







भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय चम्बाघाट, सोलन-173213(हि.प्र.) भारत

**ICAR-Directorate of Mushroom Research** 

Chambaghat, Solan-173213 (H.P.), India





भा.कृ.अनु.प. – खुम्ब अनुसंधान निदेशालय चम्बाघाट, सोलन - 173213 (हि.प्र.) भारत

**ICAR-Directorate of Mushroom Research** 

Chambaghat, Solan-173213 (H.P.), India







भा.कृ.अनु.प. – खु<mark>म्ब अनु</mark>संधान निदेशालय

चम्बाघाट, सोलन - 173213 (हि.प्र.) भारत

ICAR-Directorate of Mushroom Research

Chambaghat, Solan-173213 (H.P.), India

# वार्षिक प्रतिवेदन/Annual Report 2016-17

भाकृअनुप - खुम्ब अनुसंधान निदेशालय

वार्षिक प्रतिवेदन -2016-17

#### सही उद्धरण

भाकुअनुप— खुम्ब अनुसंधान निदेशालय , वार्षिक प्रतिवेदन —2016—17, भाकुअनुप— खुम्ब अनुसंधान निदेशालय, सोलन , हिमाचल प्रदेश , भारत

#### द्वारा प्रकाशित

डा वी.पी. शर्मा

निदेशक

#### संपादकीय मंडल

श्री सुधीर कुमार एन्निपू, वैज्ञानिक (अंग्रेजी संस्करण)

डॉ अनुपम बड, वैज्ञानिक (हिंदी संस्करण)

श्री दीप कुमार ठाकुर (टाईप सेटींग)

श्रीमती शैलजा वर्मा (छाया चित्र)

**प्रकाशन** : जून, 2017

मुद्रित प्रतियां : 250

संपर्क

फोन : +91-1792 230451 (ऑफिस)

फैक्स : 230131 (R)+91-1792 2312017 ई-मेल : director.mushroom@icar.gov.in

वेबसाईट : www.nrcmushroom.org

**ICAR-DMR** 

Annual Report - 2016-17

#### **Correct citation**

ICAR-DMR Annual Report 2016-17, ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India.

#### **Published by**

Dr. V.P. Sharma

Director

#### **Editorial Team**

Mr. Sudheer Kumar Annepu, Scientist (English

version)

Dr. Anupam Barh, Scientist (Hindi version)

Mr. Deep Kumar Thakur (Type setting)

Mrs. Shailja Verma (Photography)

Published : June, 2017

Copies printed : 250

**Contact** 

**Phone** : +91-1792 230451 (0),

Fax : 230131 (R)+91-1792 2312017

Email : director.mushroom@icar.gov.in

Website: www.nrcmushroom.org

# Design & Printed by/ डिजाईन एवं मुद्रण

Dutta Graphics & Offset Printers, Chambaghat, Solan (H.P.) / दत्ता ग्राफिक्स एंड ऑफसेट प्रिंटर्स, चम्बाघाट, सोलन (हि.प्र.)

Contact : 92188-40900, 9816312929/ संपर्क : 92188 - 40900, 98163 - 12929

E-mail/ ई - मेल : duttagraphics1@gmail.com

# विषय सूची/Contents

| प्रस्तावना                                        | Repo | ort of th | i-ii                               |         |
|---------------------------------------------------|------|-----------|------------------------------------|---------|
| कार्यकारी सारांश                                  | Exec | cutive S  | ummary                             | iii-vi  |
| 1. खु. अनु. नि. – परिचय                           | 1.   | DMI       | R-An Introduction                  | 1-4     |
| 2. अनुसंधान उपलब्धियाँ                            | 2.   | Rese      | earch Achievements                 | 5-49    |
| (क) फसल सुधार                                     |      | <b>A.</b> | <b>Crop Improvement</b>            |         |
| i. खुम्ब अनुवांशिक संसाधन                         |      |           | i. Mushroom Genetic Resources      |         |
| ii. आनुवंशिक सुधार                                |      |           | ii. Genetic Improvement            |         |
| (ख) फसल उत्पादन                                   |      | В.        | <b>Crop Production</b>             |         |
| (ग) फसल सुरक्षा                                   |      | C.        | <b>Crop Protection</b>             |         |
| (घ) पश्च फसल प्रबंधन                              |      | D.        | Post Harvest Management            |         |
| 3. प्रौद्योगिकी हस्तांतरण                         | 3.   | Tran      | nsfer of Technology                | 50-63   |
| 4. एआईसीआरपीएम केंद्र                             | 4.   | AIC       | RPM Centres                        | 64-65   |
| 5. प्रकाशन की सूची                                | 5.   | List      | of Publications                    | 66-70   |
| 6. अनुमोदित चालू अनुसंधान परियोजनाएं              | 6.   | App       | roved On-going Research Projects   | 71-72   |
| 7.परामर्श एवं सलाहकार सेवाएं                      | 7.   | Cons      | sultancy and Advisory Services     | 73-80   |
| 8. महत्वपूर्ण समीतियाँ                            | 8.   | Imp       | ortant Committees                  | 81-85   |
| 9.राजभाषा कार्यान्वयन                             | 9.   | Imp       | lementation of Official Language   | 86-91   |
| 10. संस्थागत गतिविधियाँ                           | 10.  | Insti     | tutional Activities                | 92-96   |
| 11.मानव संसाधन विकास                              | 11.  | Hun       | nan Resource Development           | 97-99   |
| 12. विशिष्ट आगंतुक                                | 12.  | Disti     | inguished Visitors                 | 100     |
| अनुबंध                                            |      | Ann       | exure                              |         |
| i. भा. कृ. अनु. पखु. अनु. नि. के कार्मिक          | i.   | Perso     | onnel of ICAR-DMR                  | 101-104 |
| ii. स्टाफ समाचार                                  | ii.  | Staff     | news                               | 105-106 |
| iii. पुरस्कार और मान्यताएं                        | iii. | Awa       | rds and Recognitions               | 107-109 |
| ${ m iv}$ . वित्त वर्ष 2016 - 17 का वित्तीय विवरण | iv.  | Fina      | ncial Statement for the FY 2016-17 | 110     |
| v. खुम्ब स्पॉन की बिक्री                          | v.   | Sale      | of Mushroom Spawn                  | 111     |

# प्रस्तावना / Report of the Director



मुझे वर्ष 2016-17 के लिए भाकृअनुप - खुम्ब अनुसंधान निदेशालय का वार्षिक प्रतिवेदन प्रस्तृत करते हुए अपार हर्ष का अनुभव हो रहा है। यह प्रतिवेदन भाकुअनुप – खुम्ब अनुसंधान निदेशालय की वैज्ञानिक गतिविधियों को संक्षेप में प्रस्तुत करता है और इस वर्ष के दौरान हुए प्रशिक्षण, कृषि और सामाजिक प्रासंगिकता की एक झलक भी पेश करता है। भाकुअनुप – खुम्ब अनुसंधान निदेशालय आधुनिक खुम्ब विज्ञान के क्षेत्रों में अनुसंधान करने और संभावित अनुप्रयोगों की खोज के लिए एक मिशन के साथ काम कर रहा है।इस वर्ष के दौरान, हमने जननद्रव्य संरक्षण, जीनोमिक्स और स्पेशलिटी खुम्ब के उत्पादन तकनिक के क्षेत्रों में शानदार योगदान दिया है जो इस वार्षिक रिपोर्ट में प्रस्तुत किए गए काम से स्पष्ट है। इसके अतिरिक्त हमने जमीन से जुड़े और नवीन संचालित अनुसंधान को बढावा देने के लिए एक पहल की है। यह निदेशालय देश के विशाल भौगोलिक स्थान से खुम्ब जननद्रव्य को प्राप्त करने और उन्हें बनाए रखने के लिए गंभीर प्रयास कर रहा है । वर्तमान वर्ष में 27 नए जंगली खुम्बो को विभिन्न राज्यों के वन क्षेत्रों से एकत्र किया गया था और उनके शुद्ध टिशू कल्चर भाकृअनुप – खुम्ब अनुसंधान निदेशालय के जीन बैंक में संरक्षित किए गए थे। विभिन्न स्थानों पर आईवीटी और एवीटीए के संचालन के बाद, बटन मशरूम के स्ट्रेन की यु3-54 जिसकी औसत उपज 19. 57 किलो / 100 किग्रा कंपोस्ट पर है उक्त स्टेन को रिलीज करने की सिफारिश की गई है।

गेहूं पुआल पर विकसित शिटाके के विभिन्न बाह्य एंजाइम गतिविधियों और जैविक प्रतिक्रियाओं का अध्ययन किया गया था गेहूं की भूसे पर आधारित पोषाधार पर शिटाके के लिए व्यावसायिक पैमाने पर उत्पादन प्रौद्योगिकी के विकास के

It is a great pleasure for me to present the ICAR-Directorate of Mushroom Research annual report for 2016-17. It summarizes the scientific activities of ICAR-DMR and also gives a glimpse of the training, activities of farming and societal relevance that have been carried out during this year. ICAR-DMR is working with a mission to conduct research in multidisciplinary areas of modern mushroom science and to seek potential applications of this work. During the current year, we made impressive contributions in the areas of germplasm conservation, genomics and production technologies for speciality mushrooms which is evident by the work presented in this annual report. In

addition, we have taken an initiative to promote application-oriented and innovation driven research.

This Directorate is focusing and exerting serious efforts for acquiring and maintenance of mushroom germplasm from the vast geographical location of the country. In the present year 27 new wild mushroom germplasm accessions were collected from the forest areas of different states and their pure tissue cultures were preserved in the Gene Bank of ICAR-DMR. After conducting the IVT and AVTs at different locations, the button mushroom strain U<sub>3</sub>-54 was recommended for release with an average yield of 19.57 kg/100 kg of compost. The study of extracellular enzyme activities and biological response of different strains of shiitake on wheat straw, formed a strong basis for development of commercial scale production technology for shiitake on wheat straw based substrate. Significant progress has been made by the Directorate in Transfer of Technology and promotional aspects of mushroom cultivation. The video documentaries and android based mobile applications developed on cultivation technologies of different mushrooms helped to fulfil the dream of digitalization in agriculture, where information reaches the most inaccessible corners driven by digital learning. The continuous increase in the number of participants in national mushroom mela, fairs and exhibitions at regional and national level indicates the flourishing demand for mushrooms. In order to disseminate the

