on mushroom cultivation programme was organized in which the trainees learned all the aspects of mushroom cultivation practically. Further, they also learned spawn production, composting process for button mushroom, spawning, casing, harvesting/packaging and value addition into various products from button and oyster mushrooms. They were also exposed to the cultivation techniques of other mushrooms such as milky, paddy straw mushroom, shiitake, Ganoderma and Cordyceps. As the participants performed each and every activity themselves, it created a confidence among them to grow mushrooms independently.

3.6 Mushroom cultivation training under Agriculture Skill Council of India

A training programme of 200 hours duration was sponsored by Agriculture Skill Council of India (ASCI) which was conducted for 25 days at ICAR-DMR, Solan. This programme was attended by 20 participants from different parts of the country. Apart from the theoretical lectures, the participants were given the practical demonstration on various aspects of mushroom cultivation. The enthusiasm of the participants of this trainings showed that the adoption rate of mushroom farming is relatively higher than the earlier period.

3.7 National Mushroom Mela-2020

Due to lockdown in the country and restrictions imposed on the movement of the public, the Directorate had organized the 24th National Mushroom Mela-2020 on 10th September, 2020 through virtual mode. The event was attended by more than 100 participants across the country. The event was chaired by Dr AK Singh, DDG (Hort. Sci.),

में डॉ बी के पांडे एडीजी और डॉ वी पांडे, एडीजी, (बागवानी विज्ञान), डॉ मंजीत सिंह, पूर्व निदेशक और अन्य गणमान्य व्यक्ति भी शामिल हए। आईसीएआर-डीएमआर, सोलन, एआईसीआरपी मशरूम केंद्रों के सभी वैज्ञानिक, श्री रिशांत, मैनेजर, एसबीआई, चंबाघाट (सोलन), श्री आर एस राणा, उप निदेशक, एनएचबी, शिमला और आईसीएआर के सभी वैज्ञानिक और स्टाफ सदस्य-डीएमआर, सोलन ने भी इस कार्यक्रम में भाग लिया। सभी गणमान्य व्यक्तियों ने प्रतिभागियों को संबोधित किया और इस गतिविधि में शामिल होने का आह्वान किया। इसके अलावा, क्षेत्र विशिष्ट प्रौद्योगिकियों और विभिन्न मशरूम की किरमों को विकसित करने पर जोर दिया गया ताकि उत्पादकों के पास उत्पादन की अपेक्षाकृत कम लागत के साथ मशरूम का उत्पादन करने का विकल्प हो। इस वर्चुअल कार्यक्रम के दौरान निदेशालय ने मशरूम की खेती में नवीन खेती पद्धतियों को अपनाने और ग्रामीण युवाओं को रोजगार प्रदान करने के लिए छह प्रगतिशील मशरूम उत्पादकों को सम्मानित किया। निदेशालय ने मशरूम की खेती को एक उद्यम के रूप में अपनाने के लिए अन्य किसानों / कृषि महिलाओं को जुटाने के उनके प्रयासों को भी स्वीकार किया है जिससे आय के स्रोत में वृद्धि हुई है। प्रगतिशील मशरूम उत्पादकों को देश के विभिन्न हिस्सों से चुना गया और उन्हें प्रमाण पत्र और एक ट्रॉफी के साथ सम्मानित किया गया।

ICAR, New Delhi, and other dignitaries attended were Dr BK Pandey and Dr VK Pandey, ADGs (Hort. Sci.), Dr Manjit Singh, Ex-Director, ICAR-DMR, Solan, all the Scientists from AICRP Mushroom Centers, Mr. Rishant, Manager, SBI, Chambaghat (Solan), Mr. RS Rana, Deputy Director, NHB, Shimla and all the Scientists and staff members of the ICAR-DMR, Solan. All the dignitaries addressed the participants and called upon to enter into this activity as there is an increasing demand for mushrooms. Further, it was stressed upon to develop region specific technologies and varieties of different mushrooms so that the growers have a choice produce mushroom with relatively lesser cost of production. During this virtual event the Directorate has awarded six progressive mushroom growers for adopting innovative cultivation practices in mushroom farming and providing employment to the rural youth. The Directorate has also acknowledged their efforts in mobilizing other farmers/ farmwomen to adopt mushroom cultivation as an enterprise thereby increasing the source of income. The progressive mushroom growers were selected from different parts of the country and were felicitated with certificate and a trophy.

उत्पादकों की उपलिब्धियों को ''प्रगतिशील मशरूम उत्पादक ''पुरस्कार से सम्मानित किया गया Achievements of growers felicitated with "Progressive Mushroom Grower" award

ा. श्री सौरभ जंघेल

छत्तीसगढ़ के राजनंदगांव के श्री सौरभ जंघेल प्रतिदिन 8 क्रॉपिंग रूम में, जिनकी क्षमता 10000 बैग की है में से लगभग 100 📌

किलोग्राम ऑयस्टर मशरूम स्पॉन और 200 किलोग्राम ऑयस्टर मशरूम का उत्पादन कर रहे हैं। वह विशाल टैंकों में भूसे को चूने से पाश्चराइजेशन कर रहे हैं और केंचुओं को बड़े पैमाने पर उत्पादित और वर्मीकम्पोस्टिंग के लिए स्पैंट मशरूम सब्सट्रेट का उपयोग कर रहे हैं। बायो—एजेंट (ट्राइकोडमी) से समृद्ध वर्मीकम्पोस्ट को बायोमिक्स के रूप में बेच रहे हैं। राज्य के विभिन्न हिस्सों में ऑयस्टर मशरूम के विपणन के लिए उनके साथ 74 से अधिक स्वयं सहायता समूह (एसएचजी) भी जुड़े हुए हैं।

1. Sh. Saurabh Janghel

Shri Saurabh Janghel from Rajnandgaon in Chhattisgarh is producing around 100 kg of oyster

mushroom spawn and 200 kg of oyster mushroom per day with 8 cropping rooms having a capacity of 10,000 bags. He is doing lime pasteurization of straw in huge tanks and utilizing the spent mushroom substrate for vermicomposting and mass multiplication of earthworms. The vermicompost enriched with bio-agents (*Trichoderma*) is being sold as BioMix.

More than 74 self-help groups (SHGs) are also associated with him for marketing of oyster mushroom in different parts of the state.

2. श्री ए. अरुणक्मार

तमिलनाडु के तिरुपुर के श्री ए अरुणकुमार पेशे से वकील और जुनून से बागवानी विशेषज्ञ हैं, जिन्होंने 2014 में मेसर्स अथिरा एग्रो फार्म्स के नाम से दूधिया मशरूम की खेती शुरू की थी और वर्तमान में यूनिट की उत्पादन क्षमता प्रति दिन 150 किलोग्राम है। वह TASTY BUDS ब्रांड नाम से मशरूम की मार्केटिंग कर रहे हैं। उनकी फर्म ने कॉरपोरेट चेन स्टोर्स के साथ व्यापार समझौता किया था और अपने मशरूम को अपने ब्रांड नाम से बाजार में उतारा था।

2. Sh. A. Arunkumar

Shri A Arunkumar from Tirupur in Tamil Nadu is an advocate by profession and horticulturist by passion, who started cultivation of milky mushroom in the name of M/s ATHIRA AGRO FARMS in 2014 and currently the production capacity of the unit is 150 kg per day. He is marketing the mushrooms with the brand name TASTY BUDS. His firm had entered into trade agreement with

corporate chain stores and market their

mushrooms with their own brand name.

3. श्री दिनेश साहू

ओडिशा के बरगढ़ के श्री दिनेश साहू 2005 से मशरूम की खेती में हैं, इन्होंने बहुत कम निवेश के साथ शुरुआत की थी। वह प्रतिदिन लगभग 300 किलोग्राम धान पुआल मशरूम और 60 किलोग्राम ऑयस्टर मशरूम का <mark>उत्पादन कर रहे हैं। वर्तमान में उनके पास 12 उत्पादन</mark> कक्ष हैं। मशरूम उत्पादन के अलावा वह प्रतिदिन लगभग 2500 बोतल स्पॉन भी तैयार कर रहे हैं।

3. Sh. Dinesh Sahu

Shri Dinesh Sahu from Bargarh in Odisha is in mushroom cultivation since 2005 who started with a very low investment. He is producing about 300 kg of paddy straw mushrooms and 60 kg of oyster mushrooms per day. At present, he is having 12 production rooms. Apart from mushroom production he is also preparing around 2500 bottles of spawn per day.

4. श्री बह्मचार्यमयुम खोगेन शर्मा

इंफाल पूर्व, मणिपुर के श्री ब्रह्मचार्यमयुम खोगेन शर्मा 2013 से 🍁 मशरूम उत्पादन में हैं। उन्होंने पोषाधार से अतिरिक्त पानी हटाने वाली मशीन को सफलतापूर्वक डिजाइन किया है जिससे किसानों को पोषाधार के सुखाने की समय अवधि 24 घंटे से घटाकर 3 से 5 मिनट करने में मदद मिली है। उन्होंने एक थ्री लेयर स्टीम पारचराइजेशन चौंबर भी डिजाइन किया है जो एक चक्र में प्रत्येक 2 किग्रा के 300 बैगों को कुशलतापूर्वक पास्चुरीकृत कर सकता है।

4. Sh. Brahmacharimayum Khogen Sharma

Shri Brahmacharimayum Khogen Sharma from Imphal East, Manipur is in mushroom

production since 2013. He has successfully designed a substrate excess water remover machine which has helped the farmers to reduce the time period for drying of substrate from 24 hours to 3-5 minutes. He has also designed a three layer steam pasteurization chamber which can efficiently pasteurize 300 bags of 2kg each

in one cycle.

5. श्री नरेश सिंह मनकोटिया

हिमाचल प्रदेश के कांगडा के मनकोटिया मशरूम के श्री नरेश सिंह मनकोटिया 2009 से मशरूम के व्यवसाय में हैं। वे एक प्रगतिशील उत्पादक हैं जो प्रति वर्ष 50 टन से अधिक मशरूम का उत्पादन कर रहे हैं। उनके पास 6 कमरे हैं और उन्होंने 3 से 4 लोगों को प्रेरित किया है जिन्होंने मशरूम उगाना शुरू किया है और उनका नियमित मार्गदर्शन करते हैं।

5. Sh. Naresh Singh Mankotia

Shri Naresh Singh Mankotia of Mankotia Mushrooms from Kangra in Himachal Pradesh is in the mushroom field since 2009. He is a progressive grower who is producing more than 50 tonnes of mushrooms per year. He is having 6 rooms and has motivated 3-4 persons who have started growing mushrooms and take regular guidance from him.

श्री जगदीश चंद वर्मा

हिमाचल प्रदेश के बिलासपुर के वर्मा मशरूम फार्म के श्री जगदीश चंद वर्मा ने 2013 में मशरूम की खेती शुरू की। वे व्यावसायिक रूप से मशरूम उगा रहे हैं और कई राज्य प्रायोजित प्रदर्शनियों में भाग ले चुके हैं। उनकी इच्छा है कि बिलासपुर हिमाचल प्रदेश राज्य में मशरूम उगाने वाले केंद्र के रूप में जाना जाए। उन्हें विभिन्न कृषि गतिविधियों के लिए विभिन्न पूरस्कार भी मिले हैं।

1. Sh. Jagdish Chand Verma

Shri Jagdish Chand Verma of Verma Mushroom Farm from Bilaspur, Himachal Pradesh started mushroom cultivation in 2013. He is growing mushrooms commercially and has participated in many state sponsored exhibitions. He desires that Bilsapur should be known for mushroom growing hub in the state of Himachal Pradesh. He has also received various awards for different agricultural activities.

चित्र . 3.2 वर्चुअल राष्ट्रीय मशरूम मेला 2020 Fig. 3.2 Virtual National Mushroom Mela 2020

3.8 राष्ट्रीय /राज्य स्तरीय प्रदर्शनियों में भागीदारी

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन (एचपी) मशरूम की खेती को बढावा देने और किसानों, उद्यमियों और आम जनता के

3.8 Participation in national/ state level exhibitions

The ICAR-Directorate of Mushroom Research, Solan (HP) participates regularly in exhibitions, science fairs to promote the mushroom cultivation

बीच मशरूम की खेती, खुम्ब खपत के बारे में जानकारी फैलाने के लिए प्रदर्शनियों, विज्ञान मेलों में नियमित रूप से भाग लेता है। इन विस्तार गतिविधियों में मुफ्त साहित्य का वितरण, मूल्य प्रकाशनों की बिक्री, आईसीएआर—डीएमआर द्वारा दी जाने वाली सेवाओं के बारे में सूचना प्रसार किया जाता है। निदेशालय ने 1 से 3 मार्च 2020 तक आईसीएआर—आईएआरआई, नई दिल्ली द्वारा आयोजित प्रदर्शनी में से एक में भाग लिया।

3.9 मेरा गांव मेरा गौरव (एमजीएमजी) योजना

माननीय प्रधानमंत्री द्वारा आईसीएआर के 87 वें स्थापना दिवस के

दौरान 'मेरा गांव मेरा गौरव (एमजीएमजी) योजना' शुरू की गई थी,

जिसमें सभी वैज्ञानिकों को गोद लिए गए गांवों के किसानों के संपर्क में रहने के लिए और प्रयोगशाला से जमीन की प्रक्रिया में तेजी लाने के लिए कहा गया था। भाकुअनुप-खुम्ब अनुसंधान निदेशालय, सोलन की ओर से योजना को लागू करने के लिए दो टीमों का गठन किया गया था। योजना के क्रियान्वयन के लिए वैज्ञानिकों ने सोलन और कंडाघाट ब्लॉक से चिन्हित 12 गांवों का दौरा किया। 2020 के दौरान लॉकडाउन के कारण गांवों का दौरा सितंबर, 2020 तक स्थगित रहा। प्रतिबंधों में ढील दिए जाने के बाद, आईसीएआर-डीएमआर टीम ने गांव सलुमना का दौरा किया और ऑयस्टर मशरूम की खेती सहित विभिन्न गतिविधियों पर किसानों के साथ बातचीत की। किसानों से अनुरोध किया गया था कि वे भारत सरकार और हिमाचल प्रदेश की राज्य सरकार के दिशा-निर्देशों का पालन करें ताकि COVID-19 के प्रसार को कम किया जा सके और सार्वजनिक समारोहों में मास्क का उपयोग करने और उचित सामाजिक दूरी बनाए रखने की भी सलाह दी। गोद लिए गए गांवों के किसानों ने बताया कि तालाबंदी के दौरान वे अपनी उपज दूर के बाजारों में नहीं भेज सकते थे, लेकिन फिर भी उन्हें टमाटर, शिमला मिर्च, फ्रेंच बीन्स और अदरक जैसी उपज के अच्छे दाम मिले। कुछ किसानों ने ऑयस्टर मशरूम की खेती करने में रुचि दिखाई जिसके लिए लाइव प्रदर्शन किया गया। पिछले वर्षों में निदेशालय से प्रशिक्षण लेने वाले कुछ किसान सफल उत्पादक बने और अन्य साथी किसानों के साथ अपने अनुभव साझा किए। घर पर रहने वाले छात्रों से भी ऑयस्टर मशरूम की खेती करने का अनुरोध किया गया क्योंकि यह आसान है और कम निवेश की मांग करता है। टीम ने फिर से ऑयस्टर मशरूम की खेती की तकनीक का प्रदर्शन करने के लिए गांव सलुमना का दौरा किया, जहां 10 किसानों (९ कृषक महिला और १ किसान) ने सामाजिक दूरी और COVID रोकथाम मानदंडों के साथ भाग लिया। किसानों को and spread the information about mushroom cultivation, consumption among the farmers, entrepreneurs and the general public. Distribution of free literature, sale of priced publications, information dissemination about the services offered by the ICAR-DMR are undertaken in these outreach extension activities. The Directorate could participate in one of the exhibition organized by ICAR-IARI, New Delhi from 1st to 3rd March 2020.

3.9 Mera Gaon Mera Gaurav (MGMG) scheme

'Mera Gaon Mera Gaurav (MGMG) scheme' was launched by Hon'ble Prime Minister during the 87th Foundation day of ICAR stipulating all the scientists to adopt and remain in touch with the farmers of the adopted villages to hasten the lab to land process. To implement the scheme from ICAR-Directorate of Mushroom Research, Solan, two teams were constituted consisting five and six scientists respectively in each team. Twelve villages identified from Solan and Kandaghat block were visited by the scientists for implementation of the scheme. During 2020 because of the lockdown the physical visits to the villages remained suspended till September, 2020. Once restrictions were eased, ICAR-DMR team visited the village Salumna and interacted with the farmers on various activities including oyster mushroom cultivation. Farmers were requested to follow the guidelines of the GOI and the state government of Himachal Pradesh to curtail the spread of COVID-19 and also advised to use mask and to maintain the appropriate social distance in public gatherings.

Farmers in the adopted villages informed that, during lockdown they could not send their produce to the distant markets but even then they got good rate for the produce like tomato, capsicum, French beans and ginger. Some of the farmers showed interest to take up oyster mushroom cultivation for which the live demonstration was conducted. Some of the farmers who took the training from the Directorate in the earlier years became successful growers and shared their experiences with the other fellow Students staying at home were also requested to take up the oyster mushroom cultivation as it is easier and demands less investment. The team again visited the village Shalumna to demonstrate the oyster mushroom cultivation technology where 10 farmers (9 farmwomen and 1 farmer) participated

अनुभव के साथ ऑयस्टर मशरूम की खेती में शामिल गतिविधियों के बारे में बताया गया। ओएस्टर (प्लूरोट्स ओस्ट्रेट्स किस्म फ्लोरिडा) का 20 किलो स्पॉन (बैग के साथ प्रति किसान 2 किलो स्पॉन) किसानों को मशरूम उगाने के लिए प्रेरित करने के लिए वितरित किया गया। एमजीएमजी की टीम ने भविष्य के लिए किसानों के नाम भी दर्ज किए। टीम ने ऑयस्टर मशरूम की फसल देखने के लिए फिर से गांव सालुमना का दौरा किया। वैज्ञानिकों की दूसरी टीम ने मशरूम की खेती की गतिविधियों को देखने के लिए गांव वाकनाघाट का दौरा किया। प्रगतिशील मशरूम किसानों में से एक खाद तैयार कर रहा था। टीम द्वारा उनके फार्म का दौरा किया और उन्हें खाद की गुणवत्ता में और सुधार के लिए तकनीकी सुझाव भी दिए।

निदेशालय में ''स्वच्छता अभियान'' के आयोजन के दौरान टीम ने इस महामारी के समय में स्वच्छता के महत्व पर जागरूकता पैदा करने के लिए एमजीएमजी के तहत गोद लिए गए गांवों का दौरा किया। उनसे अपने आसपास और पर्यावरण को साफ रखने का अनुरोध किया गया। टीम ने किसानों को मशरूम की खेती के माध्यम से कृषि अपशिष्ट का उपयोग और प्लास्टिक निपटान प्रबंधन बारे में संक्षिप्त जानकारी भी दी। उन्हें ऑयस्टर मशरूम की खेती के माध्यम से कृषि अपशिष्ट प्रबंधन के बारे में भी जानकारी दी। टीम ने किसानों से एकल उपयोग प्लास्टिक से बचने का भी अनुरोध किया क्योंकि यह पारिस्थितिकी तंत्र को प्रदृषित कर रहा है।

with social distancing and COVID prevention norms. The farmers were told about the steps involved in oyster mushroom cultivation with hands on experience. 20 kg spawn (2 kg per farmers with bags) of Pleurotus ostreatus var Florida was distributed to farmers to motivate them to start the mushroom growing. MGMG team also recorded the names of farmers for future follow up. The team again visited village Salumna to see the crop of oyster mushroom for which the demonstration was given last month. The other team of the scientists visited village Waknaghat to see the current Mushroom cultivation activities. One of the progressive mushroom farmers was preparing compost. He was visited by the team and was given technical suggestions for the further improvement of the quality of the compost.

During the organization of "Swachhta abhiyaan" at the Directorate, the team visited adopted villages under MGMG to create awareness on the importance of cleanliness during this pandemic time. They were requested to keep their surroundings and environment clean. The team also gave brief information about utilization of agriculture waste via mushroom cultivation and plastic disposal management to the farmers. They informed about the agriculture waste management through oyster mushroom cultivation. The team also requested farmers to avoid single use plastic as it is polluting the ecosystem.

चित्र 3.3 खुम्ब अनुसंधाान निदंशालय द्वारा मेरा गांव मेरा गौरव कार्यक्रम की गतिविधियां Fig. 3.3 MGMG activities conducted by ICAR-DMR

3.10 कुल मशरूम उत्पादन

महामारी की अवधि के दौरान, आईसीएआर—डीएमआर, सोलन ने एआईसीआरपी नेटवर्क केंद्रों की सहायता से भारत में मशरूम

3.10 Total mushroom production

During the pandemic period, the ICAR-DMR, Solan made an attempt to analyze the current scenario of the mushroom production in India with the assistance of

उत्पादन के वर्तमान परिदृश्य का विश्लेषण करने का प्रयास किया। कुल मशरूम उत्पादन पर एकत्र किया गया डेटा भारतीय मशरूम उद्योग पर COVID—19 महामारी के प्रभाव का विश्लेषण करने में मददगार है। हालांकि प्रारंभिक लॉकडाउन अवधि के कारण मशरूम का उत्पादन प्रभावित हुआ था, लेकिन पोषक तत्वों से भरपूर खाद्य पदार्थों की मांग में वृद्धि के कारण कुल उत्पादन में उल्लेखनीय वृद्धि दर्ज की गई। 2020 के दौरान भारत में विभिन्न मशरूम का कुल उत्पादन तालिका 32 में दिया गया है।

तालिका 3.2 : 2020 के दौरान भारत के विभिन्न राज्यों में मशहूम उत्पादन

AICRP network centers. The data collected on total mushroom production is helpful to analyze the impact of COVID-19 pandemic on the Indian mushroom industry. Though the mushroom production was affected due to the initial lockdown period, the total production registered a significant increase due to the surge in the demand for the foods rich in nutritional properties. The total production of different mushrooms in India during 2020 has given in table 3.2

Table 3.2: Mushroom production in different states of India during 2020

State	Mushroom production (In tonnes)	State	Mushroom production (In tonnes)
Andhra Pradesh	3650	Madhya Pradesh	500
Arunachal Pradesh	60	Manipur	70
Assam	1200	Meghalaya	35
Bihar	20080	Mizoram	65
Chhattisgarh	11400	Nagaland	422
Delhi	3200	Odisha	22000
Goa	6400	Punjab	18500
Gujarat	14200	Rajasthan	15800
Haryana	19000	Sikkim	6
Himachal Pradesh	14733	Tamil Nadu	11780
Jammu and Kashmir	1930	Tripura	150
Jharkhand	3500	Uttarakhand	13923
Karnataka	1250	Uttar Pradesh	11900
Kerala	900	West Bengal	7000
Maharashtra	20250	Total	225924

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, सोलन द्वारा वर्ष 2020 के दौरान बनाई गई तकनीकी आर्थिक साध्यता रिपोर्ट:

विभिन्न खुम्बों जैसे कि श्वेत बटन खुम्ब उत्पादन, श्वेत बटन खुम्ब खाद, स्पान उत्पादन, गैनोडर्मा, शिटाके, कोडीसेप्स, प्रोसेसिंग इकाईयां आदि की 352 तकनीकी आर्थिक साध्यता रिपोर्टे 20, 50, 100, 200, 500 टन प्रति वर्ष क्षमता वाली देश के विभिन्न क्षेत्रों के खुम्ब उत्पादकों / फर्मों की बनाई गई (तालिका 3.3)

Techno Economic Feasibility Reports (TEFRs)

Three hundred sixty two numbers (352 Nos.) Techno-Economic Feasibility Reports (TEFRs) for setting up of Mushroom Units of 20, 50, 100, 200, 500, above 500 Ton per annum capacity of Spawn production, Growing units of white button, Oyster, Ganoderma, Shiitake, Cordyceps, Paddy Straw, Button mushroom compost production, processing units etc. have been prepared for mushroom growers/firms from different parts of the country. (Table-3.3)

तालिका 3.3 मशरूम उत्पादकों के लिए तैयार की गई टीईएफआर की सूची

Table 3.3 List of TEFR prepared for mushroom growers

S.No.	Name & address	Details
1.	Mr.Ramphal, S/o Mr. Ami Lal, Village Dumakha Kalan, Block Uchana, District Jind (Haryana) - 126116	20 TPA White Button Mushroom Growing unit
2.	Mr Shrinivas, Vijayawada, Andhra Pradeshh	100 TPA White Button Mushroom cultivation
3.	Mr. Adesh Panwar, S/o Mr.Ajeet Singh, Chaudhary Roop Ram Market, New Mandi Jhabrera, District Haridwar (Uttarakhand)	100 TPA White Button Mushroom cultivation
4.	Mr. Sher Singh, S/o Mr. Ramesh Chand, Village & PO Guler, Tehsil Dehra, Sub Tehsil Gopalpur, District Kangra (H.P.) – 176033	20 TPA white button mushroom growing unit
5.	Officer Incharge, West Bengal Comprehensive Area Development Corporation, Village Dalapatipur, PO Debra Bazar, District West Mednipur (West Bengal) – 721126.	20 TPA Spawn Production Unit
6.	M/s. S.S. Chaudhary Mushroom Farm, Mr. Avikant Chaudhary, Rohalaki Kishanpur, Bhadrabad (Uttarakhand) – 249402	20 TPA white button mushroom growing unit
7.	Mr. Abhiraj Singh, S/o Mr.Shyam Singh, Village Barikhad, PO Lodwan, Tehsil Nurpur, District Kangra (H.P.) – 176201	50 TPA white button mushroom
8.	M/s. Akash Mushroom Farm Village Nanhera, PO Ambli, Tehsil Naraingarh, District Ambala (Haryana) - 133004.	200 TPA White Button Mushroom
9.	M/s. Shiv Agro Foods, Mr.Krishna Chauhan, Village Khedli, PO Bahadrabad, Haridwar (Uttarakhand).	100 TPA White Button Mushroom Growing Unit
10.	M/s. Shiv Agro Foods, Mr.Krishna Chauhan, Village Khedli, PO Bahadrabad, Haridwar (Uttarakhand).	500 TPA White Button Mushroom Compost Production Unit
11.	Mr. Kunwar Singh S/o Mr. Madan Singh, Village Chiyog, PO Jamna, Tehsil Kamrau, District Sirmour (H.P.) – 173029.	20 TPA White Button Mushroom Growing Unit

12.	Mr. Pardeep S/o Mr. Bhim Sain, Village & PO Garhi Kesri, Ganaur, Sonipat (Haryana).	20 TPA Spawn production Unit
13.	Mr. Pardeep S/o Mr. Bhim Sain, Village & PO Garhi Kesri, Ganaur, Sonipat (Haryana).	2700 TPA White Button Mushroom Compost Production Unit
14.	Mr. Pardeep S/o Mr. Bhim Sain, Village & PO Garhi Kesri, Ganaur, Sonipat (Haryana).	90 TPA White Button Mushroom
15.	Mr. Subhasish Sarkar, Bonomali Road, Ward No.13, Karimganj-788710 (Assam)	50 TPA Spawn production Unit
16.	M/s. S.K. Mushroom Mr. Sanjeev Kumar, Village Kumbra, Tehsil Amloh, Distt. Fatehgarh Sahib (Punjab)	100 TPA White Button Mushroom cultivation
17.	M/s. S.K. Mushroom Mr. Sanjeev Kumar, Village Kumbra, Tehsil Amloh, Distt. Fatehgarh Sahib (Punjab)	500 TPA White Button Mushroom Compost Production Unit
18.	Mr. Sunil Kumar S/o Mr.Rajbir Singh, VPO Palri, Tehsil Israna, District Panipat (Haryana) – 132145.	20 TPA White Button Mushroom Growing Unit
19.	Smt. Gudi W/o Mr.Surajbhan, Kaliravan, Hisar (Haryana) – 125052	50 TPA White Button Mushroom cultivation
20.	M/s. Bijlwan Mushroom Farm, Mr. Suraj Parkash S/o Late Bansi Dhar, VPO Rountal, Tehsil Chinyalisour, District Uttarkashi (Uttarakhand)	20 TPA White Button Mushroom Growing Unit
21.	M/s. Bijlwan Mushroom Farm, Mr. Suraj Parkash S/o Late Bansi Dhar, VPO Rountal, Tehsil Chinyalisour, District Uttarkashi (Uttarakhand)	200 TPA Compost Production Unit
22.	Mr. Karan Singh S/o Late Arjun Singh, Village Mehrampur, PO Dharson, Tehsil Narnaul, Distt. Mahendergarh (Haryana) – 123001	20 TPA White Button Mushroom Growing Unit
23.	Mr. Karan Singh S/o Late Arjun Singh, Village Mehrampur, PO Dharson, Tehsil Narnaul, Distt. Mahendergarh (Haryana) – 123001	500 TPA White Button Mushroom Compost Production Unit
24.	Mr. Umesh Sharma S/o Mr.Karam Chand, Village Jaral, PO Nabahi Devi, Tehsil Sarkaghat, District Mandi (H.P.) – 175024	20 TPA White Button Mushroom Growing Unit