लिए एक मजबूत आधार का गठन किया। प्रौद्योगिकी के हस्तांतरण के लिए निदेशालय ने खुम्ब की खेती के प्रचार हेत् महत्वपूर्ण प्रगति की। विभिन्न खुम्ब खेती की प्रौद्योगिकियों पर विकसित वीडियो वृत्तचित्रों और एंड्रॉइड आधारित मोबाइल अप्लिकेशन ने कृषि के डिजिटलीकरण के सपने को पूरा करने में मदद की। राष्ट्रीय मशरूम मेला, मेले और क्षेत्रीय और राष्ट्रीय स्तर पर प्रदर्शनियों में प्रतिभागियों की संख्या में लगातार वृद्धि से खुम्ब की बढ़ती मांग का पता चलता है। भाकुअनुप – खुम्ब अनुसंधान निदेशालय द्वारा विकसित प्रौद्योगिकियों का देश के विभिन्न भागों मे प्रसार करने के लिए 11 परिसर मे एवं परिसर के बाहर प्रशिक्षण कार्यक्रमों किये गए। निदेशालय ने कार्यशालाएं आयोजित कीं और राष्ट्रीय विज्ञान दिवस, राष्ट्रीय एकता दिवस अन्य सरकारी गतिविधियों जैसे हिंदी सप्ताह, सतर्कता जागरूकता सप्ताह आदि भी मनाया । अंत में, मैं खुम्ब अनुसंधान निदेशालय के कर्मचारियों, अनुसंधान सलाहकार परिषद और प्रबंधन परिषद के सदस्यों के सहयोग का आभार करना चाहता हूं। मैं संपादकीय टीम को समय पर प्रतिवेदन संकलन एवं द्विभाषी प्रकाशन के लिए भी बधाई देता हं । अंत में, में महानिदेशक (भाकुअनुप) और उप महानिदेशक (एचएस), भाकुअनुप को अपने मार्गदर्शन और निदेशालय के विभिन्न अनुसंधान एवं विकास गतिविधियों को पूरा करने में निरंतर सहायता के लिए अपना आभार व्यक्त करना चाहूंगा। मैं ये मानता हूं कि बौद्धिक क्षमताओं, तकनीकी कौशल, उच्च प्रतिबद्धतां, ईमानदारी और उत्साह के साथ पूरा खुम्ब अनुसंधान निदेशालय परिवार समाज की उम्मीदों को पूरा करने में सक्षम होगा ।

technologies developed by ICAR-DMR, 11 on and off campus training programmes were conducted at different parts of the country. The institute also organized workshops, celebrated National Science Day, National Unity Day and other official activities like Hindi Sapatah, Vigilance Awareness Week etc.

Finally, I wish to acknowledge the devotion and cooperation of all staff of ICAR-DMR, Research Advisory Council and members of Institute Management Council and our valuable stakeholders. I also congratulate the editorial team for timely compilation and bringing out this bilingual publication. At the end, I would like to express my gratitude to Director General (ICAR) and Deputy Director General (HS), ICAR for their treasured guidance and unceasing support in carrying out various R & D activities of the Directorate. I sincerely believe that with the intellectual capabilities, technical skills, high degree of commitment, sincerity and enthusiasm of the entire DMR family, we will be able to meet the expectations of society.

manni

V. P. Sharma (वी.पी.शर्मा)

# कार्यकारी सारांश/Executive Summary

खुम्ब अनुसंधान निदेशालय ने 2016—17 के दौरान अनुसंधान, प्रौद्योगिकी के हस्तांतरण और मानव संसाधन विकास में महत्वपूर्ण प्रगति की है। फसल सुधार, फसल उत्पादन, फसल संरक्षण, पश्च फसल प्रबंधन और प्रौद्योगिकी के हस्तांतरण के क्षेत्र में निदेशालय की उपलब्धियों का सारांश यहां दिया गया है। एगेरिकस जीनोम में डब्लूआरकेवाई डोमेन की उपस्थिति को कई साइटों पर देखा गया और विभिन्न प्रकार के डब्ल्यूआरकेवाई डोमेन की जीनोम में पहचान की गयी। प्राइमर न्यूक्लियोटाइड बाइंडिंग साइट से खुम्ब में रोग प्रतिरोधक जीन की मौजूदगी (डब्ल्यूआरकेवाई डोमेन से जुड़ा) का पता चला है। दो डब्लूआरकेवाई प्राइमर्स और दो एनबीएस प्राइमरों का उपयोग एगेरिकस जीनोम में डब्ल्यूआरकेवाई डोमेन्स को अम्प्लिपय करने के लिए किया गया था।

33 एसएसआर मार्कर, 7 आईएसएसआर मार्कर, 34 आईआरपी और 14 रेमॅप प्राइमरों का प्रयोग प्रजनन मार्करों की पहचान के लिए किया गया था। इसके अलावा आईएसएसआर, एसएसआर, आईआरएपी, रीएमएप्स सहित कुल 585 मार्करों का इस्तेमाल किया गया था। कुछ मार्करों की पहचान की गई है और बटन मशरूम में प्रजनन मार्करों की पहचान के लिए अनुक्रमणित एम्प्लीकोन्स को क्लोन किया गया था।

कुल 895 एकल बीजाणु को पांच भूरे रंग के प्रतिरोधी संकरों से उत्पन्न किया गया। गैर उपजाऊ बीजाणु की पहचान और उच्च पैदावार वाली उपजाऊ बीजाणु का चयन किया गया। कुल मिलाकर 245 एकल बीजाणु पृथक किये गए (एनबीएस –1 से 91 और एनबीएस –5 से 154) और उपज, गुणवत्ता मानदंड और रोग की घटनाओं के लिए मूल्यांकन किया गया था।

2013—14 के दौरान एक नया एकल बीजाणु पृथक किया गया था संस्थान स्तर के मूल्यांकन के बाद, 2014—17 के दौरान एआईसीआरपी—खुम्ब केंद्रों में आईवीटी, एवीटी —1 और एवीटी —2 के तहत अलग—अलग मूल्यांकन किया गया। तीन साल के मूल्यांकन के बाद, इसके रिलीस की सिफारिश की गयी जिसकी औसत उपज 19.57 किग्रा प्रति 100 किग्रा कम्पोस्ट पर है।

कुल 1470 एकल बीजाणु को लेन्टिनुला एडॉड्स के 13 स्ट्रेनो से पृथक किया गया। संकर बनाने हेतु लेन्टिनुला परिग्रहण में सबसे विविध स्ट्रेन का विश्लेषण मेगा 6 और बेयसियन ऑकड़ों का उपयोग करके किया गया। शिटाके के 117 एकल बीजाणु को डीएमआरओ—329 और डीएमआरओ—327 से लिए गए क्लैंप कनेक्शन के लिए परीक्षण किए गए जिसमें 46 उपजाऊ पाए गए । कुल 157 मेटिंग प्रयोगों का आयोजन किया गया और मेटिंग समूह की पहचान

The ICAR-Directorate of Mushroom Research has made significant progress in research, transfer of technology and human resource development during 2016-17. The achievements of Directorate in the area of crop improvement, crop production, crop protection, post harvest technology and transfer of technology are summarized here.

Fungal forays were undertaken in the forest areas of Himachal Pradesh and Tripura states. A total number of 27 specimens were collected and 21 were identified up to the genus level. All the specimens have been preserved in the herbarium of ICAR-DMR, Solan and examined for their macroscopic feature in the field along with their photographs. Pure tissue cultures of 21 specimens were obtained and deposited in the Gene bank of ICAR-DMR, Solan. Some of the interesting specimens include *Lepista* sp., *Leucocoprinus* sp., *Gymnopilus* sp., *Laccaria* sp., and *Austroboletus* sp., etc.

Agaricus genome showed the presence of WRKY domain has been identified at multiple sites in the mushroom genome. Two WRKY primers and two NBS primers were used to amplify the WRKY domains in Agaricus genome.

33 SSR markers, 7 ISSR markers, 34 IRAPs and 14 ReMAP primers were used to identify the fertility markers. Further, a total of 585 markers including ISSRs, SSRs, IRAPs, ReMAPs were used to identify the fertility status. Some of the markers have been identified and the identified amplicons were cloned for sequencing and identification of fertility markers in button mushroom. A total of 895 single spore isolates were isolated from the five browning resistant hybrids for identification of non-fertile isolates and selection of high yielding fertile isolates. A total of 245 single spore isolates (91 from NBS-1 and 154 from NBS-5) were evaluated for yield, quality parameters and disease incidence.

A new single spore isolate (U3-54) was developed during 2013-14. After Institute level evaluation, the isolate was evaluated at AICRP-Mushroom centres under IVT, AVT-1 and AVT-2 during 2014-17. After evaluation for three consecutive years, the variety has been recommended for release with an average yield of 19.57 kg of fresh mushroom per 100 kg of compost.

A total of 1470 SSIs were isolated from 13 strains of *Lentinula edodes*. Diversity analysis was

की गई। मेटिंग प्रकार के प्रयोगों के आधार पर कुल 41 संकर विकसित किए गए थे। 46 उपजाऊ एसएसआई में से 12 को फल निकायों की उपज और गुणवत्ता के लिए मूल्यांकित किया गया।

कोलचिसीन को लोकप्रिय रूप से पोधों मे प्लोएडी बढाने के लिए उपयोग में लाया जाता है जो की कोशिकाओं की बाहरी परत का विभाजन रोक देता है डीएमआरपी —205 (पी जेमोर) में ओतोपोल्य्प्लोइड के उत्पादन के लिए कोलचिसीन के प्रभाव की जांच की गई थी। मल्ट एगर मीडिया में माय्सेलियम को क्रमशः 0,0.0625,0.125,0.25,0.5 और 1 प्रतिशत पर कोलचिसीन के साथ संवर्धित किया गया था। 1 प्रतिशत सघनता मायसेलियम के लिए 100 प्रतिशत घातक पायी गयी थी। माय्सेलियम को सेफरिन्न द्रव के साथ स्टेन किया गया और डिजिटल कैमरा के साथ प्रकाश माइक्रोस्कोप से उनके नाभिक व्यास को मापा गया। नियंत्रण के मुकाबले नाभिक व्यास में विभिन्न स्तरों पर बड़ोतरी देखी गयी। प्लास्टिक कंटेनर में माईसेलियम को उगाने पर नियंत्रण के मुकाबले आकार और संरचनाओं की विविधताओं को दिखाया गया था।

आरबीडी में सब्सट्रेट / बेड का उपयोग करके भूसे से तैयार किए गए खाद पर 8 तेजी से बढ़े हुए एकल बीजाण, 10 संकर और 2 पैतुक स्ट्रेन मिलाकर कुल 20 स्ट्रेन का मुल्यांकन किया गया। फल के उपज मूल्यांकन के लिए इस्तेमाल किए गए आठ तेजी से बढ़ रहे एकल बीजाणू में से एक एकल बीजाण (वीवी-13-2-23) ने पैतुक स्ट्रेन के मुकाबले 13.22% अधिक खुम्ब की उपज दी। एक एकल बीजाणुं ने पतृक स्ट्रेन के बराबर उपज दी, जबिक बाकी 6 एकल बीजाण ने कम उपज दी और बहुमत में यह नगण्य था। 10 संकरों में से 5 संकरों में फल उत्पादन अभिवावक स्ट्रेन के मुकाबले 17.61 से 82.95% अधिक था (बीबीएसआर - 2007-17 + जीवीवी -01-37, बीबीएसआर -007 -ई + जीवीवी -01-टी, बीबीएसआर -007-ई + जीवीवी -01-वाई , बीबीएसआर -007-एफ+ जीवीवी-01-वी, बीबीएसआर-007-एफ+ जीवीवी-01-जेड)। ४ संकरों में उपज वृद्धि 39.68 से 82.95% के बीच थी, जो सांखिकी रूप से महत्वपूर्ण है।

संकर बीबीएसआर -007 -एफ+ जीवीवी-01-वी मे ऐश और रेशे की मात्रा अधिक पाई गयी। जबिक संकर बीबीएसआर -007-इ + जीवीवी-01-टी मे विटामिन सी, विटामिन डी और क्रूड फाइबर, संकर बीबीएसआर-007-17+ जीवीवी-01-37 मे प्रोटीन, विटामिन सी, पोटेशियम, मैंगनीज, जस्ता और सेलेनियम, और संकर बीबीएसआर -007-एफ+ जीवीवी -01-जेड मैंगनीज, सेलेनियम की मात्रा बेहतर पाई गयी एकल बीजाणु वीवी-13-2-23 में प्रोटीन, जस्ता और सेलेनियम का स्तर उच्च पाया गया।

done using mega 6 and Baysian statistics to finalize the most diverse strain in the *Lentinula* accession for hybrid preparation. 117 SSIs of strain DMRO-327 and 120 SSIs of DMRO-329 strain of shiitake tested for clamp connection and 46 were found to be fertile. A total of 157 mating experiments were conducted and mating groups were identified. A total of 41 hybrids were developed based on mating type experiments. Out of 46 fertile SSIs, 12 were evaluated for yield and quality of fruit bodies.

The effect of colchicine was examined for the production of autopolyploid in strain number DMRP-205 of *P. djmor*. The mycelium was cultured in malt agar media with colchicine percentage at 0, 0.0625, 0.125, 0.250, 0.50 and 1 percent respectively. The 1 percent concentration was found 100 percent lethal for the mycelium. The mycelia were stained with Safranin-O and their nuclei diameters were measured, light microscope with a digital camera. The nuclei were increased in diameter at different degrees compared to control. The mycelium was allowed to grow on the plastic container showed varied mycelium color and structures in morphology compared to control.

Total twenty strains including 8 selected fast growing SSIs, 10 hybrids and 2 parent strains of paddy straw mushroom were evaluated for their fruit body yield potential on composted substrate prepared from paddy straw. Out of eight fast growing SSIs, one SSI (Vv-13-2-23) gave 13.22% higher fruit body yield compared to the parent strain. One SSI gave yield at par to the parent strain, while rest 6 SSIs gave low yield. Out of 10 hybrids, the fruit body yield was higher in 5 hybrids (BBSR-007-17 + GVv-01-37, BBSR-007-e + GVv-01-T, BBSR-007-e + GVv-01-Y, BBSR-007-F + GVv-01-V, BBSR-007-f + GVv-01-Z) and it was higher by 17.61 to 82.95% over parent strains. In 4 hybrids the yield enhancement ranged between 39.68 to 82.95%, which is quite significant. The hybrid BBSR-007-F + GVv-01-V exhibited superiority in ash and crude fibre contents, while hybrid BBSR-007-E+ GVv-01-T in vitamin C, vitamin D and crude fibre, hybrid BBSR-007-17 + GVv-01-37 in protein, vitamin C, potassium, manganese, zinc and selenium, hybrid BBSR-007-F + GVv-01-Z in manganese, selenium. The SSI Vv-13-2-23 exhibited highest level of protein, zinc and selenium

A trial was conducted on use of SMS of button and oyster mushroom for compost making for button mushroom cultivation @ 30% w/w in replacement of wheat straw, keeping standard composition of ingredients as the control treatment. The conversion

एक परिक्षण लगया गया जिसमे बटन और ढींगरी मशरूम के एसएमएस को 30% वजन / वजन का उपयोग गेहू के भूसे के प्रतिस्थापन में किया गया था, नियंत्रण के रूप में सामग्रियों की मानक संरचना को लिया गया था। खाद का रूपांतरण अनुपात नियंत्रण उपचार में निम्नतम 2.96 (मानक तैयार करने) से 3.67 के बीच होता है, जिसमें ढींगरी मशरूम एसएमएस को बिना नत्रजन संतुलन के प्रतिस्थापित किया जाता है। 1 टन कंपोस्ट के उत्पादन के लिए लागत में अंतर सबसे अधिक रु 3348 नियंत्रण में, और सबसे निम्न 2908 रु 30% गेहूं का भूसा बटन मशरूम एसएमएस के साथ प्रतिस्थापन में पाया गया।

शिटाके के 9 अलग—अलग स्ट्रेन की गौण वृद्धि दर का अध्ययन गेहूँ एक्सट्रक माध्यम पर और गेहूं के भूसे पर किया गया ताकि स्ट्रेन / पोषाधार संगतता स्थापित की जा सके।

बाह सेलुलर एंजाइम की गतिविधियों जैसे कि सेल्युलोज, जियालेनेस, लैककेस, मैंगनीज पेरोक्साइज और बहुमुखी पर्सोक्सडेज को भूसे आधारित पोषाधार पर उपयोग करने की संभावना की जाँच की गयी।

80:20 अनुपात में गेहूं का भूसा और चोकर मिलाकर तैयार पोषाधार पर फसल उगाई गई थी।

गेहूं के भूसे पर आधारित पोषाधार में विभिन्न प्रकार की जैविक दक्षता दर्ज की गई थी और संभावित नस्लों का चयन करने के लिए विकास दर और एंजाइम की गतिविधियों के साथ सहसंबद्ध देखा गया था।

कुल जैविक उपज के आधार पर डंकन के तुलनात्मक परीक्षण का उपयोग कर, स्ट्रेन को तीन श्रेणियों में बांटा गया।

0.67 की उत्पादन दर के साथ डीएमआरओ की उच्चतम बी ई 60.23 % पायी गयी थी। मध्यम उपज क्षमता वाले स्ट्रेन मे 0.37 की उत्पादन दर के साथ औसत बी ई 33. 67% पायी गयी। कम उपज की क्षमता के तहत वर्गीकृत स्ट्रेन मे उत्पादन दर 0.13 के साथ औसत बी ई 13.35% थी।

वर्ष 2016—17 के दौरान निदेशालय ने कृषि विज्ञान केंद्र / राज्य कृषि विश्वविद्यालय के किसानों, उद्यमियों, अधिकारियों और वैज्ञानिकों के लिए ग्यारह निदेशालय परिसर में और निदेशालय के बाहर प्रशिक्षण कार्यक्रम का आयोजन किया जिसमें कुल 417 किसानों, उद्यमियों, अधिकारियों और कृषि विज्ञान केंद्र वैज्ञानिकों ने भाग लिया । एक दिवसीय मशक्तम मेला 10 सितंबर, 2016 को निदेशालय की एक प्रमुख गतिविधि के रूप में आयोजित किया गया था। इसका उद्घाटन डॉ हरि चंद शर्मा, डॉ वाई एस परमार यूनिवर्सिटी ऑफ हॉर्टीकल्चर एंड वानिकी, नौनी, के माननीय उपकुलपति द्वारा किया गया। इस मेले के विशिट अतिथि डॉ एस के चक्रवर्ती, भाकृअनुप—केन्द्रीय आलू अनुसंधान संस्थान के निदेशक थे।

ratio of wheat straw to ready compost ranged between lowest of 2.96 in control (standard formulation) to highest of 3.67 in 30% wheat straw substituted with oyster mushroom SMS without N balancing. The difference in cost incurred towards the inputs for production of 1 ton of compost varied from highest of Rs. 3348 in case of control to lowest of Rs. 2903 in case of 30% wheat straw substituted with button mushroom SMS.

The mycelial growth rate of nine different strains of shiitake was studied on wheat extract agar medium and on wheat straw to establish the strain/substrate compatibility. Extra cellular enzyme activities such as cellulose, xylanase, laccase, manganese peroxidise and versatile persoixdase were assayed to indicate the potentiality of strains to utilize the straw based substrate. The crop was raised on wheat straw based substrate prepared by mixing wheat straw and wheat bran in 80:20 ratio. The biological efficiency of different strains on wheat straw based substrate was recorded and correlated with the growth rates and enzyme activities to select the potential strains. Based on the total biological yield, the strains were grouped into three categories by using the Duncan's comparison test. The strain no DMRO-327 was showed highest BE of 60.23% with the production rate of 0.67. The strains with medium yield potentiality expressed the average BE of 33.67% with the production rate of 0.37. The mean BE of strains grouped under low yield potential was 13.35% with a production rate of < 0.13.

The production technology of *Pleurotus eryngii* on saw dust based substrate supplemented with organic nitrogen materials has been standardized at ICAR-DMR, Solan with a biological efficiency of 30%. *Cordyceps militaris* was successfully cultivated under in vitro conditions using modified Malt Extract Medium. A temperature range of 18-22°C along with 8 hrs light period was provided for induction of fruiting.

During 2016-17, the Directorate was organized a total number of 11 on and off campus training programmes on scientific cultivation of mushrooms and trained 417 farmers, farmwomen, entrepreneurs, officers and scientists of KVKs/ SAUs. One day National Mushroom Mela was organized on 10<sup>th</sup> Sep, 2016. It was inaugurated by Dr. Hari Chand Sharma, Hon'ble Vice Chancellor of Dr.Y.S. Parmar University of Horticulture & Forestry, Nauni, Solan (HP). Dr. S.K. Chakravarty, Director, ICAR-Central Potato Research Institute, Shimla (HP) was the Guest of Honour. It was attended by about 1000 farmers, farmwomen,

इस मेले में हिमाचल प्रदेश, हरियाणा, पंजाब, ओडिशा, महाराष्ट्र, राजस्थान, आंध्रप्रदेश, दिल्ली, कर्नाटक, असम, बिहार, केरल तिमलनाडु के विभिन्न राज्यों से लगभग 1000 किसानो, महिला कृषको, खुम्ब उत्पादकों, शोधकर्ताओं, विस्तार कार्यकर्ताओं एवं व्यापारियों ने भाग लिया। भारत के 18 विभिन्न राज्यों के प्रतिनिधियों ने मेले में भाग लिया। खुम्ब मेले के दौरान, निदेशालय ने बड़े पैमाने पर खुम्ब की खेती में अभिनव प्रथाओं को अपनाने और अन्य किसानों को आय के स्रोत के रूप में मशरूम की खेती को बढ़ावा देने के लिए पांच प्रगतिशील खुम्ब उत्पादकों को सम्मानित किया।

मेरा गांव मेरा गौरव को आगे बढाने हेतु भाकृअनुप—खुम्ब अनुसंधान निदेशालय ने दो टीमों का गठन किया गया जिसमें प्रत्येक टीम में 4 वैज्ञानिक शामिल थे। इस योजना के कार्यान्वयन के लिए सोलन के आसपास 12 गांवों की पहचान की गई थी।

विशेषज्ञों के साथ परामर्श करके किसानों की सामान्य और कृषि संबंधी समस्याओं की पहचान एवं समाधान करने के लिए विभिन्न गांवों में मासिक यात्राओं, गोष्ठियो, बैठकें आयोजित की गईं। कृषि विज्ञान केंद्र कन्डाघाट के विशेषज्ञ भी बैठकों और गोष्ठियो के दौरान शामिल रहे।

तीन एंड्रॉइड आधारित मोबाइल एप्लिकेशन विकसित किए गए हैं, जो की डीएमआर-एफएफसीसी, आईसीएआर-मशरूम और आईसीएआर-डीएमआर है उपयोगकर्ता इन मोबाइल ऐप से खुम्ब की खेती से संबंधित जानकारी का उपयोग कर सकते हैं। डीएमआर-एफसीसी में 1983-2016 से भाकृअनूप — खु अनु नि में एकत्र मांसल कवक के लिए सूची शामिल है। आईसीएआर-डीएमआर में खु अनु नि से संबंधित जानकारी, उपलब्ध सेवाएं, प्रशिक्षण विवरण, मशरूम प्रोफाइल और बटन, ढींगरी, दूधिया, धान पुआल और शिटाके खुम्ब की खेती से संबंधित जानकारी शामिल है। आईसीएआर-मशरूम में स्वास्थ्य लाभ, प्रौद्योगिकी, उत्पाद, लिंक, संसाधन, सूचनाएं, फोटो गैलरी, पूछे जाने वाले प्रश्न और मौसम संबंधी जानकारी शामिल है।

mushroom growers, researchers, extension workers and businessmen from various states *viz*, Himachal Pradesh, Haryana, Punjab, Odisha, Maharashtra, Rajasthan, Andhra Pradesh, Delhi, Karnataka, Assam, Bihar, Kerala, Tamil Nadu. The representatives from 18 different states of India attended the mela. During the event five progressive mushroom growers from different parts of the country were felicitated for adopting innovative practices in mushroom cultivation on larger scale and motivated other farmers to adopt mushroom cultivation as source of additional income.