25.	Mr. Umesh Sharma S/o Mr.Karam Chand, Village Jaral, PO Nabahi Devi, Tehsil Sarkaghat, District Mandi (H.P.) – 175024	500 TPA White Button Mushroom Compost Production Unit
26.	Mr. Raj Kumar S/o Mr. Kalwant, Village Kabarchha Block Uchana, District Jind (Haryana) – 126116	20 TPA White Button Mushroom Growing Unit
27.	Mr. Surender Kumar S/o Mr.Sube Singh, VPO Jajanwala, Tehsil Narwana, District Jind (Haryana) –126162	20 TPA White Button Mushroom Growing Unit
28.	Mr. Wazir Sigh S/o Mr. Kishan Lal, VPO Palri, Tehsil Israna, District Panipat (Haryana) – 132145	20 TPA White Button Mushroom Growing Unit
29.	M/s. Mahabir Mushroom Farm, Mr. Mahabir Singh, Village Bhanwar, P.O. Khubru, Tehsil Ganaur, Sonipat (Haryana) – 131101	Integrated White Button Mushroom Growing unit (20 TPA Spawn, 2700 TPA compost and 100 TPA Growing unit)
30.	Mr. Suresh Chander Chibb, Village Upper Sukker, PO Sukker, Tehsil Dharamshala, District Kangra (H.P.)–176057	20 TPA White Button Mushroom Growing Unit
31.	M/s. Chopra Farms, Mr. Vinay Kumar Chopra, Village Bari Rasore, Naraingarh, District Ambala (Haryana)	20 TPA Spawn production unit
32.	M/s. Chopra Farms, Mr. Vinay Kumar Chopra, Village Bari Rasore, Naraingarh, District Ambala (Haryana)	500 TPA White Button Mushroom Compost Production Unit
33.	Mrs. Seema W/o Mr. Vinod Kumar, VPO Kabarchha Block Uchana, Jind (Haryana) – 126115	20 TPA White Button Mushroom Growing Unit
34.	Mr. Vinod Kumar S/o Mr. Birkbhan, VPO Kabarchha Block Uchana, Jind (Haryana) – 126115	20 TPA White Button Mushroom Growing Unit
35.	Mr. Narender Singh S/o Mr.Satpal Singh, VPO Lalpur, Tehsil Naraingarh, District Ambala (Haryana)	20 TPA White Button Mushroom Growing Unit
36.	Mr. Nand Lal S/o Mr.Govind Ram, VPO Shiva-Badar, Tehsil Sadar, District Mandi (H.P.)	20 TPA White Button Mushroom Growing Unit
37.	Mr. Praveen Kumar S/o Sh. Puran Chand, Village Tabra, PO Jalbera, Tehsil Ismailabad, District Kurukshetra (Haryana) - 136129	50 TPA White Button Mushroom project

38.	Mr. Subhash Chand S/o Sh. Balkar Singh, Village Tabra, PO Jalbera, Tehsil Ismailabad, District Kurukshetra (Haryana) - 136129	50 TPA White Button Mushroom project
39.	Mr. Subhash Chander S/o Sh. (Master) Inder Singh, VPO Julani, District Jind (Haryana) - 126102	20 TPA White Button Mushroom Growing Unit
40.	M/s. Chopra Farms, Mr. Vinay Kumar Chopra, Village Bari Rasore, Naraingarh, District Ambala (Haryana)	20 TPA White Button Mushroom Growing Unit
41.	M/s. Chopra Farms, Mr. Vinay Kumar Chopra, Village Bari Rasore, Naraingarh, District Ambala (Haryana)	500 TPA White Button Mushroom Compost Production Unit
42.	Mr. Vikas Kumar, Village Rachedi, PO Ganeshpur, Tehsil Narayangarh, Distt. Ambala (Haryana)	50 TPA White Button Mushroom cultivation project
43.	Sh. Tek Chand S/o Sh.Dina Nath, Village Garla Sarkari, PO Garla Dei, Tehsil Palampur, District Kangra (HP)- 176085	20 TPA White Button Mushroom Growing Unit
44.	M/s. CRI Limited, Mr. Rohin Raj Sureka, Premises Number 333, Mahamayatala Garia Main Road, Garia, Kolkata – 700084 (WB)	3000 TPA White Button Mushroom project
45.	Smt. Suman Tyagi, S/o Sh. S.P. Tyagi, Tyagi Garden, Mothrowala-Dudhli Raod, Dehradun (Uttarakhand)	500 TPA White Button Mushroom Compost Production Unit
46.	Mr. Munish Chawla S/o Sh. Kartar Singh Chawla, Village Kutail, Block Garunda, District Karnal (Haryana	20 TPA White Button Mushroom Growing Unit
47.	Mr. Roshan Lal Vashishtha S/o Lt. Sh. Sheru Ram, Village Jhailly, PO Malera, Tehsil Kishangarh, Solan (H.P.) - 173209	20 TPA White Button Mushroom Growing Unit
48.	Mr. Roshan Lal Vashishtha S/o Lt. Sh. Sheru Ram, Village Jhailly, PO Malera, Tehsil Kishangarh, Solan (H.P.) - 173209do-	500 TPA White Button Mushroom Compost Production Unit
49.	Mr. Kapil Dev S/o Mr.Bhagat Ram, Pawan Kunj, Kheri Road, Kothia Bazar, PO Rajgarh, District Sirmour (HP)- 173101	20 TPA White Button Mushroom Growing Unit
50.	Mr. Rakesh Kumar Bindal, GT Road Bhigan, Ganaur, Sonipat (Haryana) - 131039	50 TPA White Button Mushroom project

51.	Mr. Ayush Bindal, GT Road Bhigan, Ganaur, Sonipat (Haryana) – 131039	50 TPA White Button Mushroom project
52.	Mrs. Anita Bindal, GT Road Bhigan, Ganaur, Sonipat (Haryana) – 131039 8397079027, 9215683624, 9418083624	50 TPA White Button Mushroom project
53.	Mr. Raman Preet Singh, Village Bidaura, Tehsil Lakhimpur-Kheri, District Kheri (U.P.)	25 TPA White Button Mushroom project
54.	Mr. Ravinder Kumar S/o Mr.Jagdish Swamy, VPO Nangthala, District Hisar (Haryana) – 125047	500 TPA White Button Mushroom Compost Production Unit
55.	Mr. Rakesh Kumar, Village Barhana, District Jhajjar (Haryana)	180 TPA White Button Mushroom project
56.	Mr. Rawail Singh, Village Lotton, Tehsil Naraingarh, District Ambala (Haryana)	20 TPA White Button Mushroom Growing Unit
57.	Mr. Rawail Singh, Village Lotton, Tehsil Naraingarh, District Ambala (Haryana)	500 TPA White Button Mushroom Compost Production Unit
58.	M/s. Naturemate Business Solutions LLP (Limited Liability Partnership), Farm House No.32, Greenline Farm House, Chimanpura, Kukas, Delhi By Pass Jaipur (Rajasthan)	68 TPA White Button Mushroom project
59.	M/s. Islamudin Associate, Promoters: (i) Mr. Azad Ali (ii) Mr. Sajhjad Ali & (iii) Sayyad Ali S/o Late Sh.Islamudin, Village Buddi, Mauja East Houston, Tehsil Vikasnagar, Block Sahaspur, Dehradun (Uttarakhand)	92 TPA White Button Mushroom project
60.	Miss Anushka Jaiswal, Village Hari Kheda, Sisendi, Tehsil Mohanlalganj, Lucknow (UP)	76 TPA White Button Mushroom project
61.	Mr. Abhijit Singh Nain, S/o Sh. Roshan Lal, VPO Dharodi, Tehsil Narwana, District Jind (Haryana)	150 TPA White Button Mushroom project
62.	Mr. Amit Nain, S/o Sh. Dharamveer Nain, VPO Dharodi, Tehsil Narwana, District Jind (Haryana	60 TPA White Button Mushroom Growing + 1440 TPA Compost production Project
63.	M/s. Malik Mushroom Farm, Mr. Deepak, VPO Sarsa, Tehsil Pehowa, District Kurukshetra (Haryana)-136128	500 TPA White Button Mushroom Compost Production Unit
64.	Mr. Fateh Chand, VPO Haripur, Tehsil Manali, District Kullu (H.P.)	20 TPA White Button Mushroom Growing Unit

65.	Mr. Sanjeet Singh, Village Shankarpur, Near Doon Medical Science College, Dehradun (Uttarakhand)	50 TPA White Button Mushroom project
66.	Mr. Prem Lal S/o Mr. Ram Chand, VPO Navgaon, Tehsil Arki, District Solan (H.P.) – 171102	20 TPA Oyster Mushroom Production Unit
67.	Mr. Krishan Kant Shokiya, Village Harabari Gaon, PO Mohanbari, A/F, District Dibrugarh (Assam) – 786012.	20 TPA Spawn Production Unit
68.	Mr. Satwinder Singh S/o Sh. Avtar Singh, Village Badlipur, Jamniwala Road, PO & Tehsil Paonta Sahib, District Sirmour (H.P.) - 173025	20 TPA White Button Mushroom Growing Unit
69.	M/s. Pioneer Holom Agroecology Pvt. Ltd., Mr. Bharati Bhusan Ray, Director, At/PO Nariso, Via Niali, District Cuttack (Odisha) - 754004	200 TPA White Button Mushroom Project
70.	M/s. Pioneer Holom Agroecology Pvt. Ltd., Mr. Bharati Bhusan Ray, Director, At/PO Nariso, Via Niali, District Cuttack (Odisha) - 754004	500 TPA White Button Mushroom Compost Production Unit
71.	M/s. Deepak Pahadi Food, Mr. Deepak Garg, PO Balawala, Dehradun (Uttarakhand)	20 TPA White Button Mushroom Growing Unit
72.	M/s. R.A.S. Fresh Mushroom, Mr. Rakesh, Village Milki, Post Karwan, P.S. Udawant Nagar, District Bhojpur (Bihar) – 802312	100 TPA White Button Mushroom Project
73.	Mr. Rajneesh Kumar, S/o Mr. Sohan Lal, VPO Khilian, Tehsil Nalagarh, District Solan (H.P.)	20 TPA White Button Mushroom Growing Unit
74.	M/s. Pioneer Holom Agroecology Pvt. Ltd., Mr. Bharati Bhusan Ray, Director, At/PO Nariso, Via Niali, District Cuttack (Odisha) - 754004	500 TPA White Button Mushroom Compost Production Unit
75.	M/s BHY Private Limited, Buggawaala, Biharigarh, Dehradun (Uttarakhand)	250 TPA White Button Mushroom Project
76.	M/s BHY Private Limited, Buggawaala, Biharigarh, Dehradun (Uttarakhand)	1250 TPA White Button Mushroom Compost Production Unit
77.	M/s BHY Private Limited, Buggawaala, Biharigarh, Dehradun (Uttarakhand)	10 TPA Spawn Production Unit
78.	Mr. Vinay Kumar, Village Behari, Tehsil Sader, District Muzaffarnagar (U.P.) – 251202	20 TPA White Button Mushroom Growing Unit

79.	Mr. Arjun Kumar, Village Kotwal Alampur, Post Jhabrera, Tehsil Roorkee, District Haridwar (Uttarakhand) – 247665	200 TPA White Button Mushroom Compost Production Unit
80.	Mr. Baldev Singh, Village Akanwali, Tehsil Tohana, District Fatehabad (Haryana).	500 TPA White Button Mushroom Compost Production Unit
81.	Mr. Suresh Kumar S/o Sh. Jagat Singh, Maan Patti, VPO Sinsar, Tehsil Narwana, District Jind (Haryana) - 126116	20 TPA White Button Mushroom Growing Unit
82.	Mr. Sultan Singh S/o Sh. Jagat Singh, Maan Patti, VPO Sinsar, Tehsil Narwana, District Jind (Haryana)–126116	20 TPA White Button Mushroom Growing Unit
83.	M/s. Fungal Comida Agro Pvt. Ltd., Promoters: (i) Mr. Imran Hossain, Director & (ii) Ms. Almariyum Noorjahan Ansari, Village Rangafala, PO Belpukur, P.S. Kulpi, Dist. 24 Pgs (S) – 743348 (West Bengal)	50 TPA White Button Mushroom project
84.	Mr. Tejpal, Village Noorpur, PO Badshahpr, District Gurugram (Haryana)	50 TPA White Button Mushroom project
85.	Mr. Sandeep Sharma S/o Sh. Om Prakash, VPO Staundi, Tehsil Gharaunda, District Karnal (Haryana) - 132114	20 TPA White Button Mushroom Growing Unit
86.	Mr. Hira Lal S/o Sh. Bihari Lal, Village Kotla, PO Thachi, Sub Tehsil Dhami, District Shimla (H.P.) - 171103	20 TPA Spawn Production Unit
87.	M/s BHY Private Limited, Buggawaala, Biharigarh, Dehradun (Uttarakhand)	500 TPA White Button Mushroom Compost Production Unit
88.	Sh. Shibaji Ghosh, Block Baruipur, Dist. 24 Parganas South, PS Baruipur,, Mauja Ramnagar J.L. – 97, Khatian No.10316, West Bengal	24 TPA White Button Mushroom project
89.	Mr. Kaushal Sharma, S/o Sh. Surender Prakash Sharma, Village Unner, PO Sarahan, Tehsil Pachhad, District—Sirmour (HP) - 173024	48 TPA White Button Mushroom project
90.	Principal, Horticulture Training Institute, Uchani, Karnal (Haryana	20 TPA White Button Mushroom Growing Unit

91.	M/s.Green AgroEco Farm LLP, Mr.Prashant Shukla and Sonia Kochhar, Jajo Mazara, Punjab-144502	200 TPA White Button Mushroom project
92.	Mr. Swarup Singh, VPO Kathgarh, Tehsil & District Ambala (Haryana)-134003	500 TPA White Button Mushroom Compost Production Unit
93.	Mr. Devraj Patel, Village: Parsuli, Post: Tumakala, Tehsil: Dhamdha, District: Durg, Chhattisgarh	20 TPA Spawn Production Unit
94.	Mr. Devraj Patel, Village: Parsuli, Post: Tumakala, Tehsil: Dhamdha, District: Durg, Chhattisgarh	200 TPA White Button Mushroom Compost Production Unit
95.	Mr. Devraj Patel, Village: Parsuli, Post: Tumakala, Tehsil: Dhamdha, District: Durg, Chhattisgarh	25 TPA White Button Mushroom project
96.	Mr. Vikas Sharma, S/o Late Sh. Babu Ram Sharma, VPO- Bankhandi, Tehsil – Dehra, District – Kangra (HP)	60 TPA White Button Mushroom project
97.	Mr. Rajesh Kumar S/o Sh. Gika Ram, VPO Naswal, Tehsil Ghamarwin, District Bilaspur (H.P.).)	20 TPA White Button Mushroom Growing Unit
98.	Sh. Gita Ram Chauhan S/o Sh. Chunchu Ram, Vill: Vahedgaon, PO & Tehsil Rajgarh, District Sirmour, (HP)	20 TPA White Button Mushroom Growing Unit
99.	Mr. Rajni Kant S/o Sh.Surinder Kumar, Village Nakki, PO Baduhi, Tehsil Nurpur, District Kangra (H.P.) - 176201	20 TPA White Button Mushroom Growing Unit
100.	Mr. Bhagat Singh Rana, Chargaon (Sandasu), District-Shimla (HP)	18 TPA White Button Mushroom Growing Unit
101.	Mr. Subhram Yadav, Village Nawdi, PO Kanti, Tehsil Ateli, District Mahendragarh (Haryana) - 123021	500 TPA White Button Mushroom Compost Production Unit
102.	Mrs. Neha Goswami W/o Sh. Yogesh Sharma, Village Kaila, PO Saproon, Solan (H.P.) – 173211	10 TPA Spawn/Cordyceps Mushroom Production Unit
103.	Mrs. Kavita Gautam, Damlanaghatti, Tehsil Arki, District Solan (H.P.) - 173235	20 TPA Spawn Production Unit
104.	Balwinder Singh, Near Royal Palace, Tahliwal, Tehsil Haroli, Distt. Una (H.P)	20 TPA White Button Mushroom Growing Unit

105.	Mr. Jagat Ram Bhardwaj S/o Sh. Rikhi Ram Sharma, Village Kallar, PO Kotlu Brahmna, Tehsil Ghumarwin, District Bilaspur (H.P.) - 174029	20 TPA Spawn Production Unit
106.	Mr. Devender Thakur S/o Sh. Bhagat Ram Thakur, Village Kothi, PO Oachghat, Tehsil & District Solan (H.P.) - 173223	20 TPA White Button Mushroom Growing Unit
107.	M/s. Shambhavi Charitable Trust, Ms. Shelja Sharma, W/o Mr. Sanjay Kumar, Gaon: Kochraut, Siyani Bulandshehar (U.P.)	200 TPA White Button Mushroom project
108.	Mr. Rakesh Kumar, VPO Bathri, Tehsil Haroli, District Una (H.P.) – 177220	20 TPA White Button Mushroom Growing Unit
109.	Mr. Rakesh Kumar, VPO Bathri, Tehsil Haroli, District Una (H.P.) – 177220	500 TPA White Button Mushroom Compost Production Unit
110.	Mr. Joginder Pal S/o Sh. Nanak Chand, Village Mat Umra, PO Mera Bani, Tehsil Rakhad, Distt. Kangra (HP)–177108	20 TPA White Button Mushroom Growing Unit
111.	Mr. Nain Prakash, Village Shillagran, PO Shalang, Tehsil & District Kullu (H.P) – 175102	20 TPA White Button Mushroom Growing Unit
112.	Mrs. Neelam W/o Sh. Rakesh Kumar, VPO Sunni, Ward No.3, Tehsil Sunni, District Shimla (HP) – 171301	20 TPA White Button Mushroom Growing Unit
113.	M/s. Sonipat Mushroom Farmers Producer Company Limited, Promoters: Ms.Shimla Devi & Mr. Ashok Kumar Shop No–SFB-309a, Roman Court, Village–Rasoi, P.O.–Rai, Near Parker Mall, Distt.–Sonipat, Haryana–131028}	
114.	Sh. Gurpreet Singh Pujwal, Dashmesh Nagar, Gangyal, Jammu (Jammu & Kashmir)- 180010	50 TPA White Button Mushroom project
115.	Mr. Dharam Chand S/o Sh. Amar Singh, Village Naroli, PO & Tehsil Salooni, District Chamba (H.P.)	20 TPA White Button Mushroom Growing Unit
116.	M/s. Chirag Farms, Mr. P.R. Sharma, 7 KM Milestone, Bawani Khera, Tosham Road, VPO Bawani Khera, District Bhiwani (Haryana) – 127032	20 TPA White Button Mushroom Growing Unit

117.	M/s. Chirag Farms, Mr. Chirag Sharma, 7 KM Milestone, Bawani Khera, Tosham Road, VPO Bawani Khera, District Bhiwani (Haryana) - 127032	20 TPA White Button Mushroom Growing Unit
118.	M/s Himgiri Agro, Mr. Ridhim Thapar and Mrs. Mamta Sehgal, Budhwashahid, Tehsil Bhagwanpur, District Haridwar (Uttarakhand)	1000 TPA White Button Mushroom Cultivation
119.	Mrs. Mamta Sharma W/o Sh.Vasu Dev Sharma, Village Rewari Khera, Tehsil & District Bhiwani (Haryana)	50 TPA white button mushroom
120.	Mrs. Indu Sharma W/o Sh. Rohit Sharma, Village Rewari Khera, Tehsil & District Bhiwani (Haryana)	50 TPA white button mushroom
121.	Mrs. Anju Devi W/o Mr. Sanjeev Kumar, Village Thara, PO Mundkhar, Tehsil Bhoranj, District Hamirpur (H.P)	11 TPA white button mushroom growing unit
122.	Mrs. Sapna Shukla, W/o Shishir Chandra Shukla, 170, Tareen Bahadur Ganj, Shahjahanpur (UP) - 242001	100 TPA white button mushroom
123.	Mr. Joginder Kumar S/o Sh. Dharampal, Village Sanog, PO Kaba Kalan, Tehsil & District Solan (H.P.)	500 TPA white button mushroom compost production
124.	Mr. Joginder Kumar S/o Sh. Dharampal, Village Sanog, PO Kaba Kalan, Tehsil & District Solan (H.P.)	20 TPA white button mushroom growing unit
125.	Mr. Ajay Kumar Maurya S/o Sh. Rambali Maurya, Village Gajahara, PO & Thana Mubarakpur, Tehsil Sadar, District Azamgarh (U.P.)	50 TPA white button mushroom
126.	M/s. JENVIN International, Promoter: Dr. Arvind Kumar S/o Sh.Banwari Lal (Retired Teacher), 72, Jhotoopur-Kaveerpur, Post Nigohi, District Shahjahanpur (U.P.) – 242007.	500 TPA white button mushroom compost production
127.	M/s. JENVIN International, Promoter: Dr. Arvind Kumar S/o Sh.Banwari Lal (Retired Teacher), 72, Jhotoopur-Kaveerpur, Post Nigohi, District Shahjahanpur (U.P.) – 242007.	20 TPA white button mushroom growing unit

128.	Mr. Kuldeep Singh S/o Sh.Roshan Lal, VPO Kaimla, Tehsil Gharounda, District Karnal (Haryana)-132114	20 TPA white button mushroom growing unit
129.	Mr. Shishu Patial S/o Sh. Swar ingh Patial, VPO Paplah, Tehsil Lambagaon, District Kangra (H.P.)	20 TPA white button mushroom growing unit
130.	Ms. Poja Bhattad, LR-168/292 Khaitan Dag No.215, Village/Mouza – Saranga Fulberia, P.S. Chhatna, District Bankura (West Bengal)	20 TPA Oyster mushroom growing unit
131.	Ms. Poja Bhattad, LR-168/292 Khaitan Dag No.215, Village/Mouza – Saranga Fulberia, P.S. Chhatna, District Bankura (West Bengal)	20 TPA Shiitake mushroom growing unit
132.	Mr. Sanjeet Singh, Village Shankarpur, Near Doon Medical Science College, Dehradun (Uttarakhand)	11 TPA white button mushroom growing unit
133.	Mr. Hem Raj, Village Choo, PO Langna, Tehsil Joginder Nagar, District Mandi (H.P.) - 175015.	50 TPA white button mushroom Growing unit
134.	Mr. Hem Raj, Village Choo, PO Langna, Tehsil Joginder Nagar, District Mandi (H.P.) - 175015	500 TPA white button mushroom Compost production unit
135.	M/s. Anivesh Agro, Mr. Amit Kumar Singh, S/o Late Sh. Brij Kishor Singh, Vill- Dulpha, Post- Khocharihan, PS - Dhansoi, Dist. Buxar (Bihar) - 802117	50 TPA white button mushroom
136.	Mr. Naveen Belwal, S/o Sh. L.D. Belwal, Vill-Kuwarpur, Opp. Telephone Exchange, Gaulapur, Haldwani, Dist. Nanital (Uttarakhand) - 263139	50 TPA white button mushroom
137.	Sh. Naresh Pal Rawat, S/o Sh. Manjeet Singh Rawat, Ward no. 3, Pahadi Gali, Vikas Nagar, Dehradun (Uttarakhand)-248198	45 TPA white button mushroom
138.	M/s. Brijwashi Mushrooms, Promoter: Mr. Indrajeet Singh, Mahuan, Jhandipur Road, NH-2, Near Toll Tax Mathura (U.P.)	92 TPA white button mushroom
139.	Mr. Sumer Singh, S/o Sh.Hardyal Singh, Village Tibi Bakshiwala, Chikan (185), Panchkula (Haryana)-134102	20 TPA white button mushroom growing unit

140.	Mr. Sumer Singh, S/o Sh.Hardyal Singh, Village Tibi Bakshiwala, Chikan (185), Panchkula (Haryana)-134102	500 TPA white button mushroom compost production
141.	Ms. Anchal Rawat D/o Sh.Rajender Singh Rawat, Village Makhana, PO Purola, Distt. Uttarkashi (Uttarakhand) – 249185	10 TPA Mushroom Processing Unit
142.	Sh. Karam Singh Saini, VPO- Dhaban, Tehsil – Balh, Distt. Mandi (H.P	20 TPA white button mushroom growing unit
143.	Mr. Mahender Singh, S/o Sh. Jyoti Ram, Village Lakhi Bans, Yamuna Nagar (Haryana) - 135133	500 TPA white button mushroom compost production
144.	Mr. Mohan Lal S/o Sh. Pyare Lal, Village Rauwala, Chikan (185), Pinjore, District Panchkula (Haryana) - 134102	20 TPA white button mushroom growing unit
145.	Mr. Inderjeet S/o Sh. Bir Singh, VPO Nahar, Tehsil Kosli, District Rewari (Haryana) - 123303	20 TPA Spawn production unit
146.	Sh. Rajesh Kumar Pandey, 62A/1F, Sainik Colony, PO - Sulem Sarai, Prayagraj (UP) - 211 001	50 TPA white button mushroom
147.	Sh. Ravinder Katoch, VPO- Indpur, Tehsil – Indora, Distt. Kangra (H.P.) – 176401	20 TPA white button mushroom growing unit
148.	Mr. Rakesh Kumar S/o Sh. Amro Ram, VPO Kiri, Tehsil & District Chamba (H.P.) - 176314	20 TPA white button mushroom growing unit
149.	Sh. Sunil Kumar, Doorwala, Doodhli Road, Dehradun (Uttarakhand)	50 TPA white button mushroom growing unit
150.	Mr. Pradeep Mohan Raturi, Pargana-Pachwadoon, Tehsil Vikasnagar, District Dehradun (Uttarakhand)	50 TPA white button mushroom growing unit
151.	Mr. Pradeep Mohan Raturi, Pargana-Pachwadoon, Tehsil Vikasnagar, District Dehradun (Uttarakhand)	500 TPA white button mushroom compost production
152.	M/s. Quality Venture Mr. Sunil Sharma, Bargodam, Kalka, District Panchkula (Haryana)	20 TPA white button mushroom growing unit

153.	M/s. Quality Venture Mr. Sunil Sharma, Bargodam, Kalka, District Panchkula (Haryana)	500 TPA white button mushroom compost production
154.	M/s. Kalyan Green Agro Tech Limited, Regd. Office: H.No.8, Sri Sai Guru Raghavendra Colony, Near Bhaba Gardens, Yellareddyguda Kapra, Hyderabad (T.S.) – 500062	38 TPA white button mushroom growing unit
155.	Sh. Naresh Pal Rawat, S/o Sh. Manjeet Singh Rawat, Ward no. 3, Pahadi Gali, Vikas Nagar, Dehradun (Uttarakhand)-248198	500 TPA white button mushroom compost production
156.	M/s. Sharma Mushrooms, Promoter: Mr.Raj Kumar S/o Sh. Mangal, Village Alipura, PO Karsindhu, Tehsil Uchana, District Jind (Haryana) – 126115	50 TPA white button mushroom
157.	Mr. Narender Kheora, Village Lagal, PO Majhar, Tehsil Theog, District Shimla (H.P.) - 171209	20 TPA white button mushroom growing unit
158.	Mr. Anil Kumar S/o Sh. Raja Ram, V.P.O. Pragpur, Tehsil Dehra, Distt. Kangra (H.P.) - 177107	20 TPA white button mushroom growing unit
159.	Mr. Varun Kumar S/o Sh.Anil Kumar, V.P.O. Pragpur, Tehsil Dehra, Distt. Kangra (H.P.) - 177107	20 TPA white button mushroom growing unit
160.	Mr. Varun Kumar S/o Sh.Anil Kumar, V.P.O. Pragpur, Tehsil Dehra, Distt. Kangra (H.P.) - 177107	500 TPA white button mushroom compost production
161.	M/s. S.K. Mushroom Farm Village Bhir Bhavan, Tehsil & District Jind (Haryana	500 TPA white button mushroom compost production
162.	Mr. Sukhjinder Singh, S/o Sh. Gobinder Singh, Village Dhanirampura, Tehsil Pehowa, Distt. Kurukshetra (Haryana) - 136128	20 TPA white button mushroom growing unit
163.	Mr. Sukhjinder Singh, S/o Sh. Gobinder Singh, Village Dhanirampura, Tehsil Pehowa, Distt. Kurukshetra (Haryana) - 136128	500 TPA white button mushroom compost production
164.	Mr. Prabhjot Singh S/o Sh. Prit Mohinder Singh, Village Dhanirampura, Tehsil Pehowa, Distt. Kurukshetra (Haryana) - 136128	20 TPA white button mushroom growing unit