To implement the 'Mera Gaon Mera Gaurav' from the ICAR-Directorate of Mushroom Research, two teams were constituted consisting 4 scientists in each team. Twelve villages around Solan were identified for implementation of the scheme. Monthly visits, goshthis, meetings were conducted in different villages to identify the general and agriculture related problems of the farmers and offer solutions by consulting with the experts. The experts from KVK Kandaghat were involved during special meetings and goshtis under the scheme.

Three android based mobile applications were developed *viz.*, DMR-FFCC, ICAR-MUSHROOM and ICAR-DMR. Users can access information related to mushroom cultivation from these mobile apps. DMR-FCC includes the catalogue for fleshy fungi collected at ICAR-DMR from 1983-2016. ICAR-DMR includes information related to DMR, services available, training details, mushroom profile and information related to cultivation of button, oyster, milky, paddy straw and shiitake mushrooms. ICAR-MUSHROOM includes health benefits, technologies, products, links, resources, notifications, photo gallery, FAQs and weather related information.

# 1. खुम्ब अनुसंधान निदेशालय - एक परिचय

# 1. DMR- An Introduction

हाल के वर्षों में भारत में कृषि क्षेत्र के विकास में तेजी लाने के लिए कई कारकों ने एक साथ काम किया है। नई उन्नत प्रजातियों और बेहतर किस्मों के प्रजनन के साथ, हमने 260 मिलियन टन से अधिक अनाज उत्पादन करके खाद्य सुरक्षा हासिल की है। हालांकि, पोषण सुरक्षा हासिल करने के लिए हमारा संघर्ष अभी भी चल रहा है। 2015 में ग्लोबल हंगर इंडेक्स की रिपोर्ट के अनुसार भारत गंभीर कुपोषण की स्थिति वाले प्रमुख देशों में 20 वें स्थान पर है। निकट भविष्य में, कुपोषण और पोषण की समस्या हमारे देश के लिए एक अनकही चुनौती के रूप में बढ़ रही है। कृषि उपयोग के लिए भूमि और जल संसाधनों की कमी और जलवायु परिस्थितियों में बदलाव प्रचलित स्थितियों में वृद्धि कर रहे हैं।

इन चुनौतियों का समाधान करने के लिए, बढ़ती आबादी के लिए पोषण सुरक्षा सुनिश्चित करने के लिए और कृषि गतिविधियों में विविधता लाने के लिए बागवानी एक महत्वपूर्ण क्षेत्र है। खुम्ब एक ऐसा घटक है जो न केवल विविधीकरण प्रदान करता है बल्कि विभिन्न कृषि से उत्पन्न कूड़े को कम समय में उपयोग कर इसे पौष्टिक भोजन बना देता है।

दूसरी तरफ, खुम्ब की खेती निरंतर आय पैदा करके गरीब और सीमांत किसानों की आजीविका को मजबूत करती है और गरीबी की भेद्यता कम करती है चूंकि खुम्ब की खेती को भूमि की आवश्यकता कम है, इसलिए इसे ग्रामीण किसानों और शहरी निवासियों दोनों के लिए एक व्यवहार्य और आकर्षक गतिविधि माना जाता है।

सैकड़ों कवक प्रजातियों की पहचान की गई है जो मानव भोजन और चिकित्सा में महत्वपूर्ण योगदान दिया है। यद्यपि यह जंगली खाद्य कवक के रुप में संगृहीत है, फिर भी इन कवकों के उत्पादन में रुचि बढ़ रही है। कई खुम्ब प्रजातियों के लक्षण वर्णन, पोषण और औषधीय गुणों की पहचान मशरूम की खेती को व्यावसायिक स्तर पर आय पैदा करने के लिए कई उत्पादकों को प्रोत्साहन दे रही है।

कृषि अपशिष्ट पुनर्चकृण के लिए एक पर्यावरण अनुकूल विकल्प के रूप में खुम्ब की महत्ता को पहचानते हुए, व्यापक शाकाहारी जनसंख्या के लिए बेहतर पोषण उपलब्ध कराने और खुम्ब विज्ञान पर नए रोजगार अवसर सृजित करने तथा प्रणालीबद्ध अनुसंधान करने हेतु भारत में भारतीय कृषि अनुसंधान परिषद (भाकृअनुप) के तत्वावधान में वर्ष 1983 में सोलन, हिमाचल प्रदेश में राष्ट्रीय खुम्ब अनुसंधान केन्द्र की स्थापना की पहल की गई। अपनी 25 वर्षों की सफल यात्रा के बाद, खुम्ब अनुसंधान के क्षेत्र में उल्लेखनीय उपलब्धियों के साथ राष्ट्रीय खुम्ब अनुसंधान केन्द्र का उच्चीकरण दिनांक 26

Over the recent past, many factors have worked together to expedite growth in the agriculture sector in India. With the introduction of new cultivated species and breeding of improved varieties, we have achieved food security by producing over 260 million tonnes of food grains. However, our struggle to achieve the nutritional security is still on. The 2015 Global Hunger Index report ranked India 20th amongst leading countries with serious malnutrition situation. In near future, the problems of malnutrition and under nourishment are raising into a silent challenge to our nation. The depleting land and water resources for agricultural use and weird changes in climatic conditions are aggravating the prevailing situations. To address these challenges and to ensure the nutritional security for ever increasing population, it is important to diversify the agricultural activities in areas like horticulture. Mushrooms are one such component that not only impart diversification but also helps in providing nutritious food within less span of time by utilizing the various agro wastes.

On the other side, mushroom cultivation strengthens the livelihood of poor and marginal farmers by generating constant farm income and reduces the vulnerability to poverty. Since mushroom cultivation does not require access to land, it is treated as a viable and attractive activity for both rural farmers and peri-urban dwellers. There are hundreds of identified species of fungi which have made a significant contribution to human food and medicine. Although this contribution has been made through the collection of wild edible fungi, there is a growing interest in domestication of these fungi to replace the wild harvest. Identification and characterization of nutritional and medicinal properties of many mushroom species, coupled with the realization of the income generating potential through trade promoting many growers to take up the mushroom cultivation at commercial scale. On recognizing the importance of mushroom cultivation as an eco-friendly alternative for agro-waste recycling, capability to provide better nutrition for the vast vegetarian population and potentiality to generate new employment opportunities, systematic research on mushroom science has been initiated in India with the establishment of National Research Centre for Mushroom in 1983 at Solan (HP)

Mushroom in 1983 at Solan (HP) under the aegis of Indian Council

दिसम्बर, 2008 को खुम्ब अनुसंधान निदेशालय (डीएमआर) के रूप में किया गया। यह देश का एकमात्र ऐसा निदेशालय है, जो कि संपूर्ण रूप से खुम्ब अनुसंधान और विकास के कार्य के प्रति समर्पित है। भाकृअनुप – खुम्ब अनुसंधान निदेशालय के वैज्ञानिकों के सतत प्रयासों से देश में खुम्ब की उत्पादकता लगभग दोगुनी हो गई है, जबिक उत्पादन में भी छः गुणा वृद्धि दर्ज की गई है। निदेशालय द्वारा देश के विभिन्न कृषि जलवायू क्षेत्रों के लिए उपयुक्त, विभिन्न खुम्ब की खेती के लिए अनेक प्रौद्योगिकियां विकसित की गई हैं। क्षेत्रीय स्तर पर भाकुअनुप -खुम्ब अनुसंधान निदेशालय द्वारा विकसित प्रौद्योगिकयों के प्रमाणन और उन्नयन हेतु वर्ष 1983 में अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना नेटवर्क की पहल की गई, जिसका मुख्यालय सोलन, हिमाचल प्रदेश में स्थित है। वर्तमान में अखिल भारतीय समन्वित खुम्ब अनुसंधान परियोजना देश के 27 राज्यों में अपने 23 समन्वित तथा 9 सहयोगी केन्द्रों के माध्यम से चलाई जा रही है।

#### सीन

खुम्ब अनुसंधान निदेशालय हिमाचल प्रदेश के सोलन शहर में स्थित है जो कि हिमाचल प्रदेश का प्रवेशद्वार भी कहलाता है। सोलन शहर के पर्वतीय अजूबे अपनी सांस्कृतिक भव्यता, उत्कृष्ट पिकनिक स्थलों, अति प्राचीन मंदिरों और मौसमी सब्जी फसलों के लिए प्रसिद्ध हैं। औद्योगीकरण होने के कारण, सोलन अपने खुम्ब उत्पादन के लिए काफी लोकप्रिय है और इसे 'भारत का खुम्ब शहर' भी कहा जाता है। खुम्ब अनुसंधान, विकास तथा खुम्ब की खेती और इसे लोकप्रिय बनाने में खुम्ब अनुसंधान निदेशालय द्वारा किए गए प्रयासों और इस शहर के योगदान को मानते हुए हिमाचल प्रदेश के माननीय मुख्यमंत्री ने दिनांक 10 सितम्बर, 1997 को खुम्ब अनुसंधान निदेशालय तथा मशरूम सोसायटी ऑफ इंडिया द्वारा संयुक्त रूप से आयोजित भारतीय खुम्ब सम्मेलन में सोलन शहर को ''भारत का खुम्ब शहर'' घोषित किया।

## आधारभूत संरचना

निदेशालय में 13 आधुनिक पर्यावरण नियंत्रित फसलचक कमरे और चार इंडोर बंकरों तथा चार बल्क चैम्बरों वाली आधुनिक कम्पोस्टिंग इकाइयों के साथ एक पॉलीहाउस की सुविधा स्थापित है। निदेशालय में आधुनिक उपकरणों के साथ जैव प्रौद्योगिकी, जननद्रव्य संरक्षण, खुम्ब बीज उत्पादन, पादप संरक्षण और फसलोत्तर प्रौद्योगिकी के लिए बहु सुसज्जित पांच प्रयोगशालाएं हैं। प्रौद्योगिकी हस्तांतरण (TOT) संभाग में एक ही समय पर 250 से भी अधिक प्रशिक्षुओं की क्षमता वाला अति आधुनिक सुविधाओं से युक्त एक प्रशिक्षण केन्द्र है। खुम्ब अनुसंधान निदेशालय में खुम्ब विज्ञान एवं संबंधित विज्ञान से संबंधित क्षेत्रों में अनुसंधान एवं परामर्शी सेवाओं को सहयोग करने हेतु एक विशिष्टीकृत पुस्तकालय संकलन है। खुम्ब अनुसंधान निदेशालय में खुम्ब विज्ञान एवं संबंधित विज्ञान को संबंधित क्षेत्रों में

अनुसंधान एवं परामर्शी सेवाओं को

of Agricultural Research (ICAR).

After 25 years, with remarkable achievements in mushroom research, National Research Centre was upgraded as Directorate of Mushroom Research (DMR) on 26<sup>th</sup> Dec, 2008. This Directorate is the only institute exclusively dedicated to mushroom research and development in the country. By the concerted efforts of the scientists of ICAR-DMR, mushroom productivity in the country has almost doubled while production has registered a six fold increase. The directorate has developed an array of technologies for cultivation of different mushrooms suitable to diverse agro climatic regions of the country. To validate and promote the technologies developed by the ICAR-DMR at regional level, All India Coordinated Research Project network on Mushroom was initiated in the year 1983 with its head quarters at Solan. At present, AICRPM is running with 23 Coordinating and nine Cooperating Centres in 27 states across the country.

#### Location

The Directorate of Mushroom Research is located in Solan city of Himachal Pradesh, endeared as the gateway of Himachal Pradesh. The mountainous wonder of Solan city is famous for its cultural splendor, excellent picnic spots, numerous old temples and seasonal vegetable crops. Being quite industrialized, Solan is widely popular for its mushroom cultivation and bearing the title of "Mushroom City of India". Considering the contribution of this city and endeavour of DMR towards mushroom research, development, cultivation and popularization of mushroom, the Hon'ble Chief Minister of Himachal Pradesh declared Solan as the Mushroom City of India on 10<sup>th</sup> September, 1997 during the Indian Mushroom Conference organized jointly by the DMR and Mushroom Society of India.

#### Infrastructure

The Directorate has 13 modern environment controlled cropping rooms and one poly house along with modern composting units comprising of four indoor bunkers and four bulk chambers. The centre has five well equipped laboratories for biotechnology, germplasm conservation, spawn production, plant protection and post harvest technology with modern state of the art equipments. The TOT division has well sophisticated training centre with a capacity to accommodate more than 250 trainees at a time. The Directorate of Mushroom Research has a specialized

सहयोग करने हेतु एक विशिष्टीकृत पुस्तकालय संकलन है। पुस्तकालय में कुल 2089 पुस्तकों, पत्रिकाओं के 2500 पिछले अंकों का संग्रह है। यह भारत में खुम्ब साहित्य हेतु एक अकेला संदर्भ पुस्तकालय है।

### कार्मिक एवं वित्त

निदेशालय में कुल 9 वैज्ञानिक, एक निदेशक, 14 तकनीकी, 16 प्रशासनिक और 11 कुशल सहायी स्टाफ की स्वीकृत संख्या है। दिनांक 31.03.2017 के अनुसार स्टाफ की स्थित के तहत कुल 9 वैज्ञानिक, 12 तकनीकी, 12 प्रशासनिक और 5 कुशल सहायी स्टाफ तैनात है। वर्ष 2016—17 के लिए निदेशालय का वार्षिक बजट रूपये 415.10 लाख (योजना) और रूपये 553.05 लाख (गैर—योजना) था, जिसका पूरी तरह से सदुपयोग किया गया। संस्थान द्वारा साहित्य, खुम्ब संवर्धन, व्यावसायिक खुम्ब बीज, ताजा खुम्ब, मूल्य वर्धित उत्पादों, परामर्शी सेवाओं, प्रशिक्षण और अन्य सेवाओं के माध्यम से 43. 16 लाख रूपये का राजस्व अर्जित किया गया।

#### परिकल्पना

आर्थिक प्रगति, पारिस्थितिकीय निरंतरता एवं पोषणिक सुरक्षा के लिए खुम्ब का अनुसंधान एवं विकास करना।

#### लक्ष्य

खुम्ब की गुणवत्ता और उत्पादकता को बढ़ाने, कृषि अपशिष्टों / अपशिष्ट खुम्ब पोषाधार का उपयोग करने और रोजगार उत्पन्न करने, गरीबी का निवारण करने तथा पोषणिक सुरक्षा सुनिश्चित करने के लिए द्वितीयक कृषि को प्रोत्साहित करने हेतु मूलभूत अनुसंधान करने, खुम्ब विविधता को संरक्षित करने तथा प्रौद्योगिकियों / किस्मों को विकसित करने के लिए अनुसंधान व विकास करना।

#### अधिदेश

- खुम्ब के सभी पहलुओं पर लक्ष्य उन्मुख तथा नवोन्मेषी अनुसंधान का आयोजन करना ।
- 2. शैक्षणिक उत्कृष्टता के केन्द्र तथा खुम्ब जननद्रव्य के भण्डार घर के रूप में कार्य करना:
- 3. उच्चतर उत्पादन एवं उत्पादकता को प्राप्त करने हेतु राष्ट्रीय महत्व की स्थान विशिष्ट समस्याओं पर नेटवर्क अनुसंधान का समन्वय करना;
- 4. मानव संसाधन विकास एवं प्रौद्योगिकी हस्तांतरण को प्रोत्साहित करना;
- 5. गरीबी निवारण के लिए खुम्ब उद्योग के साथ—साथ ग्रामीण जनसंख्या को तकनीकी सहयोग प्रदान करना।

library collection in mushroom science and related sciences to support research and consultancy in the relevant areas. The library has accessioned 2089 books, 2500 back volumes of journals. This is a sole referral library for mushroom literature in India.

#### Personnel and finance

The Directorate has a sanctioned strength of 16 scientists + one director, 14 technical, 16 administrative and 11 supporting staff. The staff position as on 31.03.2017 was 9 scientists, 12 technical, 12 administrative and five skilled staff. The annual budget of the Directorate for the year 2016-17 was Rs. 415.00 lakh (Plan) and 553.05 lakh (Non plan) which was fully utilized. The institute earned Rs. 43.16 lakh as revenue during the year by sale of literature, mushroom cultures, commercial spawn, fresh mushrooms, value added products, consultancy, training and other services.

#### Vision

Mushroom research and development for economic growth, ecological sustainability and nutritional security.

#### Mission

R & D to undertake basic research, conserve mushroom diversity, develop technologies/varieties to enhance mushroom quality and productivity, utilize agro-wastes/spent mushroom substrates and promote secondary agriculture for generating employment, ameliorating poverty and ensuring nutritional security.

#### Mandate

- 1. To conduct mission-oriented and innovative research on all aspects of mushrooms
- 2. To act as the centre of academic excellence and repository of mushroom germplasm and information
- 3. To coordinate network research on location specific problems of national importance to achieve higher production and productivity
- 4. To promote human resource development and transfer of technology
- 5. To provide technical support to the mushroom industry as well as to rural masses for poverty alleviation

#### **Organogram of ICAR-DMR DIRECTOR GENERAL-ICAR DEPUTY DIRECTOR GENERAL (HORTICULTURE) DIRECTOR RESEARCH ADVISORY COMMITTEE INSTITUTE MANAGEMENT COMMITTEE RESEARCH AICRP ADMINISTRATIVE CELLS PROGRAMMES MUSHROOM SECTIONS PRIORITIZATION** PAU ,LUDHIANA **CROP IMPROVEMENT ADMINISTRATION MONITORING 7** TNAU, COIMBATORE **EVALUATION** GBPUA&T, PANTNAGAR **CROP PRODUCTION** CoA. MPAU, PUNE **ACCOUNTS & AUDIT** IGKVV, RAIPUR **AKMU** MPUAT, UDAIPUR **CROP PROTECTION ESTATE KAU, VELLAYANI LIBRARY &** CCSHAU, HISSAR **DOCUMENTATION OUAT, BHUBANESWAR CROP NUTRITION & STORE RAU, SAMASTIPUR UTILIZATION CHF CAU, PASIGHAT ART & PHOTOGRAPHY** CSK HPKV, PALAMPUR TRANSFER OF HAIC, MURTHAL **TECHNOLOGY ICAR-RC NEH, BARAPANI** ICAR-RC NEH, SIKKIM **ICAR-RC NEH, ARUNACHAL ICAR-RC NEH, NAGALAND** ICAR-RC NEH, MANIPUR ICAR-RC NEH, MIJORAM **ICAR-RC NEH, TRIPURA** ICAR-RC ERRC, RANCHI **ICAR-CIARI, PORT BLAIR** ICAR-IIHR, BENGALURU YSPUHF, NAUNI **ICAR-VPKAS, ALMORA** SKUAST, SRINAGAR SKUAST, JAMMU **AAU, JORHAT** SBBPUAT, MEERUT **BCKV, NADIA** SDAU, DANTIWADA PJTAU, HYDERABAD

# 2. अनुसंधान उपलिध्याँ 2.Research Achievements

# (क) फसल सुधार

# **A. Crop Improvement**

## 1. खुम्ब आनुवांशिक संसाधन

#### जनन्द्रव संग्रह, लक्षण वर्णन और संरक्षण

हिमाचल प्रदेश और त्रिपुरा राज्यों के जंगल क्षेत्रों में फंगल फोरे का आयोजन किया गया था। कुल 27 नमूने एकत्र किए गए थे और 21 जीनस स्तर तक की पहचान की गई थी। सभी नमूनों को भा.कृ.अनु.प—खु. अनु. नि., सोलन के हेर्बरियम में संरक्षित किया गया है और उनकी तस्वीरों के साथ मैक्रोस्कोपिक फीचर के लिए जांच की गई है। 21 नमूने के शुद्ध ऊतक को खु. अनु. नि., सोलन के जीन बैंक में जमा किया गया। दिलचस्प नमूनों में से कुछ लेपिस्ता प्रजाति, लेउकोकोपरिनुस प्रजाति, गयमणोपीलुस प्रजाति, लेकेरिया प्रजाति, और औ्रस्तरोबोलेटुस प्रजाति आदि है।

### भारत से वन्य खुम्ब का सर्वेक्षण और संग्रह

सोलन इलाके और शाल के जंगलों से बरसात के मौसम में जंगली खुम्ब नमूने एकत्र किए गए थे।

सभी नमूनों की जांच उनके मैक्रोस्कोपिक पात्रों के लिए की गई थी और शुद्ध ऊतक को भा.कृ.अनु.प—खु. अनु. नि., सोलन के जीन बैंक में संरक्षित किया गया था नमूनों को हेर्बिरयम में संरक्षित किया गया है।

इन नमूनों में शामिल हैं लेपिस्ता प्रजाति, लेउकोकोपरिनुस प्रजाति, कालवतिया प्रजाति, लेपिओटा प्रजाति, अगरिक्स प्रजाति आदि हैं।