165.	Mr. Prabhjot Singh S/o Sh. Prit Mohinder Singh, Village Dhanirampura, Tehsil Pehowa, Distt. Kurukshetra (Haryana) - 136128	500 TPA white button mushroom compost production
166.	M/s. Ateria Foods & Agro Pvt. Ltd., Promoter & MD – Mr. Gyan Gunjan, Plot No.745, Village Chiraura, PS – Naubatpur, Opp. Chiraura High School, NH-139 (AIIMS Chiraura Road), Patna (Bihar)–801109	50 TPA white button mushroom
167.	Mr. Ashok Kumar S/o Sh. Hem Singh, VPO Kiani, Tehsil & District Chamba (H.P	20 TPA spawn production unit
168.	M/s. Mother Nature Agritech Inc. Mr. Sundershan Amar Vazalwar, Nagpur (MS)	500 TPA white button mushroom compost production
		20 TPA spawn production unit
		50 TPA white button mushroom
		20 TPA Canning unit
169.	M/s. Innova Lab Instruments Pvt. Ltd., Lane No.1A, Govindnagar Sahastradhara Road, Touchwood School, Dehradun (Uttarakhand) - 248001	50 TPA white button mushroom
170.	M/s. Innova Lab Instruments Pvt. Ltd., Lane No.1A, Govindnagar Sahastradhara Road, Touchwood School, Dehradun (Uttarakhand) - 248001	500 TPA white button mushroom compost production
171.	M/s. Innova Lab Instruments Pvt. Ltd., Lane No.1A, Govindnagar Sahastradhara Road, Touchwood School, Dehradun (Uttarakhand) - 248001	10 TPA Mushroom Processing unit
172.	M/s. Innova Lab Instruments Pvt. Ltd., Lane No.1A, Govindnagar Sahastradhara Road, Touchwood School, Dehradun (Uttarakhand) - 248001	20 TPA <i>Cordyceps</i> mushroom production unit
173.	Mr. Rohit Goel, Village-Majrakhushalpur, Tehsil Bazpur, Dehradun (UK)	190 TPA White button mushroom project
174.	Mr. Rohit Goel, Village- Majrakhushalpur, Tehsil Bazpur, Dehradun (UK)	950 TPA white button mushroom compost production unit

175.	Mrs. Meenu W/o Sh.Balram, Plot No.18, Shantikunj Colony, Kaimri Road, Hisar (Haryana) - 125005	20 TPA white button mushroom growing unit
176.	Mr. Ranjan Kumar Patra, Dist. Ganjam, City-Berhampur, Odisha	200 TPA White button mushroom project
177.	Mrs. Vandana Chibb, Village Upper Sukker, PO Sukker, Tehsil Dharamshala, Distt. Kangra (H.P.) – 176057	10 TPA Mushroom Processing unit
178.	Mr. Jai Kumar S/o Mr. Shree Ram, Village Topra Khurd, PO Hafizpur, Tehsil Jagadari, District Yamunanagar (Haryana) - 135001	20 TPA white button mushroom growing unit
179.	Mr. Amit Kumar Jayaswal, Purvi Tiwari Tola, Rudrapur, Distt. Deoria (UP) – 274204	80 TPA white button mushroom unit
180.	M/s. Shri Bajrang Mushroom & Farming, Promoters: Mr. Lakhan Singh Negi S/o Sh. Lal Singh Negi and Ms. Shiwangi Bisht D/o Sh. Jagdish Singh Bisht, VPO-Nathuakhan tok Sheri, Distt. Nainital (Uttarakhand) - 263158	20 TPA white button mushroom growing unit
181.	M/s. Shri Bajrang Mushroom & Farming, Promoters: Mr. Lakhan Singh Negi S/o Sh. Lal Singh Negi and Ms. Shiwangi Bisht D/o Sh. Jagdish Singh Bisht, VPO-Nathuakhan tok Sheri, Distt. Nainital (Uttarakhand) - 263158	500 TPA white button mushroom compost production
182.	Mr. Arabinda Debnath S/o Sh. Narendra Ch Debnath, Village Jangalia, PO Bishalgarh, District Sepahijala (Tripura) - 799102	20 TPA Spawn production unit
183.	Sh. Ravi Dutt Sharma S/o Sh. Brij Bushan Sharma, Village Nakodar, PO Deasoli, Tehsil Fathepur, District Kangra (H.P.) – 176053	20 TPA white button mushroom growing unit
184.	Mr. Bishan Dass S/o Mr. Rati Ram, Village Moginand, PO Kala-Amb, District Sirmour (HP) - 173030	100 TPA white button mushroom
185.	Mr. Bishan Dass S/o Mr. Rati Ram, Village Moginand, PO Kala-Amb, District Sirmour (HP) - 173030	500 TPA white button mushroom compost production
186.	Smt. Dimal Kumari W/o Mr. Nalin Sharma, Village Moginand, PO Kala-Amb, District Sirmour (HP) - 173030	100 TPA white button mushroom

187.	M/s. Greenden Farming, 2, Harish Sikdar Path, Kolkata (West Bengal) – 700012	50 TPA white button mushroom
188.	Mr. Aman Kumar Begusarai (Bihar)	24 TPA white button mushroom
189.	Mr. Ahilesh Thakur S/o Sh. Shiv Raj Singh, Thakur Niwas, Taradevi, Shimla (H.P.) - 171010	20 TPA Spawn Production Unit
190.	M/s. JDRS Agro Foods Pvt. Ltd., Gate No. 74, Vill- Hiware Korda, Taluka Parner, Distt. Ahmednagar (MS)	500 TPA white button mushroom project
191.	M/s. Shivam Agrotech, Mr. Nageshwar Singh Yadav S/o Sh. Murlidhar Yadav, Kokadi, Anda (Garam), Tehsil Durg, Chattisgarh.	20 TPA white button mushroom growing unit
192.	Mr. Anagpal Singh S/o Late Sh. Jhank Singh, Village Tajupur, PO Tiagaon, Tehsil & District Faridabad (Haryana) - 121101	100 TPA white button mushroom project
193.	Mr. Anagpal Singh S/o Late Sh. Jhank Singh, Village Tajupur, PO Tiagaon, Tehsil & District Faridabad (Haryana) - 121101	500 TPA white button mushroom compost production
194.	Sh. Niraj Pathania, S/o Sh. Durga Singh, VPO Bassa Waziran, Tehsil Nurpur, Distt. Kangra (H.P.) - 176201	32 TPA white button mushroom growing unit
195.	M/s. Sharma Mushroom, Mr.Raj Kumar S/o Sh. Mangal, Village Alipura, PO Karsindhu, Tehsil Uchana, District Jind (Haryana) – 126115	20 TPA white button mushroom growing unit
196.	Sh. Tilak Raj S/o Sh. Lalman, Vill Tanda, PO Soroa, Tehsil Chachiot, District Mandi (HP) – 175 124	20 TPA white button mushroom growing unit
197.	Dr. Gurpreet Sharma, Village Kahwa, Udhampur (Jammu & Kashmir)	100 TPA white button mushroom project
198.	Dr. Gurpreet Sharma, Village Kahwa, Udhampur (Jammu & Kashmir)	500 TPA white button mushroom compost production
199.	Mr. Ravinder Singh, Ward No.8, Fatehapur, Herbertpur, Dehradun (Uttarakhand) - 248142	500 TPA white button mushroom compost production
200.	Mr. Amit Chug, Jaipur (Rajasthan)	100 TPA white button mushroom project

201.	Sh. Ajay Kumar S/o Sh. Suhru Ram, Village Devbharari, PO Suliali, Tehsil Nurpur, District Kangra (H.P.) – 176211	20 TPA white button mushroom growing unit
202.	Sh. Amit S/o Sh.Baljeet, Village Ramna Patti, PO Chhattar, Tehsil Narwana, District Jind (Haryana) – 126116	20 TPA white button mushroom growing unit
203.	Mr. Lal Singh S/o Mr. Kashmiri Lal, Village Phoolpur Shameshergarh, PO Shivpur, Tehsil Poanta Sahib, District Sirmour (H.P.) - 173025	20 TPA white button mushroom growing unit
204.	Mr. Shital Prasad, House No.1938, B-12, Geeta Nagari, Ambala City (Haryana) – 134007	50 TPA white button mushroom project
205.	Mr. Abhishek Pratap Singh, Plot No.1780, Village Kherabera, Block Chandan Kiyari, Distt. Bokaro (Jharkhand) - 828134	50 TPA Oyster mushroom project
206.	Dr. Gurpreet Sharma, Village Kahwa, Udhampur (Jammu & Kashmir)	20 TPA Mushroom Processing Unit
207.	Mr. Kundal Lal S/o Sh. Dilu Ram, Village Khanyari, PO Kandha, Tehsil Chachiot, District Mandi (H.P.) –175035	20 TPA white button mushroom growing unit
208.	Mr. Nripendra Mohan, Village Chhoi, PO Ramnagar, District - Nanital (Uttarakhand)	25 TPA white button mushroom growing unit
209.	Sh. Keshav Ram Sharma, Village Anji-Shalumuna, PO Dharot, Tehsil & Distt. Solan (H.P.)	20 TPA white button mushroom growing unit
210.	Sh. Chain Singh, S/o Sh. Baldev Singh, VPO Lower Badhera, Badhera, Una (H.P.) - 174303	20 TPA white button mushroom growing unit
211.	M/s. Nutriyard Foods Pvt. Ltd, Mr. Shitole Abhijeet Digambar & Mr. Shitole Kalpesh Digambar, Sarpanch Vasti, Babhulsar BK-II, Taluka-Shirur, Distt. Pune (MS) - 412211	120 TPA white button mushroom project
212.	Smt. Puja, W/o Sh.Sandeep Kumar, Village Manoh, PO Karohta, Tehsil Bhoranj, District Hamirpur (H.P.) – 176044	20 TPA white button mushroom growing unit
213.	Sh. Kishan Lal, S/o Late Sh. Bansi Ram, Village Jamu, PO Chanowag, Tehsil Dhami, District Shimla (H.P.) – 171103	20 TPA white button mushroom growing unit

214.	Sh. Gopal Singh, S/o Late Sh. Desh Raj, Village Guruwala, PO Bhagani, Tehsil Poanta Sahib, District Sirmour (H.P.) - 173025	20 TPA white button mushroom growing unit
215.	Mr. Sanjay Kumar Roy, C/o Mr. Rajinder Chowdhury, Village Jalalpur, Muradnagar, Ghaziabad (U.P.)	20 TPA white button mushroom Canning unit
216.	M/s. Philosopherstone Business Ventures LLP, Mr. Kalyan Ravindra Rai, Kharadi Krish Edgeone, Opp Zensar, BPO- Kharadi, Pune (M.S.) - 411014	500 TPA white button mushroom project
217.	M/s. Philosopherstone Business Ventures LLP, Mr. Kalyan Ravindra Rai, Kharadi Krish Edgeone, Opp Zensar, BPO- Kharadi, Pune (M.S.) - 411014	20 TPA processing unit
218.	Sh. Dheeraj Kumar, S/o Sh. Dina Nath, Village Suppa, PO Gharer, Tehsil Bharmour, Dist Chamba (HP)-176315	20 TPA white button mushroom growing unit
219.	Mr. Chander Singh Bhandari, 103, Phase-2, Lane-3, Panditwari, Dehradun (Uttarakhand) – 248007	200 TPA white button mushroom compost production
220.	Smt. Bhama Devi, W/o Sh. Lal Singh, Village Kharsi, PO Devdhar, Tehsil Chachyot, District Mandi (H.P.) - 175029	20 TPA white button mushroom growing unit
221.	Mr. Rahul Yadav, Village Semra Pahad, Ashoknagar (Madhya Pradesh)-473331	115 TPA White Button Mushroom project
222.	Mr. Rohit Goel, Village Majrakhushalpur, Tehsil Bazpur (Uttarakhand)	20 TPA Spawn production unit
223.	M/s. Kaushalya Farms, Mr. Akhil Tikmani,Ushmamatu,Ranchi (Jharkhand)	150 TPA White Button Mushroom project
224.	M/s. B.K. Industries, Mr. Roshan Lal Khanna, 24, Industrial Area, Phase-I, Nagrota Bagwan, Distt. Kangra (H.P.) – 176047.	10 TPA Mushroom Processing Unit
225.	Sh. Vikas Sharma, S/o Sh. Bal Krishan Sharma, Village Kotlu, PO Bahina, Tehsil Barsar, District Hamirpur (H.P.) - 174309	20 TPA white button mushroom growing unit
226.	Sh. Anil Kumar S/o Sh. Raja Ram, VPO Pragpur, Tehsil Dehra, Distt. Kangra (H.P.) - 177107	500 TPA white button mushroom compost production

227.	Mr. Kuldeep Kumar, Village Thade Ka Thakur Dawara, PO Dharampur, Tehsil Kasauli, District Solan (H.P.) - 173209	20 TPA white button mushroom growing unit
228.	Sh. Mukesh Dobhal, Village - Kaldhung, PO - Gadawagad, Pauri, Garhwal (UK) - 246001	20 TPA white button mushroom growing unit
229.	Mr. Vivek Sharma, Dakash Traders, Plot No.99, Bhakati Pali Marg, Faridabad (Haryana) – 121005	10 TPA Mushroom Processing Unit
230.	Sh. Kanhaiyalal, Pratapgarh Road Maid, Tehsil Viratnagar, Distt. Jaipur (Rajasthan) – 303003	20 TPA white button mushroom growing unit
231.	Mr. Shital Prasad, H.No.1938, B-12, Geeta Nagari, Ambala City (Haryana) – 134007	100 TPA White Button Mushroom project
232.	M/s. Gupta Mushroom Farm, Mr. Saurabh Kansal, S/o Sh. Haridev, Ismailabad, Kurukshetra (Haryana) – 136129	20 TPA white button mushroom growing unit
233.	Sh. Arun Kumar Dobhal, Village Dobha Idwalsyun, PO Chardhar, Pauri Garhwal (Uttarakhand) – 246001	20 TPA Spawn production unit
234.	Mrs. Bimla Devi, W/o Mr.Ramesh Kumar, Village Harvani, PO Upper Baheli, Tehsil Sundernagar, District Mandi (H.P.)	20 TPA white button mushroom growing unit
235.	Mr. Ram Rattan Sharma, Faridabad (Haryana)	50 TPA white button mushroom cultivation
236.	M/s. Daksh Traders, Mr. Vivek Sharma, , Plot No.99, Bhagati Pali Marg, Faridabad (Haryana) – 121005	50 TPA White Button Mushroom Cultivation
237.	Mr.Ankit Kumar Dayama, S/o Mr. Ram Niwas, Village Lohataki, PO Dauhlat, Tehsil Sohna, District Gurugram (Haryana) – 122103	20 TPA white button mushroom growing unit
238.	Mr. Ram Niwas, S/o Mr.Likhi Ram, Village Lohataki, PO Dauhlat, Tehsil Sohna, District Gurugram (Haryana) – 122103	20 TPA white button mushroom growing unit
239.	Mr. Ram Niwas, S/o Mr.Likhi Ram, Village Lohataki, PO Dauhlat, Tehsil Sohna, District Gurugram (Haryana) – 122103	500 TPA white button mushroom compost production
240.	Mr. Amit Khanna, 13/12, Village Bhirvati, Tehsil & District Nuh (Mevat), Haryana	20 TPA white button mushroom growing unit

241.	Mr. Ram Niwas, S/o Mr.Likhi Ram, Village Lohataki, PO Dauhlat, Tehsil Sohna, District Gurugram (Haryana) – 122103	500 TPA white button mushroom compost production
242.	Mr. Ashish Gupta, 13/12, Village Bhirvati, Tehsil & District Nuh (Mevat), Haryana	20 TPA white button mushroom growing unit
243.	Mrs. Jaswant Kaur, W/o Mr.Harjeet Kaur, Rai Majra Nalvi, Kurukshetra (Haryana) - 136135	500 TPA white button mushroom compost production
244.	Mr. Gulet Ram, S/o Mr. Mana Ram, Village Chamada, PO Khamedi, Tehsil Nankhedi, District Shimla (H.P.)	20 TPA white button mushroom growing unit
245.	M/s. Homeland Foods, Ms. Neha Sharma, Chomu-Reengus, Near Jaipur (Rajasthan)	100 TPA White Button Mushroom Cultivation
246.	M/s. DK Mushroom Farms, Mr. DK Agrawal, 337, Bishara Kala, Near Devri Road, Agra (UP)	1260 TPA Compost production unit
247.	M/s. Exotic Mushrooms Mr. Parminder Randhawa, Mr.Rajpreet S Randhawa, Mr. Manav Randhawa Regd. Office: 56, Green Park, Civil Lines, Ludhiana, Punjab.141001 Project site: SURJIT'S, Opp. Police Station, V&PO, Ramdas, Teh. Ajnala, Distt. Amritsar	200 TPA white button mushroom cultivation
248.	Mr. Parminder Randhawa, Mr.Rajpreet S Randhawa, Mr. Manav Randhawa Regd. Office: 56, Green Park, Civil Lines, Ludhiana, Punjab.141001 Project site: SURJIT'S, Opp. Police Station, V&PO, Ramdas, Teh. Ajnala, Distt. Amritsar	20 TPA Spawn Production Unit
249.	M/s. New Exotic Mushrooms, Promoters: Mr. Manav Randhawa and Mr.Praneet Randhawa, Supreme Oils & Lubes, Rahon Road, Ludhiana, Punjab - 141008	200 TPA white button mushroom cultivation
250.	M/s. New Exotic Mushrooms, Promoters: Mr. Manav Randhawa and Mr.Praneet Randhawa, Supreme Oils & Lubes, Rahon Road, Ludhiana, Punjab - 141008	20 TPA Spawn Production Unit

251.	Mr. Ankit Rataula & Mr. Harish Rataula, Teen Mandir Marg, Bithoria No.2, PO Kathghadiya, Haldwani, Nainital (Uttarakhand) - 263139	50 TPA white button mushroom cultivation
252.	M/s. Shree Sidhivinayak Agro Farm, Ms. Dipti Manjari Kar, Village-Banto, Post-shankarpur, PS-Choudhwar, Dist-Cuttack, Odisha	100 TPA White Button Mushroom Cultivation
253.	Mr.Amarpreet Singh Sandhu, C/o Sh. Preetam Sandhu, # 704, Phase-3B, SAS Nagar, Mohali (Punjab) - 160059	100 TPA white button mushroom cultivation
254.	Mr. Devi Ram, S/o Mr. Sher Singh, VPO Chandpur, Tehsil Sadar, District Bilaspur (H.P.) – 174004	20 TPA white button mushroom growing unit
255.	Dr. Rajender Singh Negi, Prof. & Head, Rural Technology Department, School of Agriculture and Applied Sciences, HNB Garhwal University, Chauras Campus (Uttarakhand) - 249161	20 TPA Spawn production unit
256.	Mr. Khem Chand, S/o Late Bangali Ram, Vilage Ghatta, PO Kumi, Tehsil Balh, District Mandi (H.P.)	20 TPA Spawn production unit
257.	Mr. Khem Chand, S/o Late Bangali Ram, Vilage Ghatta, PO Kumi, Tehsil Balh, District Mandi (H.P.)	20 TPA white button mushroom growing unit
258.	Mr. Kishore Kumar, S/o Mr. Hira Chand, Village 15 Mill, PO Baragrain, Tehsil Manali, District Kullu (H.P.)	20 TPA white button mushroom growing unit
259.	M/s. Manisha Agro Industries, Mr. Rajesh Patra, Chidamanda Naugaon, Chatarpur, District Jangam, Odisha – 761026	200 TPA White Button Mushroom Cultivation
260.	Mrs. Vimla Devi, W/o Mr.Ramesh Kumar, Village Harvani, PO Upper Baheli, Tehsil Sundernagar, District Mandi (H.P.)	20 TPA white button mushroom growing unit
261.	Mr. Ramesh Chand, S/o Mr.Gian Chand, VPO Ghaned, Tehsil & District Hamirpur (H.P.) – 174505	20 TPA white button mushroom growing unit
262.	Sh. Jagat Ram Bhardwaj, S/o Late Sh. Rikhi Ram, Village Kallar, PO Kotlu Brahmna, Tehsil Ghumarwin, Distt. Bilaspur (H.P.) - 174029	20 TPA white button mushroom growing unit

263.	Mr. Arun Khurana, Village Mirajpur, Yamunanagar (Haryana)	20 TPA white button mushroom growing unit
264.	Mr.Amit Thakur Vill. Koel P.O. & Teh. Kandaghat, Distt- Solan, Himachal Pradesh-173215	20 TPA Oyster Mushroom Unit
265.	Sh. Vinod Kumar S/o Sh. Gian Chand, Village Bhamnoh, PO Bagwara, Tehsil Bamsan, Distt. Hamirpur (H.P.)- 177021	20 TPA white button mushroom growing unit
266.	Mr. Ajay Yadav, H.No.9, Northern Railway Girdharpur Road, Cooperative Housing Society, Chhapraula Gautam Buddha Nagar (U.P.) – 201009	20 TPA white button mushroom growing unit
267.	Mr. Anil Bhardwaj, S/o Mr.Roshan Lal, Village Kotlu, PO Bahina, Tehsil Barsar, District Himarpur (H.P.) – 174305	20 TPA white button mushroom growing unit
268.	M/s. Nutriyard Foods Pvt. Limited, Regd.Office Shop No.4, DP Road, Near Sanjivani Hospital Hadapsar, Pune (Maharashtra) – 411028	100 TPA white button mushroom cultivation
269.	Mr. Bidhi Singh Rana, Village Gubher, PO Bherda, Tehsil Tauni Devi, District Bilaspur (H.P.) – 177028	20 TPA white button mushroom growing unit
270.	Mr. Satbir Singh, Village Bakhli, Tehsil Pehowa, District Kurukshetra (Haryana) - 136128	500 TPA white button mushroom compost production
271.	Mr.Dharmender Prakash, S/o Mr.Gauri Shankar, Village Bag, PO Deola, Tehsil Sunni, District Shimla (H.P.) – 171007	20 TPA white button mushroom growing unit
272.	M/s. Thakkar Agro Farms, Village Begampur, Tehsil Gharunda, District Karnal (Karnal).	20 TPA white button mushroom growing unit
273.	M/s. Thakkar Agro Farms, Village Begampur, Tehsil Gharunda, District Karnal (Karnal).	500 TPA white button mushroom compost production
274.	Mr. Maheshwar Sharma S/o Mr.Anup Ram, Village Pirdi PO Mohal, District Kullu (H.P.)	20 TPA white button mushroom growing unit
275.	Mrs. Kashmira Devi, W/o Mr.Gambhir Singh Chauhan, Village Cheyog, PO Jamna, Tehsil Jamna, Tehsil Kamroo, District Sirmour (H.P.) – 173029	20 TPA white button mushroom growing unit

276.	Mr. Kehar Singh Chauhan, S/o Sh.Layak Ram, Village Mashu, PO Jamna, Tehsil Sirmour (H.P.) – 173029	20 TPA white button mushroom growing unit
277.	Mr. Ajay Singh, S/o Sh. Sher Singh, Village Tandol, Tehsil Rajgarh, District Sirmour (H.P.) – 173101	20 TPA white button mushroom growing unit
278.	M/s.Ashees Agro, Mr.Sandeep Singh, Village Malanwali, PO Sahibzada Jujhar Singh Avenue Airport Road, Amritsar (Punjab)	20 TPA white button mushroom growing unit
279.	Mr.Surya Kumar, Village Cheran, PO+PS Harnaut, District Nalanda (Bihar) – 803110	50 TPA white button mushroom cultivation
280.	Mr.Jatinder Nath Diwedi, Village Sikathia, SH-34, Mau Nath Bhanjan, Mau (U.P.) – 275101	50 TPA white button mushroom cultivation
281.	Mrs.Dipti Saini Patodi, Gurgaon (Haryana) – 122003	20 TPA Oyster Mushroom unit
282.	Mr.Manoj Nath, S/o Mr. Ram Swaroop, VPO Damandhari, Tehsil & District Una (H.P.) - 174303	50 TPA white button mushroom cultivation
283.	M/s. Earthakshar Agri Science, Mrs.Abhilasha Singh, Mrs.Parul Chaudhary, Mundhela Khurd, New Delhi – 110073	100 TPA white button mushroom cultivation
284.	Mr.Ashutosh Kumar, M/s. Farm Organic Agro, Wildwala Water Park Street, Dhundigarha, Taurion World School, PS Dhurwal, Tupudana Ranchi, Jharkhand - 835221	50 TPA white button mushroom cultivation
285.	Mr.Praveen Jain & Mrs. Megha Jain, Chidiyalagaon, District Bhagwanpur, Haridwar (Uttarakhand)	365 White Button Mushroom Cultivation
286.	Mr. Dhanjanay Kumar Singh, M/s. Rampur Mushroom, Village Rampur, PO Suketi, District Fatehpur (Uttara Pradesh)	100 TPA white button mushroom cultivation
287.	Mr. Tulsi Ram,S/o Mr.Mana Ram, Village Patan, PO Shillai District Sirmour (H.P.) – 173027	20 TPA white button mushroom growing unit

288.	Mr.Naresh Chand, S/o Sh.Parma Nand, Village Kaintheri, PO Dharampur, District Solan (H.P.)	500 TPA white button mushroom compost production
289.	Mr.Naresh Chand, S/o Sh.Parma Nand, Village Kaintheri, PO Dharampur, District Solan (H.P.)	20 TPA white button mushroom growing unit
290.	Sh.Mahender, Village Shilech, PO Kotla Bangi, Sub Tehsil Pajhota, Distt. Sirmour (H.P.) - 173223	20 TPA white button mushroom growing unit
291.	Dr.(Mrs.) Madhu Chitkara, Chitkara University, NH-7, Rajpura (Punjab) – 140401	365 TPA Spawn, Production and Compost production of white button mushroom cultivation
292.	Dr.(Mrs.) Madhu Chitkara, Chitkara University, NH-7, Rajpura (Punjab) – 140401	20 TPA Processing Unit
293.	Mr. Arjun, S/o Mr. Balkar Singh, Village Bakhali, Tehsil Peohwa, District Kurukshetra (Haryana) – 136128	500 TPA white button mushroom compost production
294.	Mr.Jaswant Singh, S/o Mr.Sishram, VPO Seenk, Tehsil Israna, District Panipat (Haryana) – 132103	100 TPA white button mushroom cultivation
295.	Mr.Jaswant Singh, S/o Mr.Sishram, VPO Seenk, Tehsil Israna, District Panipat (Haryana) – 132103	500 TPA white button mushroom compost production
296.	Ms. Mahjebee Kureshi, Moli-Mai-Sunali, Jeetagaon, Anjanisain, Tehsil Garhwal (Uttarakhand) - 249121	20 TPA Spawn Production Unit
297.	M/s. Chaudhry Mushrooms, Mr. Ram Singh, S/o Mr.Harbans Lal, Village Dhugiari, PO Gaggal, Tehsil & District Kangra (H.P.) – 176209	20 TPA white button mushroom growing unit
298.	Mr. Harjeet Singh, S/o Sh.Sulakhan Singh, Ram Majra, Nalvi, Tehsil Shashabad Markanda, Kurukshetra (Haryana) - 136135	500 TPA white button mushroom compost production
299.	Mr. Harjeet Singh, S/o Sh.Sulakhan Singh, Ram Majra, Nalvi, Tehsil Shashabad Markanda, Kurukshetra (Haryana) - 136135	20 TPA white button mushroom growing unit
300.	Ms. Priyanka Sharma, 71 Chandra Nagar, Laksar Marg, Kankhal, Haridwar (Uttarakhand)	100 TPA white button mushroom cultivation