## ऊपर की आकृतित्मक विवरण नीचे दिए गए हैं

## 1. लेपिस्ता प्रजाति

आकृति विज्ञान— पिलियस 3.5 से 6.0 सेंटीमीटर व्यास के साथ हल्के सफेद रंग का हल्के बैंगनी मार्जिन है। नियमित मार्जिन के साथ पिलियस आकार उत्तल प्रकार, पिलियस मार्जिन रोल मुड़ा और नम, पीलेस की मोटाई 0.5 सेंटीमीटर है, जिसमें चोट लगने पर कोई भी रंग परिवर्तन नहीं होता है डंठल केंद्रीय रूप में चिपका हुआ भूरा रंग और बैंगनी रंग का, डंठल लंबाई 5.5 सेमी और 7 मिमी मोटाई, डंठल बेस कुंद प्रकार और स्थिरता रेशेदार, रिंग, वेल और वोल्वा अनुपस्थित, गिल लंबाई 2.2 सेमी और लैम्मेल 7 के सेट की संख्या मे, गिल मांस प्रकार का और नीले रंग की बैंगनी रंग में, गिल्स वियोज्य और गिल चौड़ाई चिकनी किनारों के साथ 0.6 सेमी मे देखी गई है।

#### i. Mushroom Genetic Resources

# Germplasm collection, characterization and conservation

Fungal forays were undertaken in the forest areas of Himachal Pradesh and Tripura states. A total number of 27 specimens were collected and 21 were identified up to genus level. All the specimens have been preserved in the herbarium of ICAR-DMR, Solan and examined for their macroscopic feature in the field along with their photographs. Pure tissue cultures of 21 specimens were obtained and deposited in the Gene bank of DMR, Solan. Some of the interesting specimens include *Lepista* sp., *Leucocoprinus* sp., *Gymnopilus* sp., *Laccaria* sp., and *Austroboletus* sp., etc.

# Survey and collection of wild mushrooms from India

Wild mushroom specimens were collected during rainy season from the Solan locality and Sal forests. All the specimens were examined for their macroscopic characters and tissue cultures were isolated and conserved along with the herbarium of the specimens in the gene bank of ICAR-DMR, Solan. The specimens includes *Lepista* sp, *Leucocoprinus* sp, *Calvatia* sp, *Lepiota* sp, *Agaricus* sp. etc. The morphological descriptions of above are given below:

#### 1. Lepista sp.

Morphology-Pileus is 3.5 to 6.0 cm diameter with dull white in color and light violet at margin. Pileus shape convex type with regular margin. Pileus margin roll inflexed and moist. Pileus thickness 0.5cm with no color changes on handling and bruising. Stipe attached centrally with grayish violet color. Stipe length 5.5cm and 7mm thickness. Stipe base blunt type and consistency fibrous. Ring, veil and volva absent. Gill length 2.2 cm and number of sets of lamella 7. Gill fleshy type and bluish violet in color. Gills separable and gill breadth 0.6 cm with smooth edges.

### 2. Leucocoprinus sp.

Morphology-Habit coprinoid growing in dung with fungoid odour. Spore print

## 2. लेउकोकोपरिनुस प्रजाति

आकृति विज्ञान– कॉपरीनोइड गोबर मे उगता है फुन्गोइड गंध , बीजाणु छाप सफेद रंग का, पिलियस 6.0 से मी व्यास के साथ केंद्र में सफेद रंग का, पिलियस किनारे नियमित और मुझे हुए इनलेक्स प्रकार के, सूखी पिलियस, मांसल स्थिरता और पृथक्करण गैर—संगम प्रकार, पिलियस मोटाई 0.2 सेमी से और चोट पर कोई रंग परिवर्तन नहीं होता, हल्के पीले रंग के साथ केन्द्रित डंटल, डंटल लंबाई 6.0 सेमी, रिंग उपस्थित, वेइल और वाल्व अनुपस्थित, गिल लंबाई 2.8 सेमी, गिल मांसल प्रकार अलग और गिल चौडाई 0.4 सेमी पायी गई है

#### 3. कल्वाटिया प्रजाति

आकृति विज्ञान— बेसिडियोकार्प 13 सेंटीमीटर तक, फुन्गोइड गंध के साथ मिट्टी में उगता है । पिलियस व्यास में 12.5 सेंटीमीटर, स्प्रायोफोरे वजन 350 ग्राम तक होता है । गिल लंबाई 2.8 सेमी, गिल मांसल प्रकार अलग होने वाला और गिल चौडाई 0.4 सेमी डंठल उपस्थित, स्वाद परेशान करने वाला होता है

#### 4. अगरिक्स प्रजाति

आकृति विज्ञान— फुन्गोइड गंध के साथ मिट्टी में उगता है । बीजाणु छाप चॉकलेंट रंग में, पिलियस व्यास में 3-13 सेमी, किनारों का रंग भूरा, पिलियस मार्जिन नियमित और किनारे मुझे हुए इनलेक्स प्रकार के । मांसल स्थिरता और पृथक्करण गैर—संगम प्रकार। पीलेस मोटाई ०.८ सेमी से और रगडने पर कोई रंग परिवर्तन नहीं होता। डंठल सफेद हाथीदांत रंग के साथ केंद्रीय रूप से जुड़ा हुआ है डंठल लंबाई 5.0-10 सेमी और मोटाई 1.5 सेमी रिंग उपस्थित, वेल उपस्थित, वोल्वा अनुपस्थित। गिल लंबाई 4-5 सेमी और गिल आकार सिग्माइड। स्वाद हल्का।

#### 5. जिम्नोपिलेस प्रजाति

आकृति विज्ञान- फोतोलोइड और लिगिनोकोलुस, बीजाणु रंग में तंबाकू भूरे रंग का छाप । पिलियस व्यास में 7-7.6 सेमी, केंद्र में जुड़ा हुआ बैंगनी रंग का । पिलियस मार्जिन नियमित। सूखी सतह , मांसल स्थिरता और अलग होने वाला कान्पल्यूयेंट प्रकार। पिलियस मोटाई 0.2 सेमी और रगड़ने पर कोई रंग परिवर्तन नहीं होता। डंठल से जुड़े केंद्र, डंठल लंबाई 8.2 सेमी और मोटाई 0.8 सेमी अनुपस्थित रिंग , वेल अनुपस्थित, वाल्व अनुपस्थित। गिल लंबाई असमान है गिल अलग होने वाला और गिल आकार सिग्माइड।

#### 6.लाक्टारिउस प्रजाति

आकृति विज्ञान- मिट्टी में बढता है बीजाणु रंग में तंबाकू भूरे रंग का छाप । पिलियस व्यास में 4–4.1 सेमी, पिलियस मार्जिन अनियमित। सूखी पीलूल, मांसल स्थिरता और मिला हुआ प्रकार। 6

white in color. Pileus 6.0cm in diameter with white at center. Pileus margin regular and margin roll inflexed type. Dry surfaced pileus, fleshy consistency and separation non-confluent type. Pileus thickness 0.2 cm with no color changes on handling and bruising. Stipe attached centrally with light yellow color. Stipe length 6.0cm. Ring present, veil absent, volva absent. Gill length 2.8 cm. Gill fleshy type. Gills separable and gill breadth 0.4 cm.

#### 3. Calvatia sp.

Morphology- Basidiocarp upto 13 cm, growing in soil with fungoid odour. Pileus 12.5 cm in diameter, sphorophore very large upto 350g in fresh weight. Gill length 2.8 cm. Gill fleshy type. Gills separable and gill breadth 0.4 cm. Stipe present. Taste slightly irritating.

#### 4. Agaricus sp.

Morphology-Habit agaricoid growing in soil with fungoid odour. Spore print chocolate in color. Pileus 3-13 cm in diameter, color oak brown at margins. Pileus margin regular and margin roll inflexed type. Moist surfaced pileus, fleshy consistency and separation nonconfluent type. Pileus thickness 0.8 cm with no color changes on handling and bruising. Stipe attached centrally with white ivory color. Stipe length 5.0-10cm and thickness 1.5 cm. Ring present, veil present, volva absent. Gill length 4-5 cm. Gills separable and gill shape sigmoid. Taste mild.

#### 5. Gymnopilus sp.

Morphology-Habit pholiotoid growing habitat lignicolous. Spore print tobacco brown in color. Pileus 7-7.6 cm in diameter, purple color at center. Pileus margin regular. Dry surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.2 cm with no color changes on handling and bruising. Stipe attached centrally. Stipe length 8.2 cm and thickness 0.8 cm. Ring absent, veil absent, volva absent. Gill length unequal. Gills separable and gill shape sigmoid.

#### 6. Lactarius sp.

Morphology- Growing habitat is soil. Spore print tobacco brown in color. Pileus 4-4.1 cm in diameter, pileus margin irregular. Dry surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.2 cm with no color changes on handling and bruising. Stipe attached centrally but sometimes eccentric. Stipe length 3.0 cm and thickness 0.7 cm. Ring absent, veil absent, volva absent. Gill length 5-6cm and unequal. Gills separable and gill shape lanceolate. Taste mild.

पिलियस मोटाई ०.२ सेमी और झटके से कोई रंग परिवर्तन नहीं होता। डंठल संलग्न केंद्रीय लेकिन कभी एसेंत्रिक, डंठल लंबाई 3.0 सेमी और मोटाई 0.7 सेमी, रिंग अनुपस्थित, वेल अनुपस्थित, वाल्व अनुपस्थित। गिल लंबाई 5—6 सेमी और गिल अलग होने वाले और गिल आकार भालाकार। स्वाद हल्का।

#### 7. एमिनीटा प्रजाति

आकृति विज्ञान— मिट्टी में बढता है बीजाणु सफेद रंग का, पिलियस व्यास में 2.6 सेमी, केंद्र में भूरे रंग और हल्के भूरे रंग के किनारे। पिलियस किनारे अनियमित और सतह नम, डंठल संलग्न केंद्र। डंठल रंग सफेद स्टिप लंबाई 1.9 सेमी और मोटाई 0.3 सेमी, रिंग अनुपस्थित, वेल अनुपस्थित, वोल्वा उपस्थित। गिल लंबाई असमान है गिल अलग होने वाला होता है

### 8.प्लयूरोट्स प्रजाति

आकृति विज्ञान— लिगिनोकोलुस और प्लयूरोतोइड, बीजाणु सफेद रंग का, पिलियस व्यास में 7 सेंटीमीटर, पिलियस मार्जिन अनियमित और सूखी सतह, मांसल स्थिरता और अलग होता हुआ कान्फ्ल्यूयेंट प्रकार। पिलियस मोटाई 0.1 सेमी से निपटने और रगड़ने पर कोई रंग परिवर्तन नहीं होता। डंठल संलग्न केंद्रीय लेकिन कभी कभी एसन्त्रिक, लंबाई 3.0 सेमी और मोटाई 0.7 सेमी, रिंग अनुपस्थित, वेइल अनुपस्थित, वाल्व अनुपस्थित। गिल लंबाई असमान है और गिल अलग होने वाले होते है.