301.	Mr.Devanshu Bora, A101 Shalimar Royal, 7 Mall Avenue, Lucknow (U.P.)	200 TPA white button mushroom cultivation
302.	Mr. Ramesh Kumar, VPO Rampur Kainthal, Tehsil & District Shimla (H.P.)	20 TPA white button mushroom growing unit
303.	Mr. Akhilesh Thakur S/o Mr. Shiv Raj Singh Thakur, Thakur Niwas, Taradevi, Shimla (HP)	500 TPA white button mushroom compost production
304.	Mr.Sanju Ram Sharma, Sector-06, Koshrian, Bilaspur (H.P.)	20 TPA white button mushroom growing unit
305.	M/s. Sravasti Udyog Viniyog (P) Limited, Mr. Rajesh Aggarwal, 4A, Pollock Street, Savaik Centre, Room No.107, Kolkata (West Bengal)	50 TPA White Button Mushroom Cultivation
306.	M/s. Sravasti Udyog Viniyog (P) Limited, Mr. Rajesh Aggarwal, 4A, Pollock Street, Savaik Centre, Room No.107, Kolkata (West Bengal)	20 TPA Spawn Production Unit
307.	M/s. Lateral Agronomic Private Limited Mr. Abhinav Bhardwaj, Mr.Ashish Sharma, Mr.Gaurav Trikha, 2345, sector 9, Faridabad (Haryana) -121006	100 TPA white button mushroom cultivation
308.	M/s. Shirgul Mahadev Mahamaya Raja Ramesh Mushroom Cultivation Unit, Mr. Ramesh Chand S/o Late Sher Singh, Village Chiyali, PO & Tehsil Shillai, District Sirmour (H.P.) – 173027	20 TPA white button mushroom growing unit
309.	Mrs. Sureshtha Devi, W/o Mr.Pritam Chand, Village Purva, Tehsil Palampur, District Kangra (H.P.)	20 TPA white button mushroom growing unit
310.	Mr.Satish Kumar, S/o Mr.Bahadur Singh, VPO Bari, Tehsil & District Hamirpur (H.P.) – 177001	20 TPA white button mushroom growing unit
311.	Sh. Surender, S/o Sh. Mange Ram, VPO Jhojhu Kalan, Charkhi Dadri (Haryana)	20 TPA white button mushroom growing unit
312.	Sh. Surender, S/o Sh. Mange Ram, VPO Jhojhu Kalan, Charkhi Dadri (Haryana)	500 TPA White Button Mushroom Compost Production
313.	Mr.Uma Dutt, S/o Late Mehu Ram, Vilalge Nirsu, PO Duttnagar, Tehsil Rampur Bushar, District Shimla (H.P.) – 172001	20 TPA white button mushroom growing unit

314.	Mr. Vijay Kumar, VPO Jugahan, Tehsil Sundernagar, District Mandi (H.P.)	20 TPA white button mushroom growing unit	
315.	Mr. Sumer Singh, S/o Sh.Hardyal Singh, Village Tibbi Bakshiwala, Chikan, Panchkula (Haryana) - 134102	50 TPA white Button mushroom cultivation	
316.	Mr. Ashok Kumar, Village Boul, PO Khurwain, Tehsil Bangana, District Una (H.P.) – 174321	500 TPA white button mushroom compost production	
317.	Mr. Deep Chand, S/o Mr.Sant Ram, M/s. Arcade Agro Biotech, Plot No.62, Industrial Area, Bilaspur (H.P.) – 174001	20 TPA white button mushroom growing unit	
318.	Mr. Vijay Pal Singh, Regd.Office: B42, C58/2, Sector-62, Noida Gautam Buddha Nagar (U.P.) – 201301	100 TPA white button mushroom cultivation	
319.	Mrs. Rajni Sahni, W/o Mr.J.P. Sahni, # 251, Sector-4 Huda Colony, Narayangarh, District Ambala (Haryana) – 134203	20 TPA white button mushroom growing unit	
320.	M/s Ebla enterprises, Mr.Abhiraj Saraf, Sambalpur, Odisha- 768001	100 TPA white button mushroom cultivation	
321.	M/s Ebla enterprises, Mr.Abhiraj Saraf, Sambalpur, Odisha- 768001	20 TPA Processing Unit	
322.	Mr. Vikram Singh, S/o Mr.Keshav Ram, VPO Chamian (Jubbar), Tehsil Kasauli, District Solan (H.P.) – 173225	20 TPA white button mushroom growing unit	
323.	Mr.Ashu, Village Mehlan, PO Sounta, District Ambala (Haryana) - 134003	500 TPA white button mushroom compost production	
324.	M/s. Shri Krishna Trader Kairwali Road, Near Anupam Sr. Sec. School, VPO Kutail, District Karnal (Haryana) – 132037	20 TPA white button mushroom growing unit	
325.	Mr. Tapinder Singh Chauhan, S/o Mr. Yashwant Singh Chauhan, VPO Sangrah, Tehsil Sangrah in Ranuka ji, District Sirmour (H.P.) – 173023	500 TPA white button mushroom compost production	
326.	Mr. Vikram Chauhan, S/o Mr.Bhupender Singh Chauhan, VPO Sangrah, Tehsil Sangrah in Ranuka ji, District Sirmour (H.P.) – 173023	20 TPA Spawn Production Unit	

327.	Mr. Mohit Kumar, S/o Mr.Ashwani Sharma, VPO Sheikhpura Jagir, District Karnal (Haryana) – 132001	500 TPA white button mushroom compost production	
328.	M/s Ebla enterprises, Mr.Abhiraj Saraf, Sambalpur, Odisha- 768001	20 TPA white button mushroom growing unit	
329.	Mr.Kulveer Singh S/o Mr.Onkar Singh, Village Anu Khurd, Tehsil & District Hamirpur (H.P.) – 177029	20 TPA white button mushroom growing unit	
330.	Mr. Varun Dhar, Village Lohataki, Sohana, Gurgaon (Haryana) – 122002	200 TPA White Button Mushroom Cultivation	
331.	Ms. Mamta Gupta, Village Sidhi, Post Sidhi Itara, Distt. Kanpur (U.P.) – 209214	20 TPA white button mushroom growing unit	
332.	Ms. Mamta Gupta, Village Sidhi, Post Sidhi Itara, Distt. Kanpur (U.P.) – 209214	500 TPA white button mushroom compost production	
333.	Mr.Pradeep Singh, S-93, Vasant Enclave, Vasant Vihar, New Delhi - 110057	25 White Button Mushroom Cultivation	
334.	M/s. Wazirpur Foods (P) Limited, Mr. Mahavir Singh Kadian, Director, Wazirpur (Beri), Rohtak (Haryana)	200 TPA White Button Mushroom Cultivation	
335.	Mr. Surinder Singh, S/o Late Jagannath, PO Dedhu, PO Bakhalag, Tehsil Arki, District Solan (H.P.) -173208	20 TPA white button mushroom growing unit	
336.	Mr. Gopal Chand, S/o Late Mansha Ram, Village Kyar, PO Sujhaila, Tehsil Arki, District Solan (H.P.) – 173208	20 TPA white button mushroom growing unit	
337.	Mr. Kishori Lal S/o Mr.Balak Ram, Village Jakhroda, PO Pratha, Tehsil Kasauli, District Solan (H.P.) – 173220	500 TPA white button mushroom compost production	
338.	Mr.Santosh Kumar S/o Sh. Munshi Ram, Village Lalwala Khalsa, PO Bugawala, District Haridwar (Uttarakhand) – 247662	100 TPA white button mushroom cultivation	
339.	Mr.Kuldeep Singh, Village Behral, Tehsil Poanta Sahib, District Sirmour (H.P.)	20 TPA white button mushroom growing unit	

340.	M/s. Mushroom Manufacturing, Mr. Prem Lal, Village Kanseru, PO Barkot, Tehsil Rajgarhi, Distt. Uttarkashi (Uttarakhand)	12 TPA white button mushroom growing unit		
341.	Mr. Ashok Kumar, S/o Sh.Gulab Singh, Village Bandal, P.O. & Tehsil Nohradar, Distt. Sirmour (H.P.)	20 TPA white button mushroom growing unit		
342.	M/s. S.R AGRO PRODUCTS (Mushroom Unit), Sh.Pardeep Chaudhary, Village Kulhariwala, Post Office Mandhala, Tehsil Baddi, District Solan (H.P.) - 174103	90 TPA White Button Mushroom Cultivaion		
343.	M/s.Ekam agro farms, Mr.Umang Johar, Mr.Ashish Tiwari & Mr.Rishu Aggarwal, 15, Curzon Road, Dalanwala, Dehradun -248001, Uttarakhand	365 TPA White Button Mushroom Cultivation		
344.	Chief Horticulture Officer, O/o Chief Horticulture Officer, Chamoli – Gopeshewar (Uttarakhand	500 TPA White Button Mushroom Compost Production		
345.	M/s. VSVN AGRI FARM LLP, Mr. Manoj Goel, Km-173, Kavi Nagar, Ghaziabad (U.P.)	100 TPA White Button Mushroom Cultivation		
346.	M/s. S K Agrotech, Mr.Tanveer Ahmed, Mr. Vikas R, Mr. Ayaz Ali Khan, Mr.Fayaz Ahmed, Balraj URS Road, 2 nd Cross, Ground Floor, PLD Bank Building, Beside Congress Office, Shimoga, -577201, Karnataka, India	200 TPA White Button Mushroom Cultivation		
347.	Mrs. Aradhna Singh, Mauja Horawala, Tehsil Vikasnagar, District Dehradun (Uttarakhand)	20 TPA white button mushroom growing unit		
348.	Mrs. Aradhna Singh, Mauja Horawala, Tehsil Vikasnagar, District Dehradun (Uttarakhand)	500 TPA white button mushroom compost production		
349.	M/s. Fresh Fields Agrotech LLP, Mr. Pal Singh, Mr. Praveen Singh, Mr. Sanjay Singh, Mr. Suraj Singh, Village Berhampur, Tehsil & District Palwal (Haryana)	500 TPA white button mushroom production		
350.	Mrs. Priyanka Rani Chauhan, VPO Tigrana, District Bhiwani (Haryana)	20 TPA white button mushroom growing unit		
351.	Mr. Azhar Siddiqui, Near APJ Abdul Kalam Azad School, Sharanpur, Near Rampur (Uttarakhand) – 248197	20 TPA Oyster Mushroom Production Cultivation		
352.	Mr. Azhar Siddiqui, Near APJ Abdul Kalam Azad School, Sharanpur, Near Rampur (Uttarakhand) – 248197	20 TPA Spawn Production Unit		

4. प्रकाशनों की सूची List of Publications

I. Research Papers

- 1. A Barh, VP Sharma, B Kumari, SK Annepu, S Kamal, RK Bairwa. 2019. Round the year cultivation of Pleurotus species in India. *Mushroom Research* 28(2): 139-143.
- 2. A Kumar, BL Attri, A Kishor, S Debnath, MS Mer and R Narayan. 2020. Influence of rootstocks on white root rot (*Dematophora necatrix*) resistance in apple (*Malus baccata*). *Indian Journal of Agricultural Sciences* 90(1): 53-57.
- 3. A Srivastava, BL Attri and VP Sharma. 2019. Status report on mushroom based nutraceutical products in the market. *Mushroom Research*, 28 (2):151-160.
- 4. A Srivastava, BL Attri and VP Sharma. 2020. Status report on mushroom based cosmetic products in the market. *Mushroom Research*, 29 (1): 65-70.
- 5. BL Attri, A Srivastava and SK Annepu. 2019. Postharvest shelf life of button and oyster mushroom affected by different chemicals duting ambient storage. *Mushroom Research*, 28 (2): 161-167.
- 6. KV Patel, M Nath, MD Bhatt, AK Dobriyal and D Bhatt. 2020. Nano formulation of zinc oxide and chitosan zinc sustain oxidative stress and alter secondary metabolite profile in tobacco. *3 Biotech* 10(11): 1-15.
- 7. M Shirur, A Barh and SK Annepu. 2020. Standardization of training modules on mushroom cultivation technology. *Journal of Agricultural Extension Management* 20(2): 103-117.
- 8. N Phogat, S Siddiqui, N Dalal, A Srivatsava and Bindu. 2020. Effects of varieties, curing of tubers and extraction methods on functional characteristics of potato starch. *Journal of Food Measurement and Characterization* 14: 3434–3444
- R Kumar, V Chandrasekhar and A Kumar. 2020.
 An automatic multi-threshold image processing technique for mushroom disease segmentation.

International Journal of Current Engineering and Scientific Research 7(6): 110-115.

- 10. S Dabral, SC Saxena, DK Choudhary, P Bandyopadhyay, RK Sahoo, N Tuteja, M Nath. 2020. Synergistic inoculation of *Azotobacter vinelandii* and *Serendipita indica* augmented rice g r o w t h . *Sy m b i o s i s* 81: 139–148. doi.org/10.1007/s13199-020-00689-6.
- 11. S Debnath, BL Attri, A Kumar, A Kishor, R Narayan, K Sinha, A Bhowmik, A Sharma and DB Singh. 2020. Influence of peach (*Prunus persica* Batsch) phenological stage on the short-term changes in oxidizable and labile pools of soil organic carbon and activities of carbon-cycle enzymes in the North-Western Himalayas. *Pedosphere* 30(5): 638–650.
- 12. S Debnath, R Narayan, A Kumar, A Kishor and DB Singh. 2020. Are horticulture-based land uses benign for fertility and health of soils in mid to high hills of the north-western Himalayan region? *Soil Science and Plant Nutrition*

DOI:10.1080/00380768.2020.1753110.

- 13. S Goel, K Singh, S Grewal and M Nath. 2020. Impact of Omics' in improving drought tolerance in wheat. *Critical Reviews in Plant Sciences* 39(3): 222-235.
- 14. T Janakiram, VP Sharma and A Barh. 2019. Analysis of India-China mushroom gap—are view. *Current Horticulture*, 7(2): 10–14
- 15. VP Sharma, G Heera, S Kumar and M Nath. 2020. Development and identification of high yielding strain of *Calocybe indica* based on the multilocation trials. *Mushroom Research* 29(1): 47-50.
- 16. VP Sharma, S Kamal and A Kumar. 2020. Mycoparasitic and competitive nature of different yellow mould fungi against button mushroom (*Agaricus bisporus*) mycelium revealed by enzyme and volatile markers. *Journal of Mycology and Plant Pathology* 50(1): 36-41.
- 17. VP Sharma, S Kamal and A Kumar. 2020. Symptomatology and management of major yellow mould pathogens of white button

- mushroom (Agaricus bisporus). Journal of Mycology and Plant Pathology 50(2): 201-213.
- 18. VP Sharma, A Barh, B Kumari, SK Annepu, S Sharma and S Kamal. 2020. Nutritional and Biochemical Characterization of *Panus lecomtei* Mushroom (Agaricomycetes) from India and Its Cultivation. *International Journal of Medicinal Mushrooms*, 22(5): 501-507.
- 19. VP Sharma, SK Annepu, A Barh, S Kumar 2020. Adoption and competitiveness of new strains of shiitake mushroom in India. *Mushroom Research*, 29(1): 31-35.
- 20. VP Sharma, RC Upadhyay, S Banyal, A Barh and S Kamal. 2020. Studies on cultivation, nutrition and extracellular ligninolytic enzymes of *Flammulina velutipes* strains collected from Indian Himalayas. *Mushroom Research* 29 (1): 37-45.
- 21. M Shirur and A Barh. 2020. Promoting Mushroom Production and Consumption through Taglines: A Case Study of Crowd Sourcing the Tagline Creation in India. *Indian Res. J. Ext. Edu.* 20(2&3):106-113

II. Technical/popular articles

- 1. A Kumar, VP Sharma and S Kumar. 2020. Mycoparasitism of *Mycogone perniciosa* in edible fungi. *Science for Agriculture and Allied Sector* 2(9): 1-6.
- 2. A Srivastava, BL Attri and VP Sharma. 2020. Processed mushroom products in world market. *Processed Food Industry* 23(11): 14-18.
- 3. A Srivastava, BL Attri and VP Sharma. 2020. Value addition in mushroom. *Indian Horticulture* 65(1): 31-34.
- 4. AK Sharma and SK Annepu. 2020. Status, diversity and potential of indigenous and minor perennial vegetables. *Indian Horticulture* 65(3): 65-68.
- 5. M Shirur and SK Annepu. 2020. Digital content delivery of mushroom cultivation technology among new mushroom entrepreneurs. *In*: AK Singh, R singh, P Adhiguru, RN Padaria, R Roy and A Arora (eds). *Agricultural Extension: Socioeconomic imperatives, Agricultural Extension Division*, ICAR, New Delhi pp- 192-197.

- 6. बृज लाल अत्री, अनुराधा श्रीवास्तव और वी.पी. शर्मा । 2021 । मशरूम का प्रबंधन व मूल्य संवर्धन । फल फूल, 42 (1): 6-8 ।
- 7. बृज लाल अत्री और अनुराधा श्रीवास्तव | 2021 | मशरूम का औषधीय महत्व | फल फूल, 42 (1): 17-19 |
- बृज लाल अत्री, 2019 ग्रामीण युवाओं व महिलाओं का अपना रोजगार — खुम्ब की खेती। राजभाषा आलोक, भारतीय कृषि अनुसंधान परिषद, वार्षिकांक 2019: 45—47।
- 9. अनिल कुमार, सतीश कुमार व बी पी शर्मा | 2020 | खुम्बों के रोग व रोगः पहचान एवंप्रबंधन |आई सी ए आर— खुम्ब अनुसन्धान निदेशालय, चम्बाघाट, सोलन (हि प्र)
- 10. वी.पी. शर्मा' और अनुपम बड़ । 2021 । भारत में मशरूम उत्पादन परिदृश्य । फल फूल जनवरी—फरवरी, 4.5.
- 11. वी.पी. शर्मा' और अनुपम बड़ | 2021 | विविध प्रकार के मशरूम का उत्पादन | फल फूल जनवरी—फरवरी, 14.16
- 12. वी.पी शर्मा', सतीश कुमार' और अनुपम बड़ । 2021 । भारत में विशेष मशरूम की प्रजातिया । फल फूल जनवरी—फरवरी, 43.

III. Papers presented in symposia/conference/workshops

- 1. A Kumar, S Kumar and VP Sharma. 2020. New record of bacterial pathogen in button mushroom as *Pseudomonas aeruginosa* (mummy disease) in India. *In*: International Web Conference on —Biodiversity in Vegetable Crops for Healthier Life and Livelihood organized by Bihar Agriculture University, Sabour, Bhagalpur pp. 102-102
- 2. BLAttri. 2020. Postharvest preservation and value addition of mushrooms In: National level e-workshop on mushroom cultivation, avenues and challenges on organized by Deptt. Of Botany, Govt. Degree College Poonch, J&K in collaboration with Deptt. of Plant Pathology, SKUAS&T, Jammu and Attitude Change International (ACI)Dalhal Malkan, Rajouri (J&K).

IV. Technical bulletins/books/folders

- Anupam Barh, SK Annepu, VP Sharma and R C Upadhayay. Growing Oyster Mushrooms – A technical guide. ICAR-DMR, Solan (H.P)
- Babita Kumari, VP Sharma ,R C Upadhayay and

Anupam Barh. A Guide to Poisonous Mushrooms. ICAR-DMR, Solan (H.P

V. Book chapters

- 1. D Bhatt D, M Nath, M Sharma, MD Bhatt, DS Bisht and NV Butani. 2020. Role of growth regulators and phytohormones in overcoming environmental Stress. In. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives 1st Edition. AR Choudhury and DK Tripathi (eds). John Wiley & Sons Ltd. pp 254-279.
- 2. D Bhatt, MD Bhatt, M Nath, R Dudhat, M Sharma, R Dudhat and DS Bisht DS. 2020. Application of
- nanoparticles in overcoming different environmental stresses. In. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, 1st Edition. AR Choudhury and DK Tripathi (eds). John Wiley & Sons Ltd. pp 635-654.
- 3. R Kamboj, M Nath, B Thakur, TK Mondal, D Bhatt and DS Bisht. 2020. Molecular insight into plantfungal pathogen interaction: emerging trends and implication in designing climate-smart field crops. In: Plant Microbiome Paradigm. A Varma, S Tripathi and R Prasad (eds) Springer, Cham. doi.org/10.1007/978-3-030-50395-6_13

5. ख्रुम्ब पर अख्रिल भारतीय समन्वित अनुसंधान परियोजना All India Co-ordinated Research Project on Mushroom

देश के विभिन्न कृषि जलवायु क्षेत्रों में खुम्ब अनुसंधान निदेशालय तथा इसके केन्द्रों द्वारा विकसित की गईं प्रौद्योगिकियों का परीक्षण करने और उनका प्रसार करने तथा साथ ही वर्तमान कृषि प्रणाली के साथ-साथ सेकेण्डरी कृषि के रूप में खुम्ब अथवा मशरूम को प्रचलित करने के उद्देश्य से दिनांक 01.04.1983 को छठी पंचवर्षीय योजना के दौरान अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना को प्रारंभ किया गया था। इसका मुख्यालय खुम्ब अनुसंधान निदेशालय, सोलन (हिमाचल प्रदेश) में रखा गया था। निदेशक, भाकृअनुप – खुम्ब अनुसंधान निदेशालय द्वारा परियोजना समन्वयक के रूप में भी कार्य किया जाता है। अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना के अधिदेशों में उन्नत खुम्ब किरमों / संकर किरमों, फसल उत्पादन, फसल संरक्षण उपायों एवं फसलोत्तर प्रौद्योगिकी से जुड़ी कृषि रीतियों का समन्वय करना और बहु स्थानिक परीक्षणों की निगरानी करना है जिनका उद्देश्य देश में खुम्ब का उत्पादन, उत्पादकता और उपयोगिता को बढाना है।

प्रारंभ में, अखिल भारतीय समन्वित खुम्ब सुधार परियोजना को कुल छः केन्द्रों के साथ प्रारंभ किया गया था। बारहवीं पंचवर्षीय योजना के दौरान, इस परियोजना में ग्यारह नए समन्वित केन्द्रों और नौ सहयोगी केन्द्रों को शामिल किया गया और फैजाबाद केन्द्र को हटा दिया गया। वर्तमान में, अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना के अंतर्गत कुल 24 समन्वित केन्द्र तथा 8 सहयोगी केन्द्र कार्यरत हैं जो कि इस प्रकार हैं:—

पुराने केन्द्र

समन्वित केन्द्र

- उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, बारापानी
- 2. पूर्वी क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर अनुसंधान केन्द्र, रांची
- 3. पंजाब कृषि विश्वविद्यालय, लुधियाना
- 4. तमिल नाडु कृषि विश्वविद्यालय, कोयम्बटूर
- 5. जी.बी. पंत कृषि व प्रौद्योगिकी विश्वविद्यालय, पंतनगर
- 6. कृषि महाविद्यालय, महात्मा फुले कृषि विश्वविद्यालय, पुणे
- इन्दिरा गांधी कृषि विश्वविद्यालय, रायपुर
- 8. महाराणा प्रताप कृषि एवं प्रौद्योगिकी विश्वविद्यालय, उदयपुर
- 9. कृषि महाविद्यालय, केरल कृषि विश्वविद्यालय, वेल्लायनी
- 10. चौधरी चरण सिंह हरियाणा कृषि विश्वविद्यालय, हिसार

With a view to test and disseminate the technology developed at ICAR-Directorate of Mushroom Research, Solan and its Centres in different agro-climatic regions of the country and further popularize mushroom as secondary agriculture along with the existing farming system, the All India Coordinated Research Project on Mushroom (AICRPM) was launched during VI Five-Year Plan on 01.04.1983 with its Headquarters at Directorate of Mushroom Research, Solan, Himachal Pradesh (HP). The Director of DMR, Solan (HP) also functions as the Project Co-ordinator of the project. The mandate of AICRP (Mushroom) is to coordinate and monitor multi-location trials with improved mushroom varieties / hybrids, cultivation practices related to crop production, crop protection measures and post harvest technology, all aimed at increasing production, productivity and utilization of mushroom in the country.

Initially, the All India Coordinated Mushroom Improvement Project started with six Centres. During the XII five year plan 11 more coordinating and 9 cooperating centres were added and Faizabad centre was dropped. At present, 24 Coordinating and 8 cooperating centres are working under AICRPM. These are:

The old centers are

Coordinating centers

- 1. ICAR Research Complex for NEH Region, Barapani
- 2. ICAR-Research Complex for Eastern Region Research Centre, Ranchi
- 3. Punjab Agricultural University, Ludhiana
- 4. Tamil Nadu Agricultural University, Coimbatore
- 5. G.B. Pant University of Agriculture and Technology, Pantnagar
- 6. CoA, Mahatma Phule Agricultural University, Pune
- 7. Indira Gandhi Krishi Vishwa Vidyalaya, Raipur
- 8. Maharana Pratap University of Agriculture and Technology, Udaipur
- 9. CoA, Kerala Agricultural University, Vellayani
- 10. C.C.S. Haryana Agricultural University, Hisar

- 11. ओड़िशा कृषि व प्रौद्योगिकी विश्वविद्यालय, भुवनेश्वर
- 12. राजेन्द्र कृषि विश्वविद्यालय, समस्तीपुर, पूसा, बिहार
- बागवानी एवं वानिकी महाविद्यालय, केन्द्रीय कृषि विश्वविद्यालय, पासीघाट
- 14. एमएचयू, मुरथल

सहयोगी केन्द्र

15. डॉ. वाई.एस. परमार बागवानी एवं वानिकी विश्वविद्यालय, नौनी, सोलन (हिमाचल प्रदेश)

12वीं योजना के दौरान शामिल नए केन्द्र

समन्वित केन्द्र

- उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, सिक्किम
- 17. उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, अरूणाचल प्रदेश
- 18. उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, नागालैण्ड
- 19. उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, मणिपुर
- 20. उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर मिजोरम
- 21. उत्तर पूर्वी पर्वतीय क्षेत्र के लिए भाकृअनुप का अनुसंधान परिसर, त्रिपुरा
- 22. भाकृअनुप केन्द्रीय द्वीपीय कृषि अनुसंधान संस्थान, पोर्ट ब्लेयर, अंडमान व निकोबार
- 23. भाकृअनुप भारतीय बागवानी अनुसंधान संस्थान, बंगलुरू
- 24. सीएसके एचपीकेवी, पालमपुर

सहयोगी केन्द्र

- भाकृअनुप विवेकानन्द पर्वतीय कृषि अनुसंधान संस्थान, अल्मोडा
- 26. शेरे कश्मीर कृषि विज्ञान व प्रौद्योगिकी विश्वविद्यालय, श्रीनगर
- 27. शेरे कश्मीर कृषि विज्ञान व प्रौद्योगिकी विश्वविद्यालय, जम्मू
- 28. असम कृषि विश्वविद्यालय, जोरहाट
- 29. सरदार वल्लभ भाई पटेल कृषि व प्रौद्योगिकी विश्वविद्यालय, मेरठ
- 30. बिधान चन्द्र कृषि विश्वविद्यालय, नाडिया, पश्चिम बंगाल
- 31. सरदार क्रुषीनगर दंतेवाडा कृषि विश्वविद्यालय, दंतेवाडा
- 32. प्रो जय शंकर कृषि विश्वविद्यालय, राजेंद्र नगर हैदराबाद

- 11. Orissa University of Agricultute and Technology, Bhubaneswar
- 12. Rajendra Agricultural University, Samastipur, Pusa
- 13. College of Hort. and Forestry, Central Agril. Univ., Pasighat
- 14. MHU, Murthal

Cooperating Centres

15. Dr. Y. S. Parmar University of Horticulture & Forestry, Nauni, Solan (HP).

New centers included during XII plan

Coordinating Centres

- 16. ICAR Research Complex for NEH Region, Sikkim
- 17. ICAR Research Complex for NEH Region, Arunachal Pradesh
- 18. ICAR Research Complex for NEH Region, Nagaland
- 19. ICAR Research Complex for NEH Region, Manipur
- 20. ICAR Research Complex for NEH Region, Mizoram
- 21. ICAR Research Complex for NEH Region, Tripura
- 22. ICAR-Central Inland Agri. Res. Institute, Port Blair
- 23. ICAR-Indian Institute of Horticultural Research, Bangalore
- 24. CSK HPKV, Palampur

Co-operating centers

- 25. ICAR-VPKAS, Almora
- 26. Sher-e- Kasmir Uni. of Agri. Sci.&Technology, Srinagar
- 27. Sher-e- Kasmir Uni.of Agri. Sci.&Technology, Jammu
- 28. Assam Agri. University, Jorhat
- 29. Sardar Ballabh Bhai Patel Uni. Of Agri & Tech., Meerut
- 30. Bidhan Chandra Krishi Viswavidyalaya, Nadia
- 31. Sardarkrushinagar- Dantiwada Agri. Uni., Dantiwada
- 32. Prof. Jai Shankar Agri. Uni., Rajendranagar, Hyderabad

6. स्वीकृत चल रही अनुसंधान परियोजनाएं Approved On-going Research Projects

वर्ष 2020 के लिए आईसीएआर – डीएमआर, सोलन (हि.प्र.) की चल रहीं अनुसंधान परियोजनाएं: – On-going Research Projects of ICAR-DMR, Solan (H.P.) for the year 2020

Institute Projects

Institute code	Title	Researchers	Tentati ve cost of the project (Rs. in lakhs)	Period	Present status
DMR- 2017-7	Development of novel value added products of mushrooms and their evaluation during storage	Dr. Anuradha Srivastava, PI Dr. BL Attri, Co-PI	14.00	October, 2017 to March, 2020	Completed
DMR- 2018-2	Substrate formulation and standardization of cultivation technology of different mushrooms	Dr. Satish Kumar, PI-1 Dr. VP Sharma, PI-2 Dr. BL Attri, Co-PI Dr. Anil Kumar, Co-PI	44.95	April, 2018 to April, 2021	On-going
DMR- 2018-3	Genetic improvement of mushroom	Dr. V.P. Sharma, Project Leader	249.30	Àpril, 2018 to March, 2021	On-going
	Strains improvement in <i>Pleurotus</i> species	Dr. Anupam Barh, PI Dr. Shwet Kamal, Co-PI Dr. Anil Kumar, Co-PI			
	Strains improvement of <i>Shiitake</i> mushroom	Dr. VP Sharma, PI Dr. Shwet Kamal, Co-PI Dr. Anupam Barh, Co-PI Sh. Rakesh Kumar Bairwa, Co-PI			
	Strainal improvement in <i>Volvariella volvacea</i> (Paddy straw mushroom)	Dr. Anil Kumar, PI (Till Oct., 2019), Co-PI till date Dr. Manoj Nath, PI (w.e.f. Oct.2019) Dr. Anupam Barh, Co-PI			
	Development of high yielding strains of button mushroom	Dr. Shwet Kamal, PI Dr. Anupam Barh, Co-PI Sh. Rakesh Kumar Bairwa, Co-PI			

DMR- 2018-5	Holistic management of selected diseases/pests of different mushrooms	Dr. Anil Kumar, PI Dr. V.P. Sharma, Co-PI Dr. Satish Kumar, Co-PI Dr. Shwet Kamal, Co-PI		1 st April, 2018 to 31 st March, 2021	On-going
DMR- 2018-6	Standardization of cultivation technique for <i>Morchella</i> mushroom	Dr. Anil Kumar, PI Dr. Satish Kumar, Co-PI	26.00	1 st April, 2019 to 31 st March, 2022	On-going
DMR- 2019-1	Effect of different packaging material on the shelf life of button and oyster mushrooms during storage	Dr. B.L. Attri, PI Dr Anuradha Srivastava Co-PI	14.00	July, 2019 to June, 2021	On-going
DMR- 2019-2	Development of mushroom and millets based value added products	Dr. Anuradha Srivastava- PI Dr. V.P. Sharma, Co-PI	1.90	October, 2019 to September, 2020	Completed
DMR- 2019-3	Impact analysis of ICAR-DMR on the mushroom scenario of the country.	Dr. Yogesh Gautam, Co- PI	21.00	1 st April, 2019 to 31 st March, 2021	On-going

आईसीएआर – डीएमआर, सोलन के संबंध में वर्ष 2020 के लिए बाह्य रूप से वित्त पोषित परियोजनाएं Externally funded projects for the year 2020 in respect of ICAR-DMR, Solan

Title of the Project	PI of the Project	Tentative Cost of the Project (Rs. in lakhs)	Period	Funding Agency	Present Status
"Collection and characterization of indigenous shiitake (<i>Lentinula edodes</i>) and DNA barcoding of oyster (<i>Pleurotus</i> sp.) mushroom germplasm for commercial exploitation"	Dr. VP Sharma-PI, Dr. Sudheer Kumar Annepu, Co-PI Dr. AnupamBarh, Co-PI Dr. Shwet Kamal, Co-PI	Total - 145.42 (ICAR-DMR, Solan - 36.72)	01.10.2019 to 30.09.2022	DBT- Twinning program	On-going
Cultivation of <i>Cordyceps</i> mushroom	Dr. Satish Kumar –PI, Dr. V.P. Sharma Co- PI	15.10	01.10.2019 to 30.09.2022	DBT- Twinning program	On-going

7. राजभाषा का कार्यान्वयन Implementation of Official Language

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, चम्बाघाट, सोलन (हि0प्र0) की राजभाषा हिन्दी की प्रगति रिपोर्ट 2020

राजभाषा कार्यान्वयन समिति (हिन्दी समिति):

- डा. वी.पी. शर्मा, निदेशक अध्यक्ष
- डा. बी. एल. अत्री, प्रधान वैज्ञानिक सदस्य
- श्री एच.एन. शर्मा, प्रशासनिक अधिकारी सदस्य
- श्रीमती सुनीला ठाकुर, आशुलिपिक सदस्या
- श्री दीप कुमार ठाकुर, आशुलिपिक सदस्य
- श्रीमती शशी पुनम, व० लिपिक सदस्या
- श्री रजनीश जरयाल, सहायक सदस्य सचिव

राजभाषा कार्यान्वयन समिति द्वारा वर्ष 2020 के दौरान किये गए कार्यों का संक्षिप्त विवरण

भारत सरकार की राजभाषा नीति के कार्यान्वयन को सुनिश्चित करने तथा निदेशालय द्वारा संपादित किये जाने वाले कामकाज में हिन्दी का प्रयोग सुनिश्चित करने के उद्देश्य से निदेशालय में राजभाषा कार्यान्वयन समिति का गठन किया गया है। राजभाषा कार्यान्वयन के लिए निदेशालय में अलग से कोई अधिकारी व कर्मचारी न होने के बावजूद राजभाषा कार्यान्वयन समिति द्वारा किए गये प्रयासों के फलस्वरूप निदेशालय में हिन्दी के कामकाज व प्रचार—प्रसार में अपेक्षित सफलता प्राप्त हुई है। निदेशालय द्वारा वर्ष 2020 के दौरान किये गये कार्यों का संक्षिप्त विवरण निम्नानुसार है:—

राजभाषा वार्षिक कार्यक्रम पर कार्यान्वयन

राजभाषा विभाग, गृह मंत्रालय, भारत सरकार द्वारा जारी राजभाषा वार्षिक कार्यक्रम पर निदेशालय की राजभाषा कार्यान्वयन सिमित की त्रैमासिक बैठकों में चर्चा हुई तथा दिए गए दिशा—निर्देशों के अनुरूप लिए गए निर्णयों के अनुसार कार्रवाई की गई तथा निदेशालय के सभी अधिकारियों व कर्मचारियों को वार्षिक कार्यक्रम के अनुसार निर्धारित लक्ष्य प्राप्त करने हेतु पत्राचार किया गया।

राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद्, नई दिल्ली से प्राप्त पत्रों / परिपत्रों पर कार्रवाई।

इस अवधि में राजभाषा कार्यान्वयन सम्बन्धी नवीनतम निर्देशों / नियमों से सम्बन्धित विभिन्न प्रकार के पत्र / परिपत्र आदि Progress report of the official language of the ICAR-Directorate of Mushroom Research, Chambaghat, Solan (HP) for the year 2020

Official Language Implementation Committee (Hindi Committee)

- Dr. V.P. Sharma, Director Chairman
- Dr. B. L. Attri, Principal Scientist Member
- Mr. H.N. Sharma, Administrative Officer Member
- Mrs. Sunila Thakur, Stenographer Member
- Mr. Deep Kumar Thakur, Stenographer Member
- Smt. Sashi Poonam, Upper Division Clerk
- Dr. Rajneesh Jariyal, Assistant-Member Secretary

A brief description of the works done by the Official Language Implementation Committee during the year 2020

Official Language Implementation Committee has been constituted in the Directorate with the objective of ensuring the implementation of the Official Language Policy of the Government of India and to ensure the use of Hindi in the work done by the Directorate. In view of the efforts made by the Official Language Implementation Committee, despite the absence of any special official and employee in the Directorate for the implementation of the official language, the requisite success has been achieved in the functioning and publicity of Hindi in the Directorate. A brief description of the work done by the Directorate during the year 2020 is as follows:

Implementation on Official Language Program

The Official Language Implementation committee of the Directorate followed the guidelines of the Annual Program released by the Department of Official Language, Ministry of Home Affairs, Government of India. The correspondence has been done to all officers and employees of the Directorate to achieve the desired target according to the program. In response to circulars/letters of implementation of the official language from the Official Language Department (New Delhi), Official Language Implementation Committee (Solan) and Indian Council of Agricultural Research, action was taken by the Official Language Implementation Committee of the Directorate. Further, the letters/circulars were

राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन तथा भारतीय कृषि अनुसंधान परिषद से प्राप्त हुए जिन पर कार्रवाई वांछित थी, उन पर कार्रवाई की गई तथा उन्हें सभी संबंधित अधिकारियों व कर्मचारियों को उनकी जानकारी व आवश्यक कार्रवाई हेतु परिचालित किया गया।

तिमाही हिन्दी प्रगति रिपोर्ट का संकलन तथा समीक्षा

निदेशालय में राजभाषा कार्यान्वयन सम्बन्धी प्रगति के आँकड़ें प्राप्त / तैयार कर त्रैमासिक रिपोर्ट प्रोफार्मा में सभी आँकड़ों को संकलित कर निदेशालय की समेकित हिन्दी प्रगति रिपोर्ट तैयार की गई। इस समेकित रिपोर्ट को भारतीय कृषि अनुसंधान परिषद, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन तथा उप—निदेशक (कार्यान्वयन), राजभाषा विभाग, उत्तरी क्षेत्रीय कार्यान्वयन कार्यालय—1, दिल्ली ए—सरोजनी नगर, नई दिल्ली को ऑन लाईन भेजा। इस रिपोर्ट की समीक्षा की गई तथा पाई गई कमियों को इंगित कर दूर करने के लिए सभी अधिकारियों व कर्मचारियों को प्रेषित किया गया।

हिन्दी प्रोत्साहन योजना का कार्यान्वयन

राजभाषा विभाग द्वारा जारी निर्देशों के अनुरूप निदेशालय में सरकारी कामकाज मूल रूप में हिन्दी में करने के लिए प्रोत्साहन योजना सभी अधिकारियों व कर्मचारियों के लिए लागू की है। पूरे वर्ष में किए गए कार्यों को मध्य नजर रखते हुए एक मूल्यांकन समिति का गठन किया जाता है जो फाईलों व अन्य कार्यों का अवलोकन कर प्रथम, द्वितीय व तृतीय पुरस्कारों का निर्णय करती है।

त्रैमासिक बैठकों का आयोजन

राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों का नियमित आयोजन किया गया। बैठकों में राजभाषा वार्षिक कार्यक्रम में निर्धारित किए गए लक्ष्यों को प्राप्त करने, समय—समय पर राजभाषा विभाग, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन एवं भारतीय कृषि अनुसंधान परिषद् से प्राप्त निर्देशों / आदेशों के अनुपालन पर चर्चा की गई तथा इन बैठकों में लिए गए निर्णयों को लागू करने के लिए कार्रवाई की गई।

त्रैमासिक राजभाषा कार्यशालाओं का आयोजन

निदेशालय में त्रैमासिक राजभाषा कार्यशालाओं का नियमित आयोजन किया गया। इन कार्यशालाओं में हिन्दी में कार्य करने में आ रही बाधाओं पर चर्चा की गई तथा उनका निराकरण करने के लिए उपाय सुझाए गए। निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए सभी प्रकार के प्रपत्र द्विभाषी रूप में तैयार किए गए व सभी के कंप्यूटरों पर डाउनलोड किए गए ताकि वे दिन—प्रतिदिन कार्यालय प्रयोग में इन प्रपत्रों को प्रयोग में लाए।

also circulated to all concerned officers and employees for their information and necessary action.

Compilation and review of quarterly Hindi progress report

Integrated Hindi progress report of Directorate was prepared by compiling all the data in the quarterly report profiling, preparation by acquiring, preparing the statistics related to implementation of official language in the directorate. This consolidated report was also referred to Indian Council of Agricultural Research (New Delhi), Official Language Implementation Committee (Solan) and Sub Inspector (Implementation) Department of Official Language, Northern Regional Implementation Office-1, Delhi A-Sarojini Nagar, New Delhi. This report was reviewed and forwarded to all the officials and employees for indicating the drawbacks found.

Implementation of Hindi Incentive Scheme

In accordance with the instructions issued by the Department of Official Language, incentive scheme has been implemented for all officers and employees to promote the official work in Hindi. An evaluation committee is set up keeping an eye on the work done throughout the year, which after observing the files and other functions, decides the first, second and third prizes.

Organizing quarterly meetings

Quarterly meetings of the Official Language Implementation Committee were organized regularly. To meet the targets set out in the Official Language Program in the meetings, timely discussions were followed on the recommendations of the Official Language Department, (New Delhi), Official Language Implementation Committee (Solan) and Indian Council of Agricultural Research. Actions were taken to implement the decisions made.

Organizing Quarterly Official Language Workshops

Quarterly official language workshops were organized regularly in the Directorate. In these workshops, the barriers to working in Hindi were discussed and remedies suggested for them to be resolved. All types of forms were prepared in bilingual form for all officers and employees of the Directorate and downloaded on all the computers so that; they could use these forms in day-to-day office work.

हिन्दी पखवाड़े का आयोजन

भाकृअनप—खुम्ब अनुसंधान निदेशालय में हिन्दी पखवाड़ा का आयोजन दिनांक 14—28 सितम्बर, 2020 तक किया गया, जिसका विवरण निन्नलिखित है:—

दिनांक: 14.09.2020

- 1. सुलेख प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 24 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता का मुख्य उद्देश्य सभी अधिकारियों व कर्मचारियों को लिखने का अभ्यास तथा सुन्दर लिखाई को जाँचना था। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कारत जीते।
 - डा. कनिका शर्मा जे आर एफ प्रथम
 - 2. डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक द्वितीय
 - 3. डॉ. श्वेत कमल, प्रधान वैज्ञानिक तृतीय

दिनांक: 16.09.2020

- 2. श्रुत्तलेखन प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 12 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीते।
- 1. डॉ. श्वेत कमल, प्रधान वैज्ञानिक प्रथम
- 2. श्रीमती सुनीला ठाकुर, निजी सहायक द्वितीय
- 3. श्रीमती शशी पूनम, उच्च श्रेणी लिपिक तृतीय

दिनांक: 18.09.2020

- 3. निबंध प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 06 प्रतिभागियों रयों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीते।
- 1. डा. अनिल कुमार, वैज्ञानिक प्रथम
- 2. डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक द्वितीय
- 3. श्री दीपक शर्मा, तकनीकी अधिकारी तृतीय

दिनांक: 22.09.2020

- 4. टिप्पणी प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में निदेशालय के 06 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीते।
- 1. श्री रजनीश जरयाल, सहायक प्रथम
- 2. डॉ. श्वेत कमल, प्रधान वैज्ञानिक द्वितीय

Organizing Hindi Fortnight

Hindi Fortnight was celebrated from 14-28 September, 2020, in the ICAR-Directorate of Mushroom Research, details of which are as follows:

Date: 14.09.2020

- 1. Calligraphy competition: This competition was for all officers and employees of the Directorate. 24 officers and employees participated in this competition. The main aim of this competition was to test the writing practice and handwriting of all officers and employees. The following officers / employees won the prize in this competition: -
- 1. Dr. Kanika Sharma-JRF-First prize
- 2. Dr. Brij Lal Attri, Principal Scientist, Second prize
- 3. Dr. Shwet Kamal, Principal Scientist Third prize

Date: 16.09.2020

- **2. Dictation contest**: This competition was for all officers and employees of the Directorate. In this competition, 12 officers and employees of the Directorate participated. The following officers / employees won the prize in this competition: -
- 1. Dr. Shwet Kamal, Principal Scientist First prize
- 2. Mrs. Sunila Thakur, Stenographer-Second prize
- 3. Mrs. Sashi Poonam, Upper division clerk III-Third prize

Date: 18.09.2020

3. Essay competition: This contest was for all officers and employees of the Directorate. In this competition, 06 officers and employees participated. The theme of this competition was corruption free India.

The following officers / employees won the prize in this competition: -

- 1. Mr. Anil Kumar, Scientist First prize
- 2. Dr. Brij Lal Attri, Principal Scientist Second prize
- 3. Mr. Deepak Sharma, Technical Officer Third price

Date 22.09.2020

- **4. Noting Competition**: This competition was for all the officers and employees of the Directorate. Six participants participated in this competition. The following officers /employees got prices;the prize in this competition: -
- 1. Dr. Rajneesh Jaryal, Assistant--First prize

ANNUAL REPORT

3. श्री संजीव शर्मा, क0 लिपिक – तृतीय

दिनांक: 24.09.2020

- 5. अनुवाद अंग्रेजी से हिन्दी में: यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 09 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीते।
- 1. श्री दीप कुमार ठाकुर, आशुलिपिक प्रथम (ग्रेड—III)
- 2. डा. रीता भाटिया, स.मु.त अधिकारी द्वितीय
- 3. श्रीमती सुनीला ठाकुर, निजी सहायक तृतीय

दिनांक: 26.09.2020

- 6. सामान्य ज्ञान प्रतियोगिताः यह प्रतियोगिता निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए थी। इस प्रतियोगिता में 17 प्रतिभागियों ने भाग लिया। इस प्रतियोगिता में निम्नलिखित अधिकारियों / कर्मचारियों ने पुरस्कार जीते।
- 1. श्री रजनीश जरयाल, सहायक प्रथम
- 2. श्री राकेश बैरवा, वैज्ञानिक दवितीय
- 3. श्री संजीव शर्मा, क0 लिपिक तृतीय

पूरे वर्ष सरकारी कामकाज मूल रूप से हिन्दी में करने के लिए प्रोत्साहन योजना के तहत पुरस्कार

(भारत सरकार, गृह मंत्रालय, राजभाषा विभाग, नई दिल्ली सिटी सेंटर—2 बिल्डिंग, जयसिंह रोड़, नई दिल्ली — 110 001 के कार्यालय ज्ञापन सं0 12013/01/2011—रा0भा0(नीति) दिनांक 14 सितम्बर, 2016 द्वारा प्राप्त दिशानिर्देशों के अंतर्गत पूर्व वर्ष (सितम्बर, 2019 से अगस्त, 2020) में कार्यालय में अधिक से अधिक कार्य हिन्दी में करने के लिए प्रोत्साहन योजना)

पूरे वर्ष हिन्दी में सर्वाधित कार्य करने के लिए निम्नलिखित अधिकारियों व कर्मचारियों को पूरस्कार दिए गए।

1. प्रथम पुरस्कारः

- 1. श्री दीप कुमार, आशुलिपिक
- 2. श्रीमती शशी पूनम, व0 लिपिक

2. द्वितीय पुरस्कार

- 1. श्री एच.एन. शर्मा, प्रशासनिक अधिकारी
- 2. श्री रजनीश जरयाल, सहायक
- 3. श्री एन.नी. नेगी, सहायक

- 2. Dr. Shwet Kamal, Principal Scientist Second prize
- 3. Mr. Sanjeev Sharma, Lower Division Clerk-Third prize

Date 24.09.2020

- **5. Translation from English to Hindi**: This competition was for all officers and employees of the Directorate. In this competition, 9 officers and employees participated. The following officers / employees won the prizes in this competition: -
- 1. Mr. Deep Kumar Thakur, Stenographer (Grade III) First prize
- 2. Mrs.Reeta Bhatia, ACTO-Second prize
- 3. Mrs. Sunila Thakur, Personal Assistant- Third prize

Date 26.09.2020

6. Quiz competition

This competition was for all officers and employees of the Directorate. In this competition, 17 officers and employees participated. The following officers / employees won the prize in this competition: -

- 1. Dr. Rajneesh Jaryal, Assistant-First prize.
- 2. Dr. Rakesh Bairwa, Scientist-Second prize.
- 3. Mr. Sanjeev Sharma, Lower Division Clerk-Third prize.

Prize under the incentive scheme

Under the guidelines received by the office of the Indian Government, Home Ministry, Department of Official Language, New Delhi City Center-2 Building, Jai Singh Road, New Delhi-110 001, Office of the Memorandum No. 12013/01/2011 (Policy) dated September 14, 2016, Incentive scheme more work in Hindi in the pre-year (September, 2019 to Aug, 2020)

Prizes were awarded to the following officers and employees for doing all round work in Hindi throughout the year.

1. First prize-

- Mr. Deep Kumar Thakur, Stenographer (Grade-III)
- Mrs. Shashi Poonam, Upper Division Clerk

2. Second prize-

- Mr. H.N. Sharma, Administrative officer
- Mr. Rajneesh Jaryal, Assistant
- Mr. N.P. Negi, Assistant

3. तृतीय पुरस्कार

- 1. श्री टी.डी. शर्मा, स० प्रशासनिक अधिकारी
- 2. श्री धर्म दास, उच्च श्रेणी लिपिक
- 3. श्री संजीव शर्मा, निम्न श्रेणी लिपिक

निदेशालय की वार्षिक हिन्दी प्रगति संबंधी मुख्य गतिविधायाँ एवं उपलब्धियाँ

राजभाषा कार्यान्वयन समिति की प्रमुख—प्रमुख गतिविधियों और उपलब्धियों का सार—गर्भित संक्षिप्त—विवरण वार्षिक हिन्दी प्रगति रिपोर्ट के रूप में प्रस्तुत किया जाता है।

- 1. परिषद द्वारा निदेशालय को "क" और "ख" क्षेत्र के छोटे संस्थानों में राजभाषा हिन्दी के प्रयोग को बढ़ावा देने के लिये 'राजर्षि टंडन' के द्वितीय पुरस्कार से नवाजा गया।
- 2. निदेशालय के 80 प्रतिशत से अधिक कार्मिक हिन्दी में प्रवीणता / कार्यसाधक ज्ञान प्राप्त है इसलिए यह निदेशालय राजभाषा नियम 10(4) के अंतर्गत भारत सरकार के गजट में हिन्दी कार्यालय के रूप में अधिसूचित किया जा चुका है।
- 3. दिनांक 28.02.2020, 27.05.2020, 04.09.2020 व 21.12.2020 को राजभाषा कार्यान्वयन समिति की बैठकें संपन्न हुई। सभी बैठकों की कार्यसूची वार्षिक कार्यान्वयन की अपेक्षाओं के अनुसार एवं अध्यक्ष महोदय, राजभाषा कार्यान्वयन समिति के अनुमोदन के बाद ही तय की गई।
- 4. दिनांक 28.02.2020, 27.05.2020, 28.09.2020 व 15.12.2020 को राजभाषा कार्याशालाओं को आयोजन किया गया जिसमें निदेशालय के सभी अधिकारियों व कर्मचारियों ने स्वेच्छा से भाग लेकर कार्यशालाओं के लक्ष्यों को सफलतापूर्वक प्राप्त किया।
- 5. हिन्दी में प्राप्त या हिन्दी में हस्ताक्षरित सभी पत्रों में से जिन पत्रों का उत्तर देना अपेक्षित समझा गया, उन पत्रों का उत्तर केवल हिन्दी में ही दिया गया।
- 6. निदेशालय की अधिकतर बैठकों को कार्यवृत्त हिन्दी में तैयार किए गए।
- 7. राजभाषा अधिनियम, 1963 की धारा 3(3) तथा अन्य नियमों की अनुपालना के संदर्भ में निदेशालय के प्रत्येक अधिकारी व कर्मचारी को समय—समय पर कार्यालय आदेश जारी किए गए व इनकी शत—प्रतिशत अनुपालन सुनिश्चित करवाने के प्रयास किए जा रहे है।

3. Third prize

- Mr. Tulsi Das Sharma, Assistant Administrative Officer
- Mr. Dharam Dass, Upper Division Clerk II
- Mr. Sanjeev Sharma, Lower Division Clerk

Annual Hindi progress- Key activities and achievements of the Directorate

The summary-abridged brief description of major key activities and achievements of the Official Language Implementation Committee is presented as annual Hindi progress report.

- 1. ICAR-Directorate of Mushroom Research was awarded first prize by Secretary, Government of the India, Ministry of Home Affairs, Department of Official Language among the offices in 'A' Area categories for the commendable contribution and excellent execution of official language policy.
- 2. More than 80 percent of the Directorate is proficient / has working knowledge in Hindi, so this directorate has been notified as a Hindi office in the Gazette of the Government of India under the Official Language Rule 10 (4).
- 3. Meetings of Official Language Implementation Committee were conducted on 28-02-2020, 27-05-2020, 04-09-2020 and 21-12-2020. The agenda of all meetings was fixed only after the approval of the Chairman, Official Language Implementation Committee in accordance with the requirements of the annual implementation.
- 4. Official language workshops were organized on 28-02-2020, 27-05-2020, 28-09-2020 and 15-12-2020 in which all officers and employees of the Directorate participated voluntarily and achieved the goals of the workshops.
- 5. The letters which were deemed to be required to be answered from all the letters received or signed in Hindi were answered only in Hindi.
- 6. Most of the minutes of meetings of the Directorate were prepared in Hindi.
- 7. In respect of compliance of Section 3 (3) of the Official Languages Act, 1963 and other rules, the officers and employees of the Directorate have been issued periodicals on time and efforts are being made to ensure 100 percent compliance.
- 8. Continuous efforts are carried out in the direction of achieving the goals of Hindi correspondence.

ANNUAL REPORT

- 8. हिन्दी पत्राचार के निर्धारित लक्ष्यों को प्राप्त करने की दिशा में सतत्-प्रयास जारी है।
- 9. सभी 55 मानक फॉर्मों को द्विभाषी रूप में तैयार कर लिया गया है तथा सतत् कोशिशें की जा रही है की सभी कार्मिक इन्हें हिन्दी में ही भरें।
- 10. निदेशालय के सभी 32 कम्पयूटरों में हिन्दी सॉफटवेयर को डाउनलोड किया गया है। इससे कम्पयूटर पर काम करने वाले प्रत्येक अधिकारी व कर्मचारी को अपनी इच्छानुसार हिन्दी में अथवा हिन्दी और अंग्रेजी दोनों में किसी भी भाषा में एक साथ काम कर सकते है।
- 11. निदेशालय के सभी अधिकारियों का हिन्दी की जानकारी संबंधी रोस्टर तैयार किया गया है तथा निदेशालय की बेबसाईट www.dmrsolan.icar.gov.in पर भी डाला गया है।
- 12. निदेशालय के सभी साईन बोर्ड, सूचना बोर्ड, नाम पट्ट व अन्य इसी प्रकार के बोर्ड द्विभाषी रूप में तैयार करवाए गए हैं।
- 13. निदेशालय के प्रशिक्षण कार्यक्रमों के लिए प्रशिक्षण सार—संग्रह(ट्रेनिंग कम्पेडियम) हिन्दी व अंग्रेजी दोनों भाषाओं में उपलब्ध है।
- 14. कोड मैनुअलों और अन्य कार्यविधि साहित्य हिन्दी में उपलब्ध है।
- 15. निदेशालय के अधिकारियों तथा कर्मचारियों के हिन्दी शब्द ज्ञान को बढ़ाने के उद्देश्य से श्यामपट्ट (ब्लैक बोर्ड) पर 'आज का विचार' शीर्षक के अन्तर्गत प्रतिदिन हिन्दी के वाक्य लिखे जाते हैं ताकि अधिकारियों व कर्मचारियों के शब्द ज्ञान में वृद्धि हो सके।
- 16. निदेशालय में प्रत्येक वर्ष की भांति इस वर्ष भी मशरूम मेले का आयोजन 10 सितम्बर, 2020 को वर्चुअल माध्यम से आयोजित किया गया।
- 17. हिन्दी पुस्तकों की खरीद के लिए एक समिति बनाई गई है जो हिन्दी पुस्तकालय के लिए पुस्तकें खरीदने की सिफारिश करती है। पुस्तकालय में प्रत्येक वर्ष राजभाषा विभाग द्वारा निर्धारित लक्ष्य के अनुसार पुस्तकें खरीदने का प्रयास किया जा रहा है। निदेशालय की पुस्तकालय में हिन्दी में उपलब्ध सभी प्रकाशनों की सूची में निदेशालय की वेबसाइट पर उपलब्ध कराई गई है।
- 18. दूरदर्शन पर भी निदेशालय के वैज्ञानिकों द्वारा मशरूम विषय

- 9. All 55 standard formats have been prepared in bilingual form and continuous efforts are being made that all personnel fill them in Hindi only.
- 10. The Hindi software has been downloaded in all the 32 computers of the Directorate. With this, every officer and employee working on the computer can work together in Hindi or in Hindi and English both as per their wish.
- 11. Roster of all officers of the Directorate on the information related to the Hindi has been prepared and has been uploaded on the Directorate's website www.dmrsolan.icar.gov.in
- 12. All sign boards, information boards, name plates and other similar types of board have been prepared in bilingual form.
- 13. Training compendium for training programs of Directorate is available in both Hindi and English languages.
- 14. Code manuals and other protocol literature are available in Hindi.
- 15. With the objective of enhancing the Hindi knowledge of the officers and employees of the Directorate, the sentences of Hindi are written every day under 'Today's Thoughts' headline on the black board so that the knowledge of officers and employees increases.
- 16. As per each year in the Directorate, the mushroom fair was organized on 10th September, 2020 this year. On this occasion, the headlines, graphs, histographs, etc. of all the pictures of the main pandal were displayed in Hindi. Mushroom related information was presented in a fascinating way through multimedia and mushroom related literature was made available in Hindi language to the farmers, students and other visitors.
- 17. A committee has been formed for purchase of Hindi books which recommends buying books for the Hindi Library. Efforts are being made to buy books according to the target set by the Official Language Department every year in the library. The list of all the publications available in hindi the library of the Directorate has been made available on the website of Directorate.
- 18. On television and newspapers, talks delivered scientists and technical officers of the Directorate on the subject of mushrooms are also being

- पर हिन्दी में वार्ताएं प्रसारित होती रहती है जिनसे मशरूम उत्पादकों की समस्याओं का समाधान होता है।
- 19. इसके अतिरिक्त डा. वी.पी. शर्मा, निदेशक एवं अध्यक्ष, राजभाषा कार्यान्वयन समिति के सतत् निजी—सहयोग और मार्गदर्शन के तहत हिन्दी की तिमाही बैठकों व कार्याशालाओं का समय पर आयोजन व निदेशालय में कार्यरत सभी अधिकारियों व कर्मचारियों के आपसी सहयोग और मेलमिलाप के साथ राजभाषा कार्यान्वयन संबंधी गतिविधियां निरंतर प्रगति की ओर अग्रसर हो रही है।

नगर राजभाषा कार्यान्वयन समिति (नराकास), सोलन (हि॰प्र॰)

नगर राजभाषा कार्यान्वयन समिति (नराकास) सोलन के संयोजक का कार्यभार भी खुंब अनुसंधान निदेशालय के पास है। इसके अध्यक्ष निदेशालय के निदेशक डा. वी.पी. शर्मा तथा सदस्य सचिव श्री एच.एन. शर्मा, प्रशासनिक अधिकारी हैं। वर्तमान में सोलन नराकास के 30 सदस्य हैं जिसमें नगर में स्थित केन्द्र सरकार के कार्यालय, उपक्रम, बैंक आदि भाग लेते हैं। नराकास के तहत वर्ष में 2 बैठकें जून/नवंबर में आयोजित करनी होती हैं। इन बैठकों में सरकारी कार्य में राजभाषा का अधिक से अधिक प्रयोग हो सके, विषय पर चर्चा की जाती हैं और उसको बढ़ावा देने के लिये आवश्यक कदम उठाये जाते हैं। सोलन नराकास की छिमाही बैठक इस वर्ष कोविड महामारी के कारण वर्चुअल माध्यम से आयोजित की गयी।

- broadcasted in Hindi to solve the problems of the mushroom growers.
- 19. Additionally, under the continuous personal support and guidance of Dr. V.P. Sharma, Director and Chairman, Official Language Implementation Committee, quarterly meetings and workshops of Hindi were being organised. Together with mutual cooperation and reconciliation of all officials and employees working in the Directorate the work related to the implementation of the official language is continuously moving forward.