## 9. औस्त्रोबोलेतुस प्रजाति

आकृति विज्ञान— मिट्टी में बढता है पिलियस व्यास में 3 सेमी, पिलियस मार्जिन सीधे, नियमित और भूरे रंग के काले रंग में। पिलियस सूखी सतह का , मांसल स्थिरता और अलग होता हुआ कान्पल्यूयेंट प्रकार । पिलियस मोटाई 0.1 सेमी से निपटने और रगड़ने पर कोई रंग परिवर्तन नहीं होता। डंठल से जुड़े केंद्र डंठल लंबाई 3.3 सेमी और मोटाई 0.7 सेमी, रिंग अनुपस्थित, वेल अनुपस्थित, वाल्व अनुपस्थित।

#### 10. लेकेरिया प्रजाति

आकृति विज्ञान— मिट्टी में बढता है बीजाणु सफेद रंग का, पिलियस व्यास में 1.5—2.0 सेंटीमीटर, पिलियस मार्जिन नियमित और अनुक्रमित। सूखी सतह, मांसल स्थिरता और अलग होता हुआ कान्फ्ल्यूयेंट प्रकार। पिलियस मोटाई 0.1 सेमी से निपटने और रगड़ने पर कोई रंग परिवर्तन नहीं होता। डंठल से जुड़े एसन्त्रिक प्रकार, लंबाई 3.5 सेमी और मोटाई 0.4 सेमी, रिंग अनुपस्थित, वेल अनुपस्थित, वाल्व अनुपस्थित। गिल लंबाई असमान है गिल मोटाई 0.2—0.3 सेमी गिल अलग होने वाले होते है

#### 7. Amanita sp.

Morphology- Growing habitat on soil. Spore print white in color. Pileus 2.6 cm in diameter, grayish brown at center and light grey brown margins. Pileus margin irregular. Moist surfaced pileus, Stipe attached centrally. Stipe color white. Stipe length 1.9 cm and thickness 0.3 cm. Ring absent, veil absent, volva present. Gill length unequal. Gills separable.

#### 8. Pleurotus sp.

Morphology- Growing habitat is lignicolous. Habit pleurotoid. Spore print white in color. Pileus 7 cm in diameter, pileus margin irregular. Dry surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.1 cm with no color changes on handling and bruising. Stipe attached centrally but sometimes eccentric. Stipe length 3.0 cm and thickness 0.7 cm. Ring absent, veil absent, volva absent. Gill length unequal. Gills separable.

#### 9. Austroboletus sp.

Morphology- Growing habitat is on soil. Pileus 3 cm in diameter, pileus margin straight, regular and grayish black in color. Dry surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.1 cm with no color changes on handling and bruising. Stipe attached centrally. Stipe length 3.3 cm and thickness 0.7 cm. Ring absent, veil absent, volva absent.

#### 10. Laccaria sp.

Morphology- Growing habitat is on soil. Spore print white in color. Pileus 1.5-2.0 cm in diameter, pileus margin regular and inflexed. Dry surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.1 cm with no color changes on handling and bruising. Stipe attached centrally. Stipe length 3.5 cm and thickness 0.4 cm. Ring absent, veil absent, volva absent. Gill length unequal. Gill breath 0.2-0.3 cm. Gills separable.

#### 11. Boletus sp.

Morphology- Growing habitat is soil. Spore print tobacco brown in color. Pileus 5-5.2 cm in diameter, colour orange margin irregular. Glutinous surfaced pileus, fleshy consistency and separation confluent type. Pileus thickness 0.2-0.3 cm with no color changes on handling and bruising. Stipe attached centrally. Stipe length 2.5-2.7 cm and thickness 0.4 cm. Ring absent, veil absent, volva absent. Gill length 5-6cm and unequal. Gills free.

### 11.बोलेट्स प्रजाति

आकृति विज्ञान— मिट्टी में बढता है तंबाकू भूरे रंग का बीजाणु प्रिंट। पिलियस व्यास में 5—5.2 सेमी, रंग नारंगी मार्जिन अनियमित। चिपचिपा सतह, मांसल स्थिरता और अलग होता हुआ कान्फ्ल्यूयेंट प्रकार। पिलियस मोटाई 0.2—0.3 सेमी से निपटने और रगड़ने पर कोई रंग परिवर्तन नहीं है। डंठल से जुड़े केंद्र सीढ़ी लंबाई 2.5—2.7 सेमी और मोटाई 0.4 सेमी। अनुपस्थित रिंग, वेल अनुपस्थित, वाल्व अनुपस्थित। गिल लंबाई 5—6 सेमी और गिल असमान और खुले हुए पाये जाते है

#### 12.स्त्रोबिलोमय्सिस प्रजाति

आकृति विज्ञान— मिट्टी में बढता है बीजाणु रंग में तंबाकू भूरे रंग का प्रिंट। पिलियस व्यास में 4.5 सेंटीमीटर, सीधे पैलेस मार्जिन मांसपेशियों की स्थिरता और अलग होता हुआ कान्फ्ल्यूयेंट प्रकार। पिलियस रंग हरा गुलाबी पीलेस मोटाई 0.2 सेमी से निपटने और झटके पर कोई रंग परिवर्तन नहीं होता। डंठल संलग्न केंद्रीय लेकिन कभी कभी इसेनट्रीक डंठल लंबाई 3.5 सेमी और मोटाई 0.7 सेमी अनुपस्थित रिंग, वेल अनुपस्थित, वाल्व अनुपस्थित।

### 13. रसूला प्रजाति

आकृति विज्ञान— मिट्टी मे बढता है बीजाणु तंबाकू भूरे रंग का प्रिंट। पिलियस 3.2—2.8 सेमी पिलियस मार्जिन नियमित। सतह नम, मांसल स्थिरता और पृथक्करण नॉन—कान्फ्ल्यूयेंट प्रकार। पिलियस मोटाई 0.2 सेमी और झटके पर कोई रंग परिवर्तन नहीं होता। डंठल से जुड़े केंद्र सीढ़ी लंबाई 2.5 सेमी और मोटाई 0.6 सेमी अनुपस्थित रिंग, वेल अनुपस्थित, वाल्व अनुपस्थित। गिल आकार 0.2 से 0.3 सेमी गिल लंबाई असमान है गिल अलग होने वाले और आकार सिग्माइड।

#### 12. Strobilomyces sp.

Morphology- Growing habitat is soil. Spore print tobacco brown in color. Pileus 4.5 cm in diameter, pileus margin straight. Fleshy consistency and separation confluent type. Pileus colour greenish pink. Pileus thickness 0.2 cm with no color changes on handling and bruising. Stipe attached centrally but sometimes eccentric. Stipe length 3.5 cm and thickness 0.7 cm. Ring absent, veil absent, volva absent.

#### 13. Russula sp.

Morphology- Growing habitat is soil. Spore print tobacco brown in color. Pileus 3.2-2.8 cm. Pileus margin regular. Moist surfaced pileus, fleshy consistency and separation non-confluent type. Pileus thickness 0.2 cm with no color changes on handling and bruising. Stipe attached centrally. Stipe length 2.5 cm and thickness 0.6 cm. Ring absent, veil absent, volva absent. Gill size 0.2 to 0.3 cm. Gill length unequal. Gills separable and gill shape sigmoid.

Table 2.1 Functions of the WRKY proteins identified on the basis of Swiss models developed. तालिका 2.1 स्विस मॉडल के आधार पर विकसित वर्की प्रोटीन के कार्य

| Name of the protein                             | Function                                                                                                                                      | Name of the protein                                    | Function                                                                                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Choline-phosphate<br>cytidylyl<br>transferase A | Aminophosphonate metabolism and glycerophospholipid metabolism in membrane. Disease/abiotic stress tolerance.                                 | ATP-dependent RNA<br>helicase MSS116,<br>mitochondrial | Maintenance of mitochondrial genome integrity.                                                                |
| Protein UPS1, mitochondrial                     | Maintenance of normal mitochondrial morphology. Disease/abiotic stress tolerance.                                                             | Atypical kinase<br>ADCK3, mitochondrial                | Regulation of quinone synthesis. Contributes in disease resistance                                            |
| Symplekin                                       | Promotes gene expression through polyadenylation                                                                                              | Sus TBC1D15 GAP<br>Domain                              | Development of Nuclear envelop, Cell division                                                                 |
| Reverse transcriptase p66 subunit               | Restoration of normal DNA function                                                                                                            | Atypical kinase<br>ADCK3, mitochondrial                | Protein kinase activity                                                                                       |
| Ribonuclease H                                  | Replication and repair of DNA during abiotic/biotic stress                                                                                    | Eukaryotic initiation factor 4a-iii                    | mRNA binding to ribosome                                                                                      |
| Reverse transcriptase / ribonuclease H p80      | Replication and repair of DNA during abiotic/biotic stress                                                                                    | Alpha-actinin 2                                        | actin-based cytoskeletons                                                                                     |
| Apolipoprotein A-IV                             | Intestinal absorption in mammals but function in plants is unknown.                                                                           | DNA repair protein<br>RECN                             | DNA repair and recombination function                                                                         |
| Cellulose Synthase<br>Subunit A                 | Mechanism of the cell<br>wall formation. Involved<br>in the primary cell wall<br>formation. Growth and<br>development of plants.              | Rio1 serine protein kinase                             | Ribosome biogenesis, cell cycle progression and Chromosome repair.                                            |
| Rab GTPase-activating protein 1                 | Signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Growth and development of plants. | Reverse gyrase                                         | Introduces positive supercoils into DNA in an ATP-dependent manner. Specially active against viral infection. |
| ROP5B                                           | Allosteric Inhibitor of the<br>Immunity-related<br>GTPases. Mediates<br>hypersensitivity responses.                                           |                                                        | 9                                                                                                             |

ii. आनुवांशिक सुधार

बटन खुम्ब :-

बायस्पोरउस जीनोम में डब्ल्यूआरकेवाई एम्प्लिक्स से पृथक प्लास्मिड के अनुकरण, विश्लेषण और प्रोटीन डोमेन की पहचानः

एग्रिकस जीनोम में कई जगहों पर डब्लूआरकेवाई डोमेन की उपस्थिति को देखा गया और विभिन्न प्रकार के डब्ल्यूआरकेवाई डोमेन की जीनोम में पहचान की गयी। न्युक्लिओटाइड बाध्यकारी साइट से जुडी (डब्ल्यूआरकेयाडोमेन के साथ जुड़ी) रोग प्रतिरोध जीन के लिए प्राइमर की पहचान की गई। दो डब्ल्यूआरकेवाई प्राइमरों और दो एनबीएस प्राइमरों का इस्तेमाल एग्रिकस जीनोम में डब्ल्यूआरकी डोमेन को म्पलेफाय करने के लिए किया गया था। डब्ल्युआरकी प्राइमर

A7G1F - 5\* CCTTCTCCTTCCCTTCGACT 3\* A7G1R - 5\* AATGATCTCGGTGAGGTCAGA 3

ल्यूसिन रिच रिपीट न्युक्लिओटाइड बाइंडिंग साईट प्राइमर

#### ii. Genetic Improvement:-Button Mushroom

Sequencing of isolated plasmids having WRKY amplicons and their analysis and identification of protein domains in A. bisporus genome

Agaricus genome showed the presence of WRKY domain has been identified at multiple sites in the mushroom genome. Two WRKY primers and two NBS primers were used to amplify the WRKY domains in Agaricus genome.