Town Official Language Implementation Committee (NARAKAS), Solan (HP)

The work of convener of Nagar Official Language Implementation Committee (NARACAS) Solan is also with the Directorate of Mushroom Research. Its chairman, director of the directorate, Dr. V.P. Sharma and Member Secretary Shri H.N. Sharma is an administrative officer. Presently there are 30 members of Solan Narakas in which Central Government Offices, undertakings, Banks etc. located in the city participate. Under NARCAS, 2 meetings in a year are to be held in June/November. In these meetings, the official language can be used more and more in official work, the topic is discussed and necessary steps are taken to promote it. The quarterly meeting of Solan Narakas was organized this year through virtual medium due to the Covid pandemic.

8. संस्थागत गतिविधियां Institutional Activities

वर्च्अल एआईसीआरपी मशरूम कार्यशाला

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन ने 8 से 9 जून, 2020 तक वर्चुअल मोड में खुम्ब पर अखिल भारतीय समन्वित अनुसंधान परियोजना (एआईसीआरपी) की 22वीं वार्षिक कार्यशाला का आयोजन किया गया । डॉ. त्रिलोचन महापात्रा, माननीय सचिव (डेयर) और महानिदेशक (भाकुअनुप) मुख्य अतिथि के रूप में कार्यशाला की अध्यक्षता की और डॉ. ए के सिंह, डीडीजी (बागवानी विज्ञान), भाकुअनुप, नई दिल्ली ने विशिष्ट अतिथि के रूप में अध्यक्षता की। डॉं. टी जानकीराम, एडीजी (बागवानी विज्ञान), भाकुअनुप, नई दिल्ली ने उदघाटन सत्र की अध्यक्षता की। 27 विभिन्न राज्यों और केंद्र शासित प्रदेशों में स्थित 32 एआईसीआरपी केंद्रों के वैज्ञानिकों और विशेषज्ञों ने ऑनलाइन मोड के माध्यम से इस आयोजन में भाग लिया था। प्रारंभ में डॉ. वी.पी. शर्मा, निदेशक, भाकुअनुप-खुअनुनि, सोलन ने सभी अतिथियों और विशेषज्ञों के साथ-साथ प्रतिभागियों का स्वागत किया। डॉ. शर्मा ने आईसीएआर- खुम्ब अनुसंधान निदेशालय, सोलन और प्रोजेक्ट कोऑर्डनैटर एआईसीआरपी-मशरूम की प्रगति और उपलब्धियों को प्रस्तुत किया। उद्घाटन भाषण के दौरान, डॉ. त्रिलोचन महापात्रा, माननीय सचिव (डेयर) और महानिदेशक (भाकृअनुप) ने देश में पांच साल की छोटी अवधि के भीतर कुल मशरूम उत्पादन को दोगुना करने के लिए भाकृअनुप-खुअनुनि, सोलन द्वारा किए गए प्रयासों की सराहना की। उन्होंने उच्च जैव सक्रिय यौगिकों के साथ औषधीय मशरूम में नए उपभेदों के विकास की आवश्यकता पर जोर दिया। महानिदेशक ने मशरूम बायोएक्टिव यौगिकों की प्रभावकारिता और मानव प्रतिरक्षा मॉडुलेशन में उनकी भूमिका का अध्ययन करने के लिए भारत के प्रमुख अनुसंधान संस्थानों के साथ सहयोगात्मक अनुसंधान दृष्टिकोण के महत्व पर बल दिया। उन्होंने कोविड महामारी के कारण उत्पन्न रिवर्स माइग्रेशन को देखते हए मशरूम उत्पादन गतिविधि द्वारा रोजगार सृजन क्षमता का भी विशेष उल्लेख किया।

इस अवसर पर, मशरूम उद्योग में किसानों, उद्यमियों और अन्य हितधारकों के लाभ के लिए महानिदेशक द्वारा पांच पुस्तकों का विमोचन किया गया, जिसमे मशरूम वेल्थ ऑफ इंडिया, ढींगरी मशरूम—एक तकनीकी गाइड, शिटाके मशरूम— एक परिचय, खुंबों के रोग बनाम विकारः पहचान और प्रबंधन, भाकृअनुप—डीएमआर, सोलन द्वारा विकसित प्रौद्योगिकियां शामिल है। डॉ. ए के सिंह, डीडीजी (बागवानी विज्ञान) ने मशरूम के पोषण गुणों और मानव प्रतिरक्षा में सुधार के लिए मशरूम की खपत को बढ़ावा देने की

Virtual AICRP Mushroom workshop

ICAR-Directorate of Mushroom Research, Solan organized 22nd Annual Workshop of All India Coordinated Research Project (AICRP) on Mushrooms in a virtual mode from 8th to 9th June, 2020. Dr. Trilochan Mohapatra, Honourable Secretary (DARE) & DG (ICAR), chaired the workshop as the Chief Guest and Dr. AK Singh, DDG (Horticulture Science), ICAR, New Delhi presided as the Guest of Honour. Dr. T Janakiram, ADG (Horticulture Science), ICAR, New Delhi presided the inaugural session. Scientists and experts from 32 AICRP centres located in 27 different states and UTs had participated in the event through online mode. At the outset Dr. V. P. Sharma, Director, ICAR-DMR, Solan welcomed all the guests and the experts as well as participants. Dr. Sharma presented the progress and achievements of ICAR-DMR, Solan and AICRP-Mushroom. During inaugural address, Dr. Trilochan Mohapatra, Secretary (DARE) & DG (ICAR) commended the efforts made by ICAR-DMR, Solan for doubling the total mushroom production in the country within a short period of five years. He emphasized the need for development of new strains in medicinal mushrooms with high bioactive compounds. The Director General stressed the importance of collaborative research approach with premier research institutes of India in order to study the efficacy of the mushroom bioactive compounds and their role in human immune modulation. He also made a special mention about the employment generation ability of mushroom production activity in view of the reverse migration arisen due to COVID pandemic.

On this occasion, the Director General launched five publications *viz.*, Mushroom Wealth of India; Growing Oyster Mushrooms-A Technical Guide; Shiitake Mushroom-Ek Parichay; Khumbon Ke Rog v Vikar: Pehchan avam Prabandhan; Technologies Developed by ICAR-DMR, Solan for the benefit of farmers, entrepreneurs and other stakeholders in the mushroom industry. Dr. AK Singh, DDG (Horticulture Science) highlighted the nutritional attributes of mushrooms and the need to promote the mushroom consumption to improve the human

आवश्यकता पर प्रकाश डाला। डॉ. टी जानकीराम, एडीजी (बागवानी विज्ञान) ने डॉ शर्मा द्वारा आईसीएआर –आईआईएमआर, हैदराबाद के सहयोग से शुरू किए गए बागवानी-बाजरा कार्यक्रम की सराहना की। विशेष आमंत्रितों डॉ. एन.एस. अत्री, पूर्व प्रोफेसर, पंजाबी विश्वविद्यालय, पटियाला और डॉ. मंजीत सिंह, पूर्व निदेशक, भाकृअनुप—खुअनुनि, सोलन संस्थान द्वारा विकसित किरमों और प्रौद्योगिकयों के प्रसार पर विचार-विमर्श किया गया। बैठक के प्रतिनिधियों ने कृषि पद्धतियों में विविधता लाने और पोषण संबंधी चुनौतियों का समाधान करने के लिए मशरूम की खेती के महत्व को भी दोहराया। डॉ. शर्मा ने भारत में मशरूम विज्ञान को सुदृढ़ करने के लिए आवश्यक भावी शोध कार्य का रोडमैप दिया। इस वर्क्शाप में अनुसंधान प्रयासों के माध्यम से मशरूम उत्पादन और उत्पादकता बढ़ाने में हुई प्रगति पर प्रकाश डाला गया और भारतीय मशरूम उद्योग के सामने आने वाली चुनौतियों का समाधान करने के तरीकों पर चर्चा की गई। दो एआईसीआरपी केंद्रों को भी उनके अनुसंधान और विस्तार गतिविधियों के आधार पर सर्वश्रेष्ठ केन्द्र का पुरस्कार दिया गया। इसके अलावा, डॉ. एच.एस. सोढी, एआईसीआरपीएम–पीएयू, लुधियाना और डॉ. ए.पी. गायकवाड़, एआईसीआरपीएम-पुणे को भी सेवानिवृत्ति की पूर्व संध्या पर सम्मानित किया गया।

immunity. Dr. T Janakiram, ADG (Horticulture Science) appreciated the Horti-Millets programme initiated by Dr. Sharma in collaboration with ICAR-IIMR, Hyderabad. Deliberations were made with the special invitees Dr. N.S. Attri, Ex-Professor, Punjabi University, Patiala and Dr. Manjit Singh, Ex-Director, ICAR-DMR, Solan on the spread of varieties and technologies developed by the institute. The delegates of the meeting also reiterated the importance of mushroom farming to diversify the agricultural practices and addressing the nutritional challenges. Dr. Sharma gave the road map for the future research work needed to strengthen the mushroom science in India. The progress made in increasing the mushroom production and productivity through the research efforts was highlighted and discussed the ways to address challenges faced by the Indian mushroom industry. Two AICRP centres were also facilitated as best performer based on their research and extension activities. Furthermore, Dr. H.S. Sodhi, AICRPM-PAU, Ludhiana and Dr. A. P. Gaikwad, AICRPM-Pune were also felicitated, on the eve of the superannuation.

चित्र 8.1 वर्चुअल एआईसीआरपी मशरूम कार्यशाला Fig. 8.1 Virtual AICRP Mushroom workshop

अन्संधान सलाहकार समिति की बैठक

23 जुलाई, 2020 के दौरान भाकृअनुप—डीएमआर, सोलन में आरएसी की बैठक बुलाई गई। बैठकों की अध्यक्षता डॉ. जगमोहन सिंह, पूर्व कुलपति, यूएचएफ, नौनी ने की और इसमें सम्मानित सदस्यों डॉ. वी.पी. शर्मा, टी. जानकीराम, डॉ. एन.एस. अत्री, डॉ. बी. के. पांडे, डॉ. के.बी. महापात्रा, डॉ. के.के. जनार्दनन, डॉ. शम्मी कपूर, श्री विनोद ठाकुर, श्री राजेश ठाकुर और डॉ. बी.एल. अत्री ने भाग लिया। प्रधान अन्वेषकों द्वारा एक संक्षिप्त प्रस्तुति के बाद, आरएसी ने चल रही और पूर्ण परियोजनाओं की प्रगति और उपलब्धियों की समीक्षा की। समिति ने नए परियोजना प्रस्तावों पर भी महत्वपूर्ण टिप्पणियां दीं और मशरूम विज्ञान में अनुसंधान अंतराल और चुनौतियों को दूर करने के लिए निदेशालय द्वारा किए गए सामूहिक प्रयासों की सराहना की।

Research Advisory Committee Meeting

RAC meeting was convened at ICAR-DMR, Solan during 23rd July, 2020. The meetings were chaired by Dr. Jagmohan Singh, Former Vice Chancellor, UHF, Nauni and attended by the esteemed members Dr. V.P. Sharma, T. Janakiram, Dr. N.S. Atri, Dr. B.K. Pandey, Dr. K.B. Mohapatra, Dr. K.K. Janardhanan, Dr. Shammi Kapoor, Shri Vinod Thakur, Shri Rajesh Thakur and Dr. B.L. Attri. After a brief presentation by the Principal Investigators, RAC critically examined the progress and achievements of ongoing and completed projects. The committee also gave important comments on new project proposals and appreciated the collective efforts made by the Directorate to address research gaps and challenges in mushroom science.

वर्चुअल आरएसी मीटिंग 2020 Fig 8.2 Virtual RAC meeting 2020

माननीय राज्यपाल हिमाचल प्रदेश का खुम्ब अनुसंधान निदेशालय दौरा

भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, चम्बाघाट, सोलन में हिमाचल प्रदेश के माननीय राज्यपाल श्री बंडारू दत्तात्रेय ने दिनांक 28.01.2020 को दौरा किया। निदेशालय में पहुंचने पर निदेशालय के निदेशक डा. वी.पी.शर्मा ने उनका स्वागत किया। निदेशक ने राज्यपाल महोदय को एक प्रस्तुति भी दी जिसमें भारतवर्ष में उगाई जाने वाली विभिन्न खुम्बों की जानकारी व विगत वर्षों में निदेशालय की उपलब्धियों को विस्तार से प्रस्तुत किया। प्रस्तुतीकरण के दौरान राज्यपाल महोदय ने खुम्ब उत्पादन तकनीकियों के बारे में जानने की उत्सुकता दिखाई और डा. वी.पी. शर्मा ने उनके द्वारा पूछे गये सभी प्रश्नों का

Honorable Governor of Himachal Pradesh ICAR-Directorate of Mushroom Research, Solan visit

Hon'ble Governor of Himachal Pradesh Shri Bandaru Dattatreya visited ICAR-Directorate of Mushroom Research, Chambaghat, Solan on 28.01.2020. On reaching the directorate, Dr. VP Sharma, Director of the Directorate welcomed him. The Director also made a presentation to the Governor, in which the information about various mushrooms grown in India and the achievements of the Directorate in the last years were presented in detail. During the presentation, the Governor showed his eagerness to know about the mushroom production techniques and Dr. V.P. Sharma satisfied the Governor by answering

जवाब देकर राज्यपाल महोदय को संतुष्ट किया। इसके उपरांत डा. शर्मा ने माननीय राज्यपाल महोदय को खुम्ब अनुसंधान निदेशालय के कल्चर बैंक जिसमें 3500 के करीब खुम्ब के नमूने रखे हैं व इलेक्ट्रॉन माइक्रोस्कोप दिखाया। इसके अलावा कार्डिसेपस इकाई, स्पॉन इकाई का भ्रमण हुआ तथा खुम्ब तकनीकियों पर लगाई गई प्रदर्शनी के बारे में भी विस्तार से जानकारी दी। राज्यपाल महोदय ने कार्डिसेपस मशरूम में अत्यधिक रूचि दिखाई। राज्यपाल महोदय को खुम्ब उत्पादन कक्षों में भी ले जाया गया तथा सभी तरह की खुम्बों को देख कर वे बहुत प्रसन्न हुए। कम लागत खुम्ब इकाई को भी दिखाया गया जिसमें बटन मशरूम की खेती की जा रही है। ऐसी इकाईयां छोटे किसानों के लिये काफी उपयुक्त हैं जिसमें किसान सर्दियों में बटन मशरूम की खेती कर सकते हैं। राज्यपाल महोदय ने खुम्ब अनुसंधान निदेशालय में हो रहे अनुसंधान कार्यों की सराहना करते हुए कहा कि निदेशालय खुम्ब अनुसंधान पर बहुत अच्छा कार्य कर रहा है। उन्होंने खुम्ब की उत्पादन तकनीकियों का और अधिक प्रसार करने के लिये कहा ताकि मशरूम उत्पादन पूरे देश में हो सके। उन्होंने निदेशालय में पौधारोपण भी किया। भ्रमण के दौरान निदेशालय के वैज्ञानिकों के अलावा सोलन जिले के उपायुक्त श्री के.सी. चमन तथा अतिरिक्त पुलिस अधीक्षक डा. शिव कुमार उपस्थित रहे ।

all the questions asked by him. After this, Dr. Sharma showed the culture bank of the Directorate of Mushroom Research to the Hon'ble Governor, in which about 3500 cultures of mushrooms have been kept and electron microscope. Apart from this, he visited Cordyceps unit, spawn unit and also gave detailed information about the exhibition on mushroom techniques. The Governor showed great interest in Cordyceps mushroom. The Governor was also taken to the mushroom production rooms and he was very happy to see all kinds of mushrooms. A low cost mushroom unit was also shown in which button mushroom is being cultivated. Such units are very suitable for small farmers in which farmers can cultivate button mushroom in winter. Appreciating the research work being done in the Directorate of Mushroom Research, the Governor said that the Directorate is doing very good work on mushroom research. He asked for extension of mushroom production techniques so that mushroom production can be done in the whole country. He also planted saplings in the Directorate. During the visit, besides the scientists of the Directorate, Deputy Commissioner of Solan district, Shri K.C. Chaman and Additional Superintendent of Police Dr. Shiv Kumar were present.

चित्र 8.3 हिमाचल प्रदेश के माननीय राज्यपाल डॉ. बंडारू दत्तात्रेय का भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय में दौरा

Fig 8.3 Visit of honorable Governer of Himachal Pradesh Dr. Bandaru Dattareya at ICAR-DMR

संस्थान अनुसंधाान समिति की बैठक

29.02.2020, 13.03.2020, 20.04.2020, 17—18 जुलाई, 2020 और 04.12.2020 को डॉ वी.पी.शर्मा, निदेशक की अध्यक्षता में छह आईआरसी बैठकें आयोजित की गईं। संस्थान द्वारा वित्त पोषित अनुसंधान परियोजनाओं की प्रगति तथा नई परियोजनाओं के प्रस्ताव संबंधित वैज्ञानिकों द्वारा प्रस्तुत किए गए। इसके बाद तकनीकी कार्यक्रम की गहन चर्चा, मूल्यांकन और भविष्य के उन्मुखीकरण पर चर्चा की गई। इसके अलावा, गतिविधियों में तेजी लाने के लिए, महीने के प्रत्येक पहले शुक्रवार को मासिक समीक्षा बैठकें आयोजित की गई।

स्वतंत्रता दिवस (15.08.2020)

15 अगस्त, 2020 को भाकृअनुप—डीएमआर, सोलन के परिसर में स्वतंत्रता दिवस मनाया गया। निदेशक, डॉ. वी.पी. शर्मा, भाकृअनुप—खुम्ब अनुसंधान निदेशालय ने सभा को संबोधित किया। कार्यक्रम में समस्त स्टाफ सदस्यों ने भाग लिया।

Institute Research Committee Meeting

Six IRC meetings were held on 29.02.2020, 13.03.2020, 20.04.2020, 17th & 18th July, 2020 and 04.12.2020 under the Chairmanship of Dr. V.P. Sharma, Director. Progress of the ongoing Institute funded research projects and proposals for new projects were presented by concerned scientists. This was followed by thorough discussion, appraisal and future orientation of the technical programme. Further, to fast track activities, monthly review meetings were held at every first Fridays of the month.

Independence Day (15.08.2020)

The Independence Day was celebrated at the campus of ICAR-DMR, Solan on 15th August, 2020. The Director, Dr. V.P. Sharma, ICAR-DMR addressed the gathering. All the staff members attended the programme.

चित्र 8.4 स्वतंत्रता दिवस Fig 8.4 Independence day

हिंदी पखवाड़ा (14 - 28 सितम्बर, 2020)

कार्य स्थल पर हिंदी भाषा के प्रयोग को प्रोत्साहित करने के लिए 14 से 28 सितंबर, 2020 तक भाकृअनुप—डीएमआर में हिंदी पखवाड़ा मनाया गया। सप्ताह के दौरान विभिन्न गतिविधियों जैसे हिंदी निबंध लेखन प्रतियोगिता, हिंदी अनुवाद और हिंदी वाद—विवाद प्रतियोगिता आदि का आयोजन स्टाफ सदस्यों के बीच किया गया और विजेताओं को पुरस्कृत किया गया।

चित्र 8.5 हिन्दी पखवाड़ा Fig 8.5 Hindi Pakhwada

चित्र 8.7 राष्ट्रीय विज्ञान दिवस Fig 8.7 National Science Day

कृषि शिक्षा दिवस (03.12.2020)

3 दिसंबर, 2020 को आईसीएआर—डीएमआर, सोलन में कृषि शिक्षा दिवस मनाया गया जिसमें कृषि शिक्षा के महत्व के लिए सभी स्टाफ सदस्यों के बीच जागरूकता पैदा की गई। अधिक से अधिक युवाओं को कृषि की ओर आकर्षित करने पर जोर दिया गया।

राष्ट्रीय मशरूम दिवस का राष्ट्रीय किसान दिवस (23.12.2020)

दिवंगत प्रधानमंत्री चौधरी चरण सिंह के जन्मदिन के उपलक्ष्य में राष्ट्रीय खुम्ब दिवस—2020 दिनांक 23.12.2020 को

Hindi Pakhwada (14th -28th September, 2020)

Hindi pakhwada was celebrated at ICAR-DMR from 14th to 28th September, 2020 to encourage the use of Hindi language in the work place. Various activities like Hindi Essay writing competition, Hindi Translation and Hindi Debate competitions etc. were organized during the week among the staff members and the winners were awarded.

चित्र 8.6 राष्ट्रीय किसान दिवस Fig 8.6 National Kisan Diwas

चित्र 8.8 अंतर्राष्ट्रीय महिला दिवस Fig 8.8 International Women's Day

Agriculture Education Day (03.12.2020)

Agriculture Education Say was observed on 3rd December, 2020 at ICAR-DMR, Solan in which awareness was created among all the staff members for the importance of agriculture education. It was emphasised to attract more and more youth towards agriculture.

National Kisan Diwas of National Mushroom Day (23.12.2020)

To commemorate the birthday of late Prime Minister Chaudhary Charan Singh, National Mushroom Day-2020 was celebrated on the occasion of Kisan Diwas

भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में मनाया गया। इस वर्ष के जश्न का विषय खुम्ब को इम्यूनिटी बूस्टर था।

राष्ट्रीय विज्ञान दिवस (28.02.2020)

28 फरवरी, 2020 को भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में राष्ट्रीय विज्ञान दिवस मनाया गया, जिसका विषय ''लोगों के लिए विज्ञान और विज्ञान के लिए लोग'' था। इस अवसर पर एमआरडीएवी स्कूल, सोलन के लगभग 50 छात्रों ने निदेशालय का दौरा किया और मशरूम उत्पादन और प्रसंस्करण की विभिन्न गतिविधियों को दिखाया गया। कार्यक्रम के दौरान मशरूम की खेती की तकनीक पर वीडियो फिल्म भी दिखाई गई और छात्रों ने मशरूम के महत्व और उनकी खेती की तकनीक के बारे में जाना।

अंतर्राष्ट्रीय महिला दिवस

इस अवसर पर कृषि वैज्ञानिक भर्ती बोर्ड के सदस्य (पादप विज्ञान) डॉ. प्रणजीब के. चक्रवर्ती ने संस्थान का दौरा किया। डॉ. प्रणजीब के. चक्रवर्ती और डॉ. वी.पी. शर्मा, निदेशक, भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन ने सभी महिलाओं को बधाई दी और आधुनिक समाज में महिलाओं की भूमिका पर प्रकाश डाला। उन्होंने जोर देकर कहा कि कैसे मशक्तम महिला सशक्तिकरण के लिए सबसे अच्छे विकल्पों में से एक हो सकता है। डॉ. प्रणजीब के. चक्रवर्ती ने आईसीएआर—डीएमआर में किए गए शोध कार्य का भी अवलोकन किया।

चित्र 8.9 सतर्कता जागरूकता सप्ताह Fig 8.9 Vigilance Awareness week

सतर्कता जागरूकता सप्ताह

27 अक्टूबर से 02 नवंबर, 2020 के दौरान सतर्कता जागरूकता सप्ताह मनाया गया। इस वर्ष का विषय ''सतार्क भारत, समृद्ध भारत'' था। सप्ताह के दौरान विभिन्न कार्यक्रम जैसे at ICAR-DMR, Sollan on 23.12.2020. The theme of this years celebration was Mushroom as Immunity Booster.

National Science Day (28.02.2020)

National Science Day was celebrated at ICAR-DMR, Solan on 28th February, 2020 with the focus theme of "Science for people and people for science". Around 50 students from MRDAV school, Solan visited the Directorate on the occasion and were shown various activities of mushroom production and processing. The video film on mushroom cultivation technology was also shown during the event and the students learned about the importance of mushrooms and their cultivation technology.

International Women's Day (08.03.2020)

On this occasion Dr. Pranjib K. Chakrabarty, Agricultural Scientists Recruitment Board as Member (Plant Sciences) visited the institute. Dr. Pranjib K. Chakrabarty and Dr. V.P. Sharma, Director, ICAR-DMR, Solan congratulated all the women and highlighted the role of women in modern society. He stressed how mushroom can be one of the best alternative for women empowerment. Dr. Pranjib K. Chakrabarty also observes the research work conducted in ICAR-DMR.

चित्र 8.10 सांप्रदायिक सद्भाव सप्ताह Fig 8.10 Communal Harmony week

Vigilance Awareness week

Vigilance awareness week was observed during 27th October, 2020 to 02nd November, 2020. The theme of this year was "Satark Bharat, Samriddh Bharat". Various programmes like

वाद—विवाद प्रतियोगिता, कार्यशाला, निबंध लेखन आदि का आयोजन किया गया और निदेशालय के सभी स्टाफ सदस्यों ने भी सत्यनिष्ठा प्रतिज्ञा ली और ऑनलाइन प्रमाण पत्र प्राप्त किया।

सांप्रदायिक सद्भाव सप्ताह

19 से 25 नवंबर, 2020 के दौरान सांप्रदायिक सद्भाव सप्ताह मनाया गया। इस सप्ताह के दौरान निदेशालय में विभिन्न गतिविधियों का आयोजन किया गया। ध्वज दिवस पर सभी स्टाफ सदस्यों ने नेशनल फाउंडेशन फॉर कम्युनल हार्मनी फंड के लिए योगदान दिया और इसे सचिव, एनएफएफसीएच को प्रस्तुत किया गया।

स्वच्छता ही सेवा

स्वच्छता ही सेवा पखवाड़ा 16 से 31 दिसंबर 2020 तक भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन में मनाया गया। लोगों के दैनिक जीवन में स्वच्छता के प्रति जागरूकता पैदा करने के लिए परिसर में और परिसर के बाहर विभिन्न कार्यक्रम आयोजित किए गए।

debate competition, Workshop, Essay writing etc. were organized during the week and all the staff members of the Directorate also took Integrity pledge and received certificate online.

Communal Harmony week

Communal Harmony week was observed during 19-25th November, 2020. During this week various activities were organized in the Directorate. All staff members contributed for the National Foundation for Communal Harmony fund on the flag day and it was submitted to Secretary, NFFCH.

Swachhata Hi Sewa

Swachhata hi sewa pakhwada was celebrated with effect from 16th December to 31st December 2020 at ICAR-DMR, Solan. Various programmes were organized on and off the campus for creating awareness among masses for cleanliness in their day to day life.

चित्र 8.11 स्वच्छता ही सेवा Fig 8.11 Swachhata Hi Sewa

मेरा गांव मेरा गौरव

माननीय प्रधान मंत्री द्वारा 'मेरा गांव मेरा गौरव' योजना भाकृअनुप के 87वें स्थापना दिवस के दौरान शुरू की गई थी जिसमे सभी वैज्ञानिकों को गांवों को गोद लेने का अहवाहन किया गया था। और गोद लिए गए गांवों के किसानों के संपर्क में रहकर विभिन्न तकनीकों को प्रयोगशाला से जमीन पर सफल बनाने का प्रयास किया जाता है। इस योजना को लागू करने के लिए

Mera Gaon, Mera Gaurav Scheme

'Mera Gaon Mera Gaurav' scheme launched by Hon'ble Prime Minister during the 87th Foundation day of ICAR stipulate all the scientists to adopt the villages and remain in touch with farmers of the adopted villages to hasten the lab to land process. To implement the scheme from the ICAR-Directorate of Mushroom Research, two teams were constituted

ANNUAL REPORT

भाकृअनुप—खुम्ब अनुसंधान निदेशालय की ओर से दो टीमों का गठन किया गया था जिसमें प्रत्येक टीम में 4 वैज्ञानिक शामिल थे। योजना के कार्यान्वयन के लिए सोलन के आसपास के बारह गांवों की पहचान की गई। किसानों की समस्या और कृषि संबंधी समस्याओं की पहचान करने और विशेषज्ञों के परामर्श से समाधान प्रस्तुत करने के लिए विभिन्न गांवों में मासिक दौरा, गोष्ठी, बैठकें आयोजित की गईं।

consisting 4 scientists in each team. Twelve villages around Solan were identified for implementation of the scheme. Monthly visits, *goshthis*, meetings were conducted in different villages to identify the general and agriculture related problems of the farmers and offer solutions by consulting with the experts.

9. समिति की बैठकें Committee Meetings

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, सोलन (हि॰प्र॰) में गठित अनुसंधान सलाहाकार समिति की बैठक दिनांक 23 जुलाई, 2020 को हुई। अनुसंधान सलाहाकार समिति के सदस्य 2019 – 2022 अवधि के लिए निम्नलिखित हैं:

क्र.सं.	नाम व पता	पदनाम
1.	डॉ. जगमोहन सिंह, पूर्व कुलपति, औद्यानिकी एवं वानिकी विश्वविद्यालय, नौणी, गाँव कोठो, समीप जटोली मंदिर, तहसील व जिला सोलन (हि0प्र0)।	अध्यक्ष
2.	डॉ. बी.के. पांडे, प्रधान वैज्ञानिक (पादप रोग विज्ञान), बागवानी विज्ञान विभाग, भारतीय कृषि अनुसंधान परिषद, कृषि अनुसंधान भवन—॥, पूसा, नई दिल्ली — 110 012	सदस्य
3.	डॉ. एन.एस.अत्री, पूर्व प्रोफेसर, वनस्पति विज्ञान विभाग, पंजाबी विश्वविद्यालय, पटियाला (पंजाब) — 147002	सदस्य
4.	डॉ. के. बी. माहापात्रा, कृषि संकाय, जीआईबीएस, गुनुपुर, रायगड़ा — 765022	सदस्य
5.	डॉ. के.के. जनारदन, प्रोफेसर, आमला केंसर अनुसंधान केन्द्र, आमला नगर, त्रिशुर — 680555	सदस्य
6.	डॉ. शम्मी कपूर, डीन, बुनियादी विज्ञान व मानविकी का महाविद्यालय, पंजाब कृषि विश्वविद्यालय, लुधियाना (पंजाब) — 141004	सदस्य
7.	डॉ. वी.पी. शर्मा, निदेशक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, स्रोलन (हि०प्र०) — 173213	सदस्य
8.	श्री विनोद ठाकुर, मैसर्ज ठाकुर मशरूम फार्म, गांव व डा. चम्बाघाट, सोलन (हि०प्र०) — 173213	सदस्य
9.	श्री राजेश ठाकुर, गांव बेर की सेर, डा. चम्बाघाट, सोलन (हि०प्र०) — 173213	सदस्य
10.	डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक, भाकृअनुप—खुम्ब अनसुधान निदेशालय, सोलन (हि0प्र0)	सदस्य सचिव

Meeting of Research Advisory Committee (RAC) of ICAR-DMR, Solan (H.P.) was held on $23^{\rm rd}$ July, 2020. The Members of RAC were as under for the period 2019-2022.

S.No.	Name & Address	Designation
1.	Dr. Jagmohan Singh,	Chairman
	Former Vice Chancellor, Dr. YSP UHF, Nauni, Village Kotho, Near	
	Jatoli Temple, Tehsil & District Solan (H.P.)	

2.	Dr. B.K. Pandey, Asstt. Director General (Hort.Sci. Division-1), Indian Council of Agricultural Research, KAB-II, Pusa, New Delhi – 110 012.	Member
3.	Dr. N.S. Atri, Ex-Professor, Department of Botany, Punjabi University, Patiala (Punjab) – 147002	Member
4.	Dr. K.B. Mohapatra, Faculty of Agriculture GIBS, Gunupur, Rayagada-765022	Member
5.	Dr. K.K. Janardhanan, Professor, Amla Cancer Research Centre, Amala Nagar, Thrissur (Kerala) – 680555	Member
6.	Dr. Shammi Kapoor, Dean, College of Basic Sciences & Humanities, Punjab University, Ludhiana (Punjab) – 141004.	Member
7.	Dr. V.P. Sharma Director, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (HP) – 1732113.	Member
8.	Sh. Vinod Thakur, M/s. Thakur Mushroom Farm, V&PO Chambaghat, Tehsil & Distt. Solan (HP) – 173213.	Member
9.	Sh. Rajesh Thakur, Village Ber-Ki-Ser, PO Chambaghat, Tehsil & Distt. Solan (HP) – 173213.	Member
10.	Dr. B.L. Attri, Principal Scientist, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) – 173213.	Member Secretary

भाकृअनुप – खुम्ब अनुसंधाान निदेशालय, सोलन (हि॰प्र॰) की संस्थान अनुसंधाान समिति की बैठक दिनांक 29. 02.2020, 13.03.2020, 20.04.2020, 17 व 18 जुलाई, 2020 तथा 04.12.2020 को हुई। समिति के सदस्य निम्नलिखित थे:

क्र.सं.	नाम	पदनाम
1.	डॉ. वी.पी. शर्मा, निदेशक	अध्यक्ष
2.	डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक	सदस्य सचिव
3.	डॉ. सतीश कुमार, प्रधान वैज्ञानिक	सदस्य

4	डॉ. श्वेत कमल, प्रधान वैज्ञानिक	ਗਟਰਸ
4.	७।. १५(। कमल, प्रधान पञ्चानिक	सदस्य
5.	डॉ. योगेश गौतम, वरिष्ठ वैज्ञानिक	सदस्य
6.	डॉ. अनिल कुमार, वैज्ञानिक	सदस्य
7.	श्री सुधीर कुमार अन्नेपु, वैज्ञानिक	सदस्य – अध्ययन अवकाश पर
8.	डॉ. अनुराधा श्रीवास्तव, वैज्ञानिक	सदस्य
9.	डॉ. अनुपम बड, वैज्ञानिक	सदस्य
10.	डॉ. मनोज नाथ, वैज्ञानिक	सदस्य
11.	श्री राकेश कुमार बैरवा, वैज्ञानिक	सदस्य
12.	डॉ. अनारसे दत्तात्रय, वैज्ञानिक	सदस्य

Meetings of Institute Research Committee (IRC) of ICAR-DMR, Solan meetings were held on 29.02.2020, 13.03.2020, 20.04.2020, 17-18.07.2020 and 04.12.2020 and the members of the IRC are as follows:

S.No.	Name	Designation
1.	Dr. V.P. Sharma, Director	Chairman
2.	Dr. B.L. Attri, Principal Scientist	Member Secretary
3.	Dr. Satish Kumar, Principal Scientist	Member
4.	Dr. Shwet Kamal, Principal Scientist	Member
5.	Dr. Yogesh Gautam, Senior Scientist	Member
6.	Dr. Anil Kumar, Scientist	Member
7.	Mr. Sudheer Kumar Annepu, Scientist	Member – On study leave
8.	Dr. Anuradha Srivastava, Scientist	Member
9.	Dr. Anupam Barh, Scientist	Member
10.	Dr. Manoj Nath, Scientist	Member
11.	Mr. Rakesh Kumar Bairwa	Member
12.	Dr. Anarase Dattatray Arjun	Scientist

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, सोलन (हि॰प्र॰) में गठित अनुसंधान प्राथमिकता सेटिंग, निगरानी और मूल्याकंन सैल:

क्र.सं.	नाम	पदनाम
1.	डॉ. बी. एल. अत्री	प्रधान वैज्ञानिक / अध्यक्ष पीएमई सैल
2.	डॉ. सतीश कुमार	प्रधान वैज्ञानिक / सह—अध्यक्ष
3.	डॉ. अनिल कुमार	वैज्ञानिक / सदस्य सचिव
4.	डॉ. अनुराधा श्रीवास्तव	वैज्ञानिक / सदस्य
5.	श्री दीप कुमार ठाकुर	आशुलिपिक / संबंधित सहायक (पीएमई सैल)

Meetings of Research Priority Setting & Monitoring (PME) Committees constituted at ICAR-DMR, Solan (H.P.).

S.No.	Name	Designation
1.	Dr. B.L. Attri, Principal Scientist	Chairman
2.	Dr. Satish Kumar, Principal Scientist	Member, Co-Chairman
3.	Dr. Anil Kumar, Scientist	Member Secretary
4.	Dr. Anuradha Srivastava, Scientist	Member
5.	Mr. Deep Kumar Thakur, Steno	Dealing Assistant (PME Cell)

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, सोलन (हि॰प्र॰) के वैज्ञानिकों के लिए सेमिनार दिनांक 13.01.2020 तथा 19.02.2020 को आयोजित किया गया जिसमें निम्नलिखित वैज्ञानिकों ने भाग लिया:

क्रम संख्या	नाम	पदनाम	शीर्षक
1.	डॉ. वी.पी. शर्मा	निदेशक	
2.	डॉ. बी.एल. अत्री	प्रधान वैज्ञानिक	
3.	डॉ. सतीश कुमार	प्रधान वैज्ञानिक	
4.	डॉ. श्वेत कमल	प्रधान वैज्ञानिक	
5.	डॉ. योगेश गौतम	वरिष्ठ वैज्ञानिक	मशरूम की खेती सहित विभिन्न क्षेत्रों में 'आर्टिफिशियल इंटेलीजेंस एप्लीकेशन'
6.	डॉ. अनिल कुमार	वैज्ञानिक	ट्राईकोडर्मा स्पीसीजः फसल पौधों की बीमारियों का इलाज और मशरूम के लिए अभिशाप
7.	श्री सुधीर कुमार अन्नेपु	वैज्ञानिक	अध्ययन अवकाश पर।
8.	डॉ. अनुराधा श्रीवास्तव	वैज्ञानिक	
9.	डॉ. अनुपम बड़	वैज्ञानिक	
10.	डॉ. मनोज नाथ	वैज्ञानिक	
11.	श्री राकेश कुमार बैरवा	वैज्ञानिक	

Seminars for Scientists of ICAR-DMR, Solan (H.P.) were held on 13.01.2020 & 19.02.2020 and the following scientists attended these Seminars:

S.No.	Name of employee	Designation	Торіс
1.	Dr. V.P. Sharma	Director	
2.	Dr. B.L. Attri	Principal Scientist	
3.	Dr. Satish Kumar	Principal Scientist	

4.	Dr. Shwet Kamal	Principal Scientist	
5.	Dr. Yogesh Gautam	Senior Scientist	'Application of artificial intelligence' in various fields including mushroom crop.
6.	Dr. Anil Kumar	Scientist	'Trichoderma specis: a cure for crop plant diseases and curse for Mushroom'
7.	Dr. Anuradhan Srivastava	Scientist	
8.	Dr. Sudheer Kumar Annepu	Scientist	On study leave.
9.	Dr. Anupam Barh	Scientist	
10.	Dr. Manoj Nath	Scientist	
11.	Mr. Rakesh Kumar Bairwa	Scientist	

भाकृअनुप — खुम्ब अनुसंधान निदेशालय, सोलन के वैज्ञानिकों की मासिक योजना व समीक्षा बैठक दिनांक 06. 02.2020, 07.03.2020, 15.04.2020, 05.06.2020, 03.07.2020, 04.09.2020, 16.10.2020 तथा 05.11.2020 को हुई। इन बैठकों में निम्निलिखित वैज्ञानिकों ने भाग लिया:

क्रम संख्या	नाम	पदनाम
1.	डॉ. वी.पी. शर्मा	निदेशक
2.	डॉ. बी.एल. अत्री	प्रधान वैज्ञानिक
3.	डॉ. सतीश कुमार	प्रधान वैज्ञानिक
4.	डॉ. श्वेत कमल	प्रधान वैज्ञानिक
5.	डॉ. योगेश गौतम	वरिष्ठ वैज्ञानिक
6.	डॉ. अनिल कुमार	वैज्ञानिक
7.	श्री सुधीर कुमार अन्नेपु	वैज्ञानिक — अध्ययन अवकाश पर।
8.	डॉ. अनुराधा श्रीवास्तव	वैज्ञानिक
9.	डॉ. अनुपम बड़	वैज्ञानिक
10.	डॉ. मनोज नाथ	वैज्ञानिक
11.	श्री राकेश कुमार बैरवा	वैज्ञानिक
12.	डॉ. अनारसे दत्तात्रय, वैज्ञानिक	वैज्ञानिक

Monthly Planning & Review Meetings of the Scientists of ICAR-DMR, Solan were held on 06.02.2020, 07.03.2020, 15.04.2020, 05.06.2020, 03.07.2020, 04.09.2020, 16.10.2020 and 05.11.2020 and the following scientists attend the meetings:

S.No.	Name of employee	Designation	
1.	Dr. V.P. Sharma	Director	

2.	Dr. B.L. Attri	Principal Scientist
3.	Dr. Satish Kumar	Principal Scientist
4.	Dr. Shwet Kamal	Principal Scientist
5.	Dr. Yogesh Gautam	Senior Scientist
6.	Dr. Anil Kumar	Scientist
7.	Mr. Sudheer Kumar Annepu	Scientist – On study leave
8.	Dr. Anuradhan Srivastava	Scientist
9.	Dr. Anupam Barh	Scientist
10.	Dr. Manoj Nath	Scientist
11.	Mr. Rakesh Kumar Bairwa	Scientist
12.	Dr. Anarase Dattatray Arjun	Scientist

भाकृअनुप – खुम्ब अनुसंधान निदेशालय, सोलन (हि॰प्र॰) के वैज्ञानिकों की बैठकें दिनांक 12.06.2020, 14.08. 2020 तथा 25.09.2020 को हुई। इस बैठक में निम्नलिखित वैज्ञानिकों ने भाग लिया:

क्रम संख्या	नाम	पदनाम		
1.	डॉ. वी.पी. शर्मा	निदेशक		
2.	डॉ. बी.एल. अत्री	प्रधान वैज्ञानिक		
3.	डॉ. सतीश कुमार	प्रधान वैज्ञानिक		
4.	डॉ. श्वेत कमल	प्रधान वैज्ञानिक		
5.	डॉ. योगेश गौतम	वरिष्ठ वैज्ञानिक		
6.	डॉ. अनिल कुमार	वैज्ञानिक		
7.	श्री सुधीर कुमार अन्नेपु	वैज्ञानिक – अध्ययन अवकाश पर।		
8.	डॉ. अनुराधा श्रीवास्तव	वैज्ञानिक		
9.	डॉ. अनुपम बड़	वैज्ञानिक		
10.	डॉ. मनोज नाथ	वैज्ञानिक		
11.	श्री राकेश कुमार बैरवा	वैज्ञानिक		

Meetings of scientists of ICAR-DMR, Solan were held on 12.06.2020, 14.08.2020 and 25.09.2020 the following scientists attended these meetings:

S.No.	Name of employee	Designation		
1.	Dr. V.P. Sharma	Director		
2.	Dr. B.L. Attri	Principal Scientist		
3.	Dr. Satish Kumar	Principal Scientist		
4.	Dr. Shwet Kamal	Principal Scientist		
5.	Dr. Yogesh Gautam	Senior Scientist		
6.	Dr. Anil Kumar	Scientist		
7.	Mr. Sudheer Kumar Annepu	Scientist – On study leave		
8.	Dr. Anuradhan Srivastava	Scientist		
9.	Dr. Anupam Barh	Scientist		
10.	Dr. Manoj Nath	Scientist		
11.	Mr. Rakesh Kumar Bairwa	Scientist		

वैज्ञानिकों – तकनीकी कार्मिकों की बैठकें दिनांक 17.01.2020, 20.02.2020 तथा 25.09.2020 को आयोजित की गई जिसमें निम्नलिखित वैज्ञानिकों व तकनीकी कार्मिकों ने भाग लिया।

क्र.सं.	नाम	पदनाम		
	वैज्ञानिक			
1.	डॉ. वी.पी. शर्मा	निदेशक		
2.	डॉ. बी.एल. अत्री	प्रधान वैज्ञानिक		
3.	डॉ. सतीश कुमार	प्रधान वैज्ञानिक		
4.	डॉ. श्वेत कमल	प्रधान वैज्ञानिक		
5.	डॉ. योगेश गौतम	प्रधान वैज्ञानिक		
6.	डॉ. अनिल कुमार	वरिष्ठ वैज्ञानिक		
7.	डॉ. अनुराधा श्रीवास्तव	वैज्ञानिक		
8.	डॉ. सुधीर कुमार अन्नेपु	वैज्ञानिक — अध्ययन अवकाश पर		
9.	डॉ. अनुपम बड़	वैज्ञानिक		
10.	डॉ. मनोज नाथ	वैज्ञानिक		
11.	श्री राकेश कुमार बैरवा	वैज्ञानिक		
	तकनीकी			
12.	श्री सुनील वर्मा	सहायक मुख्य तकनीकी अधिकारी (फॉर्म)		
13.	श्रीमति रीता	सहायक मुख्य तकनीकी अधिकारी (पुस्त.)		
14.	श्रीमती शैलजा वर्मा	सहायक मुख्य तकनीकी अधिकारी (कला)		
15.	श्री ज्ञान चंद	तकनीकी अधिकारी (फॉर्म)		
16.	श्री डाला राम	तकनीकी अधिकारी (वाहन)		
17.	श्री राम लाल	तकनीकी अधिकारी (वाहन)		
18.	श्री दीपक शर्मा	तकनीकी अधिकारी (कम्पयुटर)		
19.	श्री जीत राम	वरिष्ठ तकनीकी सहायक (फॉर्म)		
20.	श्री राम स्वरूप	वरिष्ठ तकनीकी सहायक (फॉर्म)		
21.	श्री गुलेर सिंह	वरिष्ठ तकनीकी सहायक (विद्युत)		
22.	डॉ. वृषाली प्रांजल देशमुख	तकनीकी सहायक (फॉर्म)		
23.	श्री राज कुमार	तकनीकी सहायक (फॉर्म)		

Scientists-Technical Personnel meetings were held on 17.01.2020, 20.02.2020 and 25.09.2020 the Members were as under:

Sr.No.	Name of employee	Designation	
	Scientific		
1.	Dr. V.P. Sharma	Director	
2.	Dr. B.L. Attri	Principal Scientist	
3.	Dr. Satish Kumar	Principal Scientist	
4.	Dr. Shwet Kamal	Principal Scientist	
5.	Dr. Yogesh Gautam	Senior Scientist	
6.	Dr. Anil Kumar	Scientist	
7.	Mr. Sudheer Kumar Annepu	Scientist—On study leave	

8.	Dr. Anuradhan Srivastava	Scientist		
9.	Dr. Anupam Barh	Scientist		
10.	Dr. Manoj Nath	Scientist		
11.	Sh. Rakesh Kumar Bairwa	Scientist		
	Technica	ıl		
12.	Sh. Sunil Verma	Astt. Chief Technical Officer (Farm)		
13.	Smt. Reeta	Astt. Chief Technical Officer (Lib)		
14.	Smt. Shailja Verma	Asstt. ChiefTechnical Officer (Art)		
15.	Sh. Gian Chand	Technical Officer (Farm)		
16.	Sh. Dala Ram	Technical Officer (Vehicle)		
17.	Sh. Ram Lal	Technical Officer (Vehicle)		
18.	Sh. Deepak Sharma	Technical Officer (Computer)		
19.	Sh. Jeet Ram	Senior Technical Assistant (Farm)		
20.	Sh. Ram Swaroop	Senior Technical Assistant (Farm)		
21.	Sh. Guler Singh Rana	Senior Technical Assistant (Electrician)		
22.	Dr. Vrushali Pranjal Deshmukh	Technical Assistant		
23.	Sh. Raj Kumar	Technical Assistant (Farm)		

Meetings of Grievance Committee held on 28.02.2020, 27.05.2020, 02.09.2020 and 18.12.2020 Elected members of the grievance committee

SN	Name & designation	Category	Capacity	
1	Sh. Rakesh Bairwa, Scientist	Scientific	Member	
2	Sh. Dharam Dass, UDC	Administrative	Member	
3	Sh.Jeet Ram, Sr. Technical Asstt.	Technical	Member	
4	Sh.Ajeet Kumar, SSS	Skilled Support Staff	Member	

Nominated office side members of the grievance committee

SN	Name & designation	Category	Capacity
1	Dr.V.P. Sharma	Director	Chairman
2	Dr.B.L. Attri, Principal Scientist	Scientific	Member
3	Dr.Anuradha Srivastava, Scientist	Scientific	Member
4	Sh. H.N. Sharma, Administrative Officer	Administrative	Member
5	Asstt. Finance & Accounts Officer	Audit	Member

10. मानव संसाधन विकास Human Resource Development

प्रशिक्षण : -वैज्ञानिक कर्मचारी :

- डॉ. वी.पी. शर्मा, निदेशक, ने भारतीय फाईटोपैथेलॉजी सोसाईटी 7वां अंतर्राष्ट्रीय सम्मेलन 'संयुक्त राष्ट्र के सतत विकास लक्ष्यों को प्राप्त करने में फाइटोपैथोलॉजी' विषय पर दिनांक 16–20 जनवरी, 2020 को नई दिल्ली में उनके आमंत्रित व्याख्यान उनके सार (एबस्ट्रेक्ट) जिसका शीर्षक 'मशरूम उद्योग में विकासः उत्पादन, खपत व विपणन पैटर्न' में भाग लिया।
- 2. डॉ. वी.पी. शर्मा, निदेशक, ने ''कृषि अनुसंधान व शिक्षा में भारत में बौद्धिक संपदा अधिकारों व बौद्धिक संपदा' पर वर्चुअल वर्कशॉप — प्रशिक्षण कार्यक्रम में सितम्बर, 12—28, 2020 के दौरान भाग लिया। इस कार्यक्रम को संयुक्त रूप से 'राष्ट्रीय कृषि उच्च शिक्षा परियोजना तथा संपदा अधिकारों व बौद्धिक संपदा व प्रौद्यौगिकी प्रबंधन, भारतीय कृषि अनुसंधान परिषद मुख्यालय की इकाई, पूसा, नई दिल्ली द्वारा आयोजित किया गया।
- डॉ. बी.एल. अत्री, प्रधान वैज्ञानिक, द्वारा नेतृत्व विकास पर प्रबंधन विकास कार्यक्रम (पूर्व आर एम पी कार्यक्रम) में दिनांक 08–19 दिसम्बर, 2020 तक भाकृअनुप–राष्ट्रीय कृषि अनुसंधान प्रबंध अकादमी, हैदराबाद, तेलंगाणा में वर्चुअल भाग लिया व सफलतापूर्वक पूर्ण किया।
- 4. डॉ. सतीश कुमार, प्रधान वैज्ञानिक, ने ''कृषि अनुसंधान व शिक्षा में भारत में बौद्धिक संपदा अधिकारों व बौद्धिक संपदा' पर वर्चुअल वर्कशॉप — प्रशिक्षण कार्यक्रम में सितम्बर, 12—28, 2020 के दौरान भाग लिया। इस कार्यक्रम को संयुक्त रूप से 'राष्ट्रीय कृषि उच्च शिक्षा परियोजना तथा संपदा अधिकारों व बौद्धिक संपदा व प्रौद्यौगिकी प्रबंधन, भारतीय कृषि अनुसंधान मुख्यालय की इकाई, पूसा, नई दिल्ली द्वारा आयोजित किया गया।
- डॉ. अनारसे दत्तात्रे अर्जुन, वैज्ञानिक, द्वारा तीन महीने के प्रोफेसशनल अटैचमेंट प्रशिक्षण दिनांक 23.07.2020 से 22. 10.2020 तक भाकृअनुप—केन्द्रीय कृषि अभियांत्रिकी संस्थान, भोपाल (मध्य प्रदेश) में भाग लिया।
- 6. डॉ मनोज नाथ ने 15 सितंबर 2020 को टेलर और फ्रांसिस ग्रुप द्वारा आयोजित ''ए सेशन ऑन एक्सेसिंग टेलर एंड फ्रांसिस जर्नल्स'' नामक एक वेबिनार में भाग लिया।

Trainings and webinars

Scientific Staff:

- 1. Dr. V.P. Sharma, Director, has attended the 7th International Conference on "Phytopathology in Achieving UN Sustainable Development Goals" at New Delhi during 16-20 January, 2020 and devliered invited Lecture on his abstract entitled "Development in Mushroom Industry: production, consumption and marketing patterns"
- 2. Dr. V.P. Sharma, Director, has participated in Virtual Workshop cum training programme on "Intellectual Property Rights in Agricultural Research & Education in India" during September, 12-28, 2020 jointly organized by National Agricultural Higher Education Project (NAHEP) and Intellectual Property & Technology Management (IP&TM) unit of ICAR Headquarters, Pusa, New Delhi.
- 3. Dr. B.L. Attri, Principal Scientist, has successfully completed the Online Management Development Programme on Leadership Developmnt (a pre-RMP programme) organized at ICAR-NAARM, Hyderabad during 08-19 December, 2020.
- 4. Dr. Satish Kumar, Principal Scientist, has participated in Virtual Workshop cum training programme on "Intellectual Property Rights in Agricultural Research & Education in India" during September, 12-28, 2020 jointly organized by National Agricultural Higher Education Project (NAHEP) and Intellectual Property & Technology Management (IP&TM) unit of ICAR Headquarters, Pusa, New Delhi.
- 5. Dr. Anarase Duttatray Arjun, Scientist completed three months professional attachment training for three months w.e.f. 23.07.2020 to 22.10.2020 at ICAR-Central Institute of Agriculture, Bhopal (M.P.).
- 6. Dr Manoj Nath attended a webinar on 15 Sept 2020 entitled "A session on accessing Taylor and Francis journals" organized by Taylor and Francis Group.

ANNUAL REPORT

प्रशासन कार्मिक:

1. श्री दीप कुमार ठाकुर, आशुलिपिक (ग्रेड—III) ने दिनांक 27—31 जनवरी, 2020 तक भाकृअनुप संस्थानों व मुख्यालय के केन्द्रीय संयुक्त कर्मचारी परिषद के सदस्यों के लिए क्षमता निर्माण प्रशिक्षण कार्यक्रम जिसे डिजाईन व विकसित भाकृअनुप— राष्ट्रीय कृषि अनुसंधान प्रबंध अकादमी, हैदराबाद द्वारा किया गया था, में भाकृअनुप—राकृअनुप्रअ, हैदराबाद में भाग लिया।

Administration Personnel

1. Sh. Deep Kumar Thakur, Stenographer (Grade-III) participated in the Capacity Building Training Programme for CJSC Members of ICAR Institites/HQs at ICAR-NAARM, Hyderabad w.e.f. 27-31 January, 2020 at Hyderabad which was designed and developed by ICAR-NAARM, Hyderabad.

समाचार पत्रों में ख्रम्ब अनुसंधान निदेशालय 11. **DMR** in Newspapers

मशरूम की खेती को अपनाकर बढाएं आय

हिमाचल में खुंब उत्पादन के लिए अनुकूल वातावरण : दतात्रेय

· ile tente es paties e New York-Steel

Description of the

ten agu enin è se la resa ter an interest it weren all about cours her op opter hibers op over he signed is feet it glad it four-heat and it us महिल करों हुए गरी। शंस्तवत ने क्या ने त्रेमका में सुन प्रमान के तिए सर्वत A page more recent of the size of larger more recent of the size of larger more recent of the size of the second militial size of the size of the size of the more to these of the size of the second of the size of the second of the size of the size of the second of the size of the second of the size of the तुष को जीन दिनों एवं एक्के उनका के बार में जानारी दिन्हों का पूजा, तीर विकास सम्मित हो की।

cells and to wil popp on the ab-ries it faces of any of drop with a er digital of the new other appears

ध्यान क्षेत्र आध्यम का किया दौरा

Males E Bit of Amount of unphose it was A up man at littles of stilled of large would goe of comme a charactery in gas, it sats and the can do now in to A little safe you A John south a can the in the Amount per of do it can not be an one and the can any the state of the do and it offset at most one of an age to the state of one, after give after it to per out, so agree after the state of an owner the after th

ting it was it will me in go it love it spire, this is then it would not always up all and it should not it in the spire of it is the spire of its in the spire of the spire of

खुंब अनुसंधान निदेशालय ने स्वच्छता पर जगाया अलख

Solan research centre develops ready-to-grow mushroom kits

मशरूम उत्पादन से आर्थिकी मजबूत कर सकते हैं किसान

हिमाचल दस्तक एक मुलाकात

विराद में नंबर एक महारूम उत्पादक बनने की क्षमता रखने वाला भारत आज सालाना दो लाख टन महारूम का उत्पादन कर रहा है। बीते पांच बाल में देश का महारूप अधादन दो पुना तेजी से बढ़ चुड़ा है। भारत की लखतार बढ़ती अधादक क्षमता की एक आग बजह देश का एकमात खुब अनुसाधन निर्देशालक केल्माअर) सीलन भी माना गया है। अखिर रचा है इस अनुसन्तन केंद्र की धमताई है इसको लेकर निर्देशक विद्याश वीवी शर्मा से इसके पत्रकार हेमंत शर्मा से बातवीत के कुछ अंश_

 ग्रेरम्प्रार मात्रसम् उत्यवन को बढात देने की दिशा में क्या प्रवास कर रहा है?

ग्रीपमञ्जर बात शटाके महरूम को 45 दिनों में तेवार करने का नहा लिका इजाद किया गया है. जिसका निदेशालय द्वारा पेटेंट भी करवाया गया है। आम तीर पर यह प्रशासम तैयार करने में 90 तित का राज्य लंगल है। इस क्यानीक को रेख के फिनाचे के नाथ नाड़ा किया जा रहा है, जिसका बशस्य अस्तर्भ में लाभकारी प्रथम देखने की (Application)

 मात्रम की किस्स बटन, मुखब्र व विश्रत है। भारत के बाजारों में नजर आते हैं। मशस्य की अन्य किसमी के बाजार में एवलित न होने के हवा कारण है?

रिका में बाप कर कियम की मशरूम ही बाहार में क्षा अधिक देवी जाती है। अन्य कियारी के मशासन को अधिक पसद नहीं किया जाता है।

 मुख्यी महासम्ब पर अनुसाधान किया प्रकार अभी बढ़ा है?

मुखी पर इन दिने स्टापक अनुस्थान वस रहा है. दिसके नहीते सर्व एक देखने को स्थिते । अब गुर्खी की भी घरों में उत्तरप्त जराया।

 विमावत नशसम उत्पदन में अन्य करतो ते पीछे कर्या रहा देश

डिमाधल में 15 हज़ार ट्रन बड़ाकम का सरकता

अन्यादन हो रहा है। पहोती रामा हरियाण अखादन में व्हाने स्थान पर है अवकि क्षणावत का क्षत्रका सकत अधा है। हिम्हधान में मारासम जरातक के लिए करत यात बार से काराय जाता है। इस करण इसकी लागत भी अन्य शाली के पुरामते ज्याप है। हिमादान में मारासम् उत्पादन को यह लगत बहुत प्रथमित करती है।

रिक्रमें बाल 19 केंग्र किया में की प्रशिक्षण देने के हिन्द सन्दर्भ गए, जिसमें 1500 की मतस्थ अराज्यन की जनकारी दी गई। इसके असारा शास्त्रम मेल के नावम से कर राजा लेगी की शासम् उत्पादन की जानकारी के गई है।

● किछन वार्डन बात्रसम देग अभी तक विश्वधार की लैंद से बारर नहीं निकल सकर, इसके दया शहर है?

रीएमआर मात्रसम् अधादन बोटर व रिक्रम केंद्र स्रोतने बी तेवती में है?

> pularit allo anno tred ban आनुसम्बन तक सीनित है। दिक्य केंद्र सेनी कोई ध्येतन प्रभी नहीं बनी है।

मालम की किन इज्यतियों पर शीथ कर

लेंश में बारास्थ्य की बटन कहनटर पेडिस्टा. प्रशास, मिलारे, अपि, काल कावकरा, छारीयसिन्द, हरिस्तिया, मैक्टो लेकबेटा, स्टेनर,

इसरिया, क्षोडिकेच्य, नुक्की, क्षोरिक्स प्रजातियो ats befange on the gr

 डिमावत के जचती में पाई जाने वाली विकेती नशस्त्र ही इ.स्रीयों पर अस्ति हया

डिम्बन्त में बरसात के दिनों में अपदानर जाती विकेली मालस्य उपती है। इनकी परका सगरार से रही है। हीएएआर की एक विश्वब गाएसम रेल्ड ऑक इंडिया क जल्द स्थितन किया जा नह है। इसके भारत में पाई जाने वाली सभी एकरर की जाने वाली मालम का ध्येश मिलेगा। इसके अञ्चल ही-जर्मित प्रोर्टल पर भी क्रिकेट व प्राप्ते **अ**ने वाले पशरूम की जानकारी दी गई है।

 अनुसंख्य को लेकर प्रक्रिय की क्या केल्स है?

बोलन की इस लेब से इर बाल मालन के बार में सब ना स्पेतिन्य तैयात हो रहे हैं।

वेशानिक व अन्य स्टब्स की क्या निर्धाते है?

वीरमञ्जार में वैश्वारिकों के कुल 16 वह है, जिसमें र्श स्ट्रज पर रिका सत रहे हैं। अन्य न्ट्राक व्योत्तव **एवं के अनुसद उपलब्ध है** ।

Governor advises farmers to adopt mushroom farming to raise income

Asks scientists to spread awareness about its new varieties

Transport Spart Service

BOLAN, SHIVINGS PR

Governor Borders Datto teen help said that edipt ing multisen family entennely mid telp demons. No enhance their income. He was addressing executed of the Directorale of Madeson Research of Churchighet bern.

said. The General **Haractel Prodesh has a** Brougsbie resignament für the protection of muchnon and fareers of the ctate about adopt its outvaries at a large scale Despite being a small state. Remarkal occupies the 18h play is the county in metrom salikativa Sci beings bloods chiese acceptance of the new tack ries of makeson for the benefit of famens'

Dattacogn and that to shalle the become of femen, it was important that iciorbita dissensivate informa-Sudgepore, among there. more investment teglopeds one it is also known for its medicinal properties. Parties should medicast properties" be moranged to produce

Equation Regions Continues at the Time Scientification funds measurement

nachal fifth in mushroom cultivation

 Himschaf Pradesh has a fovourable environment. for the production of musheups and factors of the state should adopt its outfination at a large scale. Despite here's small state. Hunachtal occupies the See your new research and . With place in the country in muchroom cultivation. Scientists should spread awareness about the law native of relations for the benefit of formers.

factor lichthea, income

General matter material hours opered about natural functioning of various late.

foreing in Solan district.

rationes of the directions Comflete Its premises VF Shanra, Director of Mushroom Research Centes, through a presentation. briefed the Covernor about the process of much recent

Deputy Commissioner NC Chaman and ASP Shir flung Shems smepssaid the Covernor.

this of the directorate.

छात्रों को मशरूम के उत्पादन पर बांटी जानकारी

कोलना माकृतनुम रहेव अनुरक्षान विदेशालय बेशावट में अबरा राष्ट्रीय विद्वान किसा बनावा गया। जिसमें सीसन राजवीठ परिच्य मान्यनिक स्कृती के हवा कार-कामओं में बार जिसार इस अवसर वह निर्देशनय के निर्देशक है, रीवें जारी ने इसमें को मजलम के उत्पादन के बारे में विकृत जानकारी के तथा श्चेषं के विभिन्न मुनों एवं महारूपों से अकार कराया। इस अदार पर द्वा अनुराधा क्षीवस्तव, वैक्रानिक ने विश्वान में गरिसाओं के घोगदान पर दिस्तुत प्रस्ताविकामा दी। इत कार्यक्रम का समस्यान हा, वीरत अभी प्रधान वैक्षानिक, है किया व नानी बच्ची को खुंब उत्तादन कर्ता कर भी प्रमान करवार एवं खुंब इसमें सबबी जानकारी दी रहे। इस अक्रार पर निर्देशालय के वैद्वारिक स महीत कुमार, व. हवेल कमार, क. अनित कुमार, क. अनुवस बढ़, राठेशा कुमार देखा. प्रशासनिक व सावनीकी वर्ग के सभी अधिकारी व कर्नवारी भी रोहर सं ।

खुंब अनुसंघान निदेशालय चंबाघाट में महिला दिवस पर प्रदर्शनी

erall al militar Primure server 4 steet क्षे अंतरक्ष्मीय परिता विशा I JERRE IF BIRTE E pitter feit en fraf विदेशाला की सभी महिला हा Isa 0645 H de उद्यास व्य प्रतिका हा वर के पीलजों ने बर निया इस कार्यक्ष की मुख्योंकी ह, सुझ बड़कों है, इसन buffis, mifte pft अनुसार संस्थान, वह रिजी re : ga mene in at. 23

न्छनार्थे करान हुनि वेक्षानिक यान पाता नहं दियो, या नतीय कुमा। नुस दुर्व विदेशक अन्तर सामाग्र, या, यातांत्र सिक्ष दरका प्रवानिका पर व्यक्ति विक्रियत्तर केंद्रे तथ है विदेश विक्रिय का प्रमुख्य निर्देशाला संस्थ में शरीन सी। इस अवस्थ पर कार्यक्रम की मुख्यातिके का सकती ने सभी नतीनाओं को गीरन दिश्त पर करते देते हुए कहा कि परिनाए हर सेव में बढ़-बढ़कर मान से रहे हैं तथ महिला और सिकिन होंगे से दूर बरोदार द समझ सिकेस होगा। हा सीके सकती ने की राजे महिलाओं को महिला विकास करते हैं सुक्कानका है। हैह के निरोधक के, ताले ने असलक्ष्मीय महिला दिवस की मुख्याननर वै १४ जुंच अध्यादन में मीतनाओं के सीमदान को संस्था इस आवसर पर विशेष्णनक के प्रधान वैश्वानिक या. वैदान अभी ने नहीताओं के राजनिक्त जीरेंग में क्षेत्रकर पर प्रकल करना हुई जून के विचित्र पूर्व अंवरेंग्र हुनों के बारे में में दिनतर वे जनकरी दें सा बुंब प्रशांति हा से अप्रेयन दिन गर

ज्ञास परिवेद सर्वन्त अनुसरन वीचान्य हो 22ई वर्किन राष्ट्र रेटक ने वेत्रतिको व विवेद ने निवेद प

क्षीप सम्बंध है ब्रांग के ति समाप्ति है (मुर्जि है) बहुते के जिल सामन एक देशा hand and area ता हो प्रश्नी है क्यों देखा है केली मार्चे से संगान भ प्रीता प्राप्ते को बहुद m sen fi er gen tiether i tifter i

e afec to it worm ? afterpraction printer afecte at to afer after feer ben b der periodere bit et et jed दिश ज कुरूत भी निर्माण के में प्र मानते में जिस प्र चीनमें के केन में अनुस्ता के आपने कुछ कि में तुम अनुस्ता और विभाग हर सकत म जीवा करते. स्वतंत्रकोरी के वेलीओं के मार्च भी अवस्थात में का अनुवार विश्वास, सेना हुए पोर्डिकों के अपन में सर्वका स्मृतक प्रोतेन में जिसकी है भा तिया है, तिया होती हमाने बीचते के जिए प्राप्ति की सहय हो। कार्वक प्रति के लिए तमानि got other way little if carrest it unt mome it fier whom white finds it is it described in the field the

men k at 4 mg ip span feller यान हो क्षेत्र हो स्थापति होता हुए कि या उसी हैं। य में का ही में इस्पेक्त में स्वतः वो तथ जिल का ने दं गांध करों को बार पर थे। पराचेब करत उन्हारता होतान ten speciele it gie beset it spire it vern अपूर्ण लिएक हे विक्रम जिल्ला से स्थापन है एक प्रति ह क्षेत्र को अपने हैंक अपने (पानव किए इस्तेत ही माल्य समुद्रित है हो है भी गुर्देश) ही बना को प मोक्षीर रोज्य के तिह कर्म है है स्वीते पहली अग्राम की कैन ने अने हैं। सकत बिहुत की प्राकृत करें निराम स. बंदी कर्त ने को है। हर क्रमान बीचा से हीए på upper palter feit und gentife de it fin feine gener nund in atte feitel abgefel ut me fe fer fie fe feit

खुंब निदेशालय को मिला राजिंब टंडन पुरस्कार मोतन। धारतेव कृषि अनुसंबात वीषद का ६२वां क्यापन दिवस और पुरस्वार समाप्त मुक्तवा को कृति भवर माँ दिलाई में अमीका किया गय । इसमें केंद्रीय बारे एवं निवास करवान गरी सींह दिस तेवा ने बर्डर मुख्यतिक विराजन को हता. रोहर 20 विभिन्न संगति के शहर तका प्राप्तका दिए गर्ना सूच अनुस्थित निरंगासक क्षेत्रम को हिन्ते में उत्साप बार्ग करने के लिए होर्री सम्बाद की लगे ही एको देशन के दिनेत पुरस्की प्राप्त हुआ। इसके आहार सूच अपूर्णकार विद्यालया क्षेत्रम तथा चार्तत्र अद्भा अनुसंदर्ग मोनदा, विद्यालय के सक प्राचेनी प्रोमीकत के तहत महत्त्रम महिला कुमीन को भारति कृति अनुस्थान वीका को में स्वानेकों में तर्मक पक्ष। महस्त्रात्म के समझ अधिकारियों के अपना हारी संस्थात निर्देशको स विश्वविद्यालयों के कुलार्ताओं ने भी भाग निका। संकट

DMR-Solan bags Rajarshi Tondon Award

The Indian Countries Ages

rafferi Sewerk-SCAS-eus Heretrois of Matason Remark CMS: Ion son collend to Superio Te-dis Rept to explanating Sind-moval method pair opey during the Bhall certain from the contract of the contract of the CAR organisms of the CAR organisms of the Republican Selbs.

ad owing On for winning, others D-th made on a collection foreigned by the EASA CRAFT. fide, our below bottom of tiller formers riplicated a confidencies propriesses remail The ICAD Anach in 20 different catagories with announced in the scin-

कृषि सुधारों से मशरूम को मिलेगा बढ़ावा खुँव अनुसंधान निदेशालय सोलन के निदेशक बोले, एक दशक में बढ़ा उत्पादन

स्था विदेश - संस्था वा प्रश्ना प्रतिकारीत अलग का प्रथम के विदेश पूर्व के अपन का प्रतिकारी तो ती। विद्यालय पूर्व पूर्व पूर्व प्रतिकार का पूर्व के तिरामी कारण को का प्रतिकारी तो ती। विद्यालय प्रतिकार पूर्व के विदेश का स्थापने हैं, तीका अलगी कियो का पूर्व के बाह्य पूर्व के विदेश ती की ती।

अब देश के किस्सन चीनों कृषि एप से खरीद सकेंगे बीतः तोमर Species worth afte organization in months surround

to office

खुशहाल हिमाचल

देश में मशरूम उत्पादन की शुरुआत सोलन से हुई, इसलिए 'मशरूम सिटी' भी कहते हैं

अनुबंध-१ Annexure – 1 भाकुअनुप – खुअनुनि के कार्मिक Personnel of ICAR-DMR

	Total	2		-	-	-	-	-	_	2	-	S	-	18
	Vacant Total	-	ı	ı	ı	1	-	ı	ı	ı	-	ю	1	9
	In position	-	-	-	-	-	1	-	-	2	ı	2	-	12
		ı	ı	ı	ı	1	ı	ı	-	ı	į	-	1	7
_	Vacant	ı	ı	ı	ı	1	ı	ı	ı	ı	-	1	1	-
Total	Vacant Total In position Vacant Total	ı	ı	ı	1	1	1	1	1	ı	ı	1	1	1
	Total	-	ļ	I	I	1	ı	ı	1	ı	į	ω	ı	4
	Vacant	-	I	1	ı	1	ı	ı	ı	1	ı	2	1	ဇ
	In position	1	ı	1	1	ı	1	ı	ı	1	ı	1	ı	1
Principal Scientist	Total	-		_		-	_		1	2	-	_	-1	12
Sr.Scientist	Vacant	1	ı	1	1	ı		ı	1	1		ı	ı	2
Scientist	In position	1	1	-1	-	1	1	1	ı	2	ı	П	1	10
Sanctioned strength		1 Scientist 1 Sr. Scientist	1 Scientist	1 Scientist	1 Scientist	1 Scientist	1 Scientist	1 Scientist	1 Pri. Scientist	2 Scientists	1 Scientist	1 Scientist 3 Sr. Scientist 1 Pri. Scientist	1 Scientist	18 posts
Pay band and Level		57700-182400 (L-10) 79800-211500 (L-12)	57700-182400 (L-10)	57700-182400 (L-10)	57700-182400 (L-10)	57700-182400 (L-10)	57700-182400 (L-10)	57700-182400 (L-10)	144200-218200 (L-14)	57700-182400 (L-10)	57700-182400 (L-10)	57700-182400 (L-10) 79800-211500 (L-12) 144200-218200 (L-14)	57700-182400 (L-10)	
Name of the discipline		Agricultural Biotechnology	Agricultural Economics	Agricultural Entomology	Agril.Extension	Agrl.Engg.(ASPE)	Economic botany & PGR	Food Technology	Fruit Science	Genetics & Plant breeding	Plant Biochemistry	Plant Pathology	Soil Science	G.Total
Sr.		_	2	ю	4	S	9	7	∞	6	10	6	10	

Cadre strength of technical, administrative and supporting category

SN	Designation	Pay band and Level	Sanctioned	In position	Vacant	Total
			posts	posts	posts	
Tecl	ınical posts					
1	T-4	35400-112400 (L-6)	2	2	-	2
2	T-3	29200-92300 (L-5)	2	2	-	2
3	T-2	25500-81100 (L-4)	1	1	-	1
4	T-1	21700-69100 (L-3)	8	7	1	8
	GRAND TOTAL		13	12	1	13
Adn	ninistrative posts					
1	Administrative Officer	56100-177500 (L-10)	1	1	-	1
2	Asstt.Admn.Officer	44900-142400 (L-7)	1	1	-	1
3	Asstt.Fin. & A/Cs Officer	44900-142400 (L-7)	1	-	1	1
4	Private Secretary	44900-142400 (L-7)	1	1	-	1
5	Assistant	35400-112400 (L-6)	4	4	-	4
6	Personal Assistant	35400-112400 (L-6)	1	1	-	1
7	UDC	25500-81100 (L-4)	2	2	-	2
8	Stenographer Gr.III	25500-81100 (L-4)	1	1	-	1
9	LDC	19900-63200 (L-2)	2	2	-	2
	GRAND TOTAL	14 13	1	14		
Skil	led support staff					
	Skilled Support Staff	18000-56900 (L-1)	5	4	1	5

Scientific staff

Name	Designation	Email ID Official
Dr. V. P. Sharma	Director	vpsharma93.icar@gov.in
		director.mushroom@icar.gov.in
Dr. B. L. Attri	Principal Scientist	bl.attri@icar.gov.in
Dr. Satish Kumar	Principal Scientist	satish132.icar@gov.in
Dr. Shwet Kamal	Principal Scientist	shwetkamall.icar@gov.in
Dr. Yogesh Gautam	Senior Scientist	ygautamdmr.icar@gov.in
Dr. Anil Kumar	Scientist	anil.kumar14@icar.gov.in
Dr. Anuradha Srivastava	Scientist	anuradha.srivastava@icar.gov.in
Mr. Sudheer Kumar Annepu	Scientist	sudheer.annepu@icar.gov.in
Dr. Anupam Barh	Scientist	anupam.barh@icar.gov.in
Dr. Manoj Nath	Scientist	manoj.nath@icar.gov.in
Mr. Rakesh Kumar Bhairwa	Scientist	rakesh.bairwa@icar.gov.in
Dr. Dr. Anarase Dattatray Arjur	Scientist	anarase.arjun@icar.gov.in

ANNUAL REPORT

Administrative staff

Sh. H. N. Sharma	Administrative officer	aodmr.icar@gov.in
Sh. J. R. Mangale	AFAO	afacodmr.icar@gov.in
Sh. T.D. Sharma	Asst. Admin. Officer	tdsharma.icar@gov.in
Sh. Surjit Singh	Private Secretary	skanwar.icar@gov.in
Smt. Sunila Thakur	Personal Assistant	sunilathakur.icar@gov.in
Sh. Bhim Singh	Assistant	bhim.icar@gov.in
Sh. N.P. Negi	Assistant	npnegi.icar@gov.in
Sh. Rajneesh Jaryal	Assistant	rajneesh.jaryal@icar.gov.in
Sh. Satinder Thakur	Assistant	satenderk.icar@gov.in
Sh. Dharam Dass	UDC	dharam.icar@gov.in
Sh. Deep Kumar Thakur	Steno Gr.III	deep.icar@gov.in
Smt. Shashi Poonam	UDC	shaship.icar@gov.in
Sh. Roshan Lal Negi	LDC	roshannegi.icar@gov.in
Sh. Sanjeev Sharma	LDC	sanjeevs.icar@gov.in

Technical staff

Sh. Sunil Verma	Asstt. Chief Tech. Officer(Farm)	sunilv.icar@gov.in		
Smt. Reeta Bhatia	Asstt. Chief Tech. Officer(Library)	reeta30.icar@gov.in		
Smt. Shailja Verma	Asstt. Chief Tech. Officer(Art)	shailjav1.icar@gov.in		
Sh. Gian Chand	Tech. Officer(Boiler)	gianchand1.icar@gov.in		
Sh. Dala Ram	Tech. Officer(Vehicle T-5)	dalalrm.icar@gov.in		
Sh. Ram Lal	Sr. Tech. Asstt.(Driver)	ramlal.icar@gov.in		
Sh. Deepak Sharma	Sr. Tech. Asstt.(Computer)	depsun.icar@gov.in		
Sh. Guler Singh Rana	Sr. Tech. Asstt. (Electric)	gulerrana.icar@gov.in		
Sh. Ram Saroop	Sr. Tech. Asstt.(Farm)	ramsaroop.icar@gov.in		
Sh. Jeet Ram	Sr. Tech.Asstt.(Farm)	jeetram.icar@gov.in		
Dr. Vrushali Pranjal Deshmukh	Tech. Asstt. (Field/Farm)	vrushali.Deshmukh@icar.gov.in		
Sh. Raj Kumar	Technician (Field/Farm)	rajkumar1.icar@gov.in		

ANNUAL REPORT

Sh. Naresh Kumar	SSS	nareshkumar.icar@gov.in
Smt. Meera Devi	SSS	meeradevi.icar@gov.in
Sh. Ajeet Kumar	SSS	ajeetkumar.icar@gov.in
Sh. Vinay Sharma	SSS	vinaysharma.icar@gov.in

अनुबंध-२ Annexure – 2

स्टाफ समाचार Staff News

Promotion:

- 1. Dr. Yogesh Gautam, Sr. Scientist (Computer Science in Agriculture) promoted as Principal Scientist in Level-14 w.e.f. 08.01.2018 (FN)
- 2. Sh. Deepak Sharma, Sr. Technical Assistant (Computer) promoted as Technical Officer (T-5) w.e.f. 27.10.2019(FN)
- 3. Sh. Raj Kumar, Technician (T-1) promoted as Sr. Technician (T-2) w.e.f. 30.09.2019(FN)

MACP

1. Sh. N.P. Negi granted Modified Assured Career Progression Scheme in the next higher level—7 w.e.f 24-05-2020 (FN)

Joining

1. Dr. Anarase Dattatray Arjun joined at this Directorate as Scientist (ASPE) w.e.f. 04.04.2020 (AN)

Probation/confirmation

- 1. Probation period of Sh. Rajneesh Jaryal, Assistant cleared w.e.f. 07.08.2019 (FN)
- 2. Probation period of Smt. Vrushali Pranjal Deshmukh, Technical Assistant (T-3) cleared w.e.f. 20.02.2020 (FN).

अनुबंध−३ Annexure **– 3**

पुरस्कार एवं मान्यताएं Awards and Recognitions

ICAR- Directorate of Mushroom Research received the Rajarshi Tandon Award- 2020 for implementing Hindi official language among small ICAR Institutes. The award was given in virtual mode at 92th foundation.

अनुबंध-४ Annexure – 4

वित्त वर्ष 2020 के लिए वित्तीय विवरण (रूपये लाख) Financial statement for the 2020 (01-01-2020 to 31-12-2020)

S.No.	Heads of Accounts	Allocation	Exp.		
i	Lands	-	-		
ii	Works	17.50	17.50		
iii	Equipment	6.75	6.75		
iv	Information Technology	3.80	3.80		
V	Library	2.85	2.85		
vi	Furniture & Fixture	0.50	0.50		
vii	Others	0	0		
viii	Others (SC-SP Equipments)	3.00	3.00		
Total Ca	pital Assets	34.40	34.40		
i	Establishment Expenses				
ii	Establishment Charges	481.60	481.60		
iii	Wages				
iv	O.T.A	-	-		
Total Est	t. Charges	481.60	481.60		
1	General Revenue				
II	Pension and Other retirement Benefits	4.25	4.25		
III	TA domestic/ TA transfer	5.85	5.85		
IV	Research and Operational expenses	88.90	88.90		
V	Administrative expenses	183.90	183.90		
VI	Misc. Expenses	19.85	19.85		
Total Rev	venue	302.75	302.75		
NEH		6.80	6.80		
TSP		10.00	10.00		
SCSP		31.25	31.25		
Grand To	otal (Capital and Revenue)	866.80	866.80		

Sl. No.	Head of Account	Allocation	Expenditure
1	DMR-Budget 2020	866.80	866.80
2	AICRP Mushroom	437.37	437.37
3	Revenue Receipt	116.43	116.43

Annexure – 5 स्वुम्ब स्पॉन की बिकी – 2020 Spawn Sale in the Year 2020

Revenue (Rs.)	21000	18000	27000	ł	ŀ	ł	1	1	ł	-	ł	1	00099
No. of trainces participated in spawn training	7 No	oN 9	oN 6	ŀ	1	ŀ	1	1	ł	-	ł	ŀ	
Revenue (Rs.)	ŀ	1	ł	ł	500	2500	2000	ł	14500	3500	200	1000	24500
Sale of Mother spawn	ł	1	1	1		5	4	ł	29	7		2	49
Revenue (Rs.)	545040	321760	214800	25200	118560	80320	55840	126320	240960	252720	231840	298240	2511600
Total quantit y (kg)	6813	4022	2685	315	1482	1004	869	1579	3012	3159	2898	3728	31395
Paddy straw (kg)	ŀ	ł	1	1	1	ł	ł	ł	10	1	ł	ł	
Ganod erma (kg)	14	89	63	3	1	ł	35	43	09	99	7	2	
Milky (kg)	ł	ł	1	1	231	246	1	1	ł	-	ł	1	
Oyster Shiitake Milk (kg) (kg)	38	51	21	5	1	ł	1	08	101	24	139	302	
Oyster (kg)	6205	3216	2029	307	1191	613	471	964	2414	2123	1882	2011	
Butt on (kg)	556	289	572	ŀ	09	145	192	492	427	956	870	1413	
Month	Jan-20	Feb-20	Mar-20	Apr-20	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Total

भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय

चम्बाघाट, सोलन-173213(हि.प्र.) भारत

ICAR-Directorate of Mushroom Research

Chambaghat, Solan-173213 (H.P.), India