WRKY primers

A7G1F – 5' CCTTCTCCTTCCCTTCGACT 3'
A7G1R – 5' AATGATCTCGGTGAGGTCAGA 3
Leucine rich repeat nucleotide binding site primers
M13R1F- 5' CGGCCAAGTCGTGCAAYVAKRTCRTGCA 3'
M131495R – 5 ' YTTNARNGCNARNGGNARNCC 3'

For the characterization of this transcription factor a total of 51 amplicons from different strains, fertile and non-fertile single spore isolates were isolated and cloned in DH-5a strain of *E. coli* using PGMT vector system and plasmids were isolated for sequencing. The sequences were modeled using Swiss models and gene

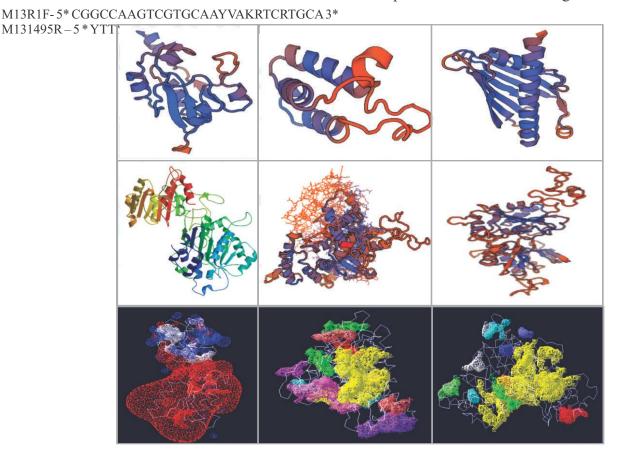



Fig 2.1 Some of the WRKY proteins in *A. bisporus* modeled and their binding sites and electrostatic potential worked out

चित्र-2.1 ए. बाईस्पोरस में तैयार की गई कुछ WRKY प्रोटीन, बाध्यकारी साइटें और इलेक्ट्रोस्टैटिक संभाव्यता

मॉडलिंग प्रोटीन के आधार पर डब्ल्यूआरकेवाई प्रोटीन के कुछ कार्यों की पहचान की गयी और ज्यादातर प्रोटीन के कार्य जैविक और अबाउटिक तनाव सिहण्णुता, डीएनए की मरम्मत, जीन अभिव्यक्ति विनियमन और विकास आदि से संबंधित होते पाए गए।

### प्रजनन मार्करों की पुष्टि के लिए एसएसआर, आईएसएसआर और रेट्रोएलिमेंट आधारित मार्करों का मुल्यांकन

33 एसएसआर मार्कर, 7 आईएसएसआर मार्कर, 34 आईआरपी और 14 रेमॅप प्राइमरों का प्रयोग प्रजनन मार्करों की पहचान के लिए किया गया था। इसके अलावा आईएसएसआर, एसएसआर, आईआरएपी, रीएमएप्स सहित कुल 585 मार्करों का इस्तेमाल किया गया था। कुछ मार्करों की पहचान की गई है और बटन मशरूम में प्रजनन मार्करों की अनुक्रमण पहचान हेतु एम्पलिकान को क्लोन किया गया है।

functions identified.

Based on the modeled proteins some of the functions of the WRKY protein are identified and mostly the functions of the proteins were found to be related with biotic & abiotic stress tolerance, DNA repair, gene expression regulation, growth and development, etc.

# **Evaluation of SSR, ISSR and Retroelement based** markers for confirmation of fertility markers

33 SSR markers, 7 ISSR markers, 34 IRAPs and 14 ReMAP primers were used to identify the fertility markers. Further, a total of 585 markers including ISSRs, SSRs, IRAPs, ReMAPs were used for the purpose. Some of the markers have been identified and the identified amplicons are cloned for sequencing for identification of fertility markers in button mushroom.

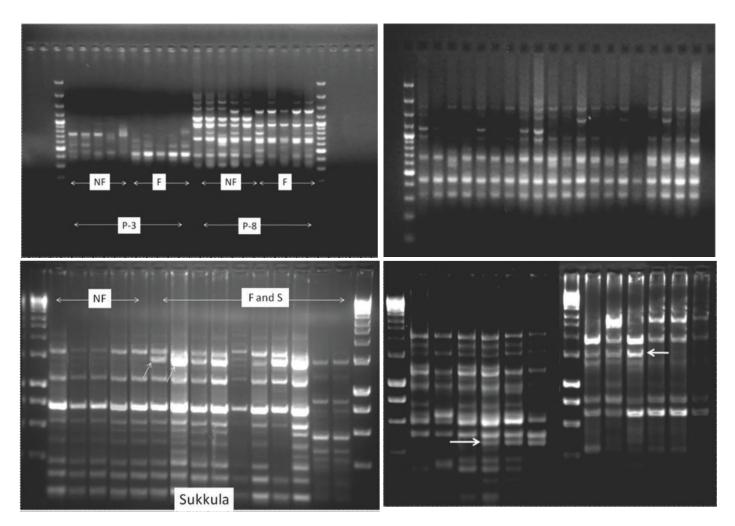



Fig. 2.2 Unique markers in fertile and non-fertile single spore isolates using ISSR, SSR, IRAPs and ReMAPs चित्र. 2.2 उपजाऊ और गैर–उपजाऊ एकल बीजाणु में अनुठे मार्कर आईएसएसआर, एसएसआर, आईआरएपी और रीएमएप्स का उपयोग

जेएल प्रोफाइल के विश्लेषण के दौरान कुल 585 मार्कर की बैंड उपस्थिति और अनुपस्थिति के लिए स्कोर किये गए। विश्लेषण एनटी—सिस संस्करण 2.02 में किया गया था और डेटा को विन— बूट बूटस्ट्रैप सॉफ्टवेयर के आधार पर बूटस्ट्रैप विश्लेषण का उपयोग करके 1000 संख्या तक किया गया था। विश्लेषण के परिणाम से पता चला है कि सभी संकर में माता—पिता की तुलना में 8 से 23% के बीच के आनुवांशिक विविधता पाई गयी। सभी अलग—अलग हिस्सों में मजबूत बूटस्ट्रैप मूल्य प्राप्त किए गए थे।

A total 585 markers were scored for presence and absence of bands during the analysis of the gel profiles. The analysis was carried out in the NTSys version 2.02 and the data was also subjected to bootstrap analysis using Winboot software keeping the bootstrap value to 1000. The results of the analysis showed that all the hybrids showed genetic divergence of ranging between 8-23% from their parental strains. In the analysis, strong bootstrap values were obtained in all the isolates.

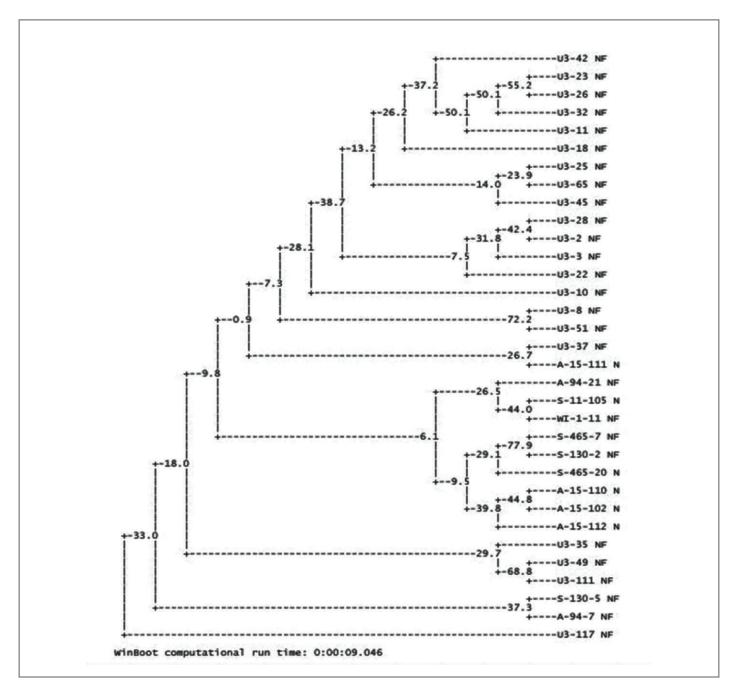



Fig. 2.3 Diversity amongst single spore isolates चित्र–2.3 एकल बीजाणु में विविधता

## संकर एवं विभिन् स्ट्रेन से एकल बीजाणु का निर्माण और उर्वरता के लिए उनका मुल्यांकन

कुल 895 एकल बीजाणु को पांच भूरे रंग के प्रतिरोधी संकरों से उत्पन किया गया और गैर उपजाऊ बीजाणु की पहचान और उच्च पैदावार वाली उपजाऊ बीजाणु का चयन किया गया। कुल मिलाकर 245 एकल बीजाणु पृथक किये गए (एनबीएस —1 से 91 और एनबीएस —5 से 154) और उपज, गुणवत्ता मानदंड और रोग की घटनाओं के लिए मूल्यांकन किया गया था। एनबीएस —1 के 90 एसएसआई में से 8 एसएसआई गैर उपजाऊ साबित हुआ एनबीएस —5 के 154 एसएसआई में से 38 एसएसआई गैर— उपजाऊ साबित हुई हैं। एनबीएस —1 के कुल 7 एकल बीजाणु को उच्च पैदावार और अच्छी गुणवत्ता के आधार पर चुना गया। उच्च गुणवत्ता और अच्छे उपज के आधार पर एनबीएस —5 के कुल 4 एकल बीजाणु का चयन हुआ।

# Isolation of single spore isolates from hybrids and different strains and their evaluation for fertility

A total of 895 single spore isolates were isolated from the five browning resistant hybrids for identification of non-fertile isolates and selection of high yielding fertile isolates. A total of 245 single spore isolates (91 from NBS-1 and 154 from NBS-5) were evaluated for yield, quality parameters and disease incidence. Out of 90 SSIs of NBS-1, 8 SSI proved to be non fertile. Out of 154 SSIs of NBS-5, 38 SSIs proved to be non-fertle. A total of 7 Single spore isolates from NBS-1 were selected on the basis of high yield and good quality. A total of 4 single spore isolates of NBS-5 were identified on the basis of high quality and good yield.

Table 2.2. Selected single spore isolates from non-browning strains of button mushroom on the basis of quality parameters (gill thickness, pileus thickness, stipe thickness, stipe length etc) and yield

तालिका 2.2- चयनित एकल बीजाणु मापदंडों (गिल मोटाई, पाइलस की मोटाई, कटाई की मोटाई, स्टाईप लंबाई आदि) और उपज के आधार पर बटन मशरूम के गैर-ब्राउनिंग स्ट्रेनो का चयन

| SSI       | Yield | SSI        | Yield |
|-----------|-------|------------|-------|
| NBS -1-35 | 16.07 | NBS -5-123 | 14.28 |
| NBS -1-22 | 19.43 | NBS -5-185 | 16.10 |
| NBS -1-99 | 17.95 | NBS -5-59  | 14.60 |
| NBS -1-27 | 18.15 | NBS -5-55  | 15.10 |
| NBS -1-60 | 19.00 |            |       |
| NBS -1-28 | 16.69 |            |       |
| NBS -1-31 | 16.49 |            |       |







Fig. 2.4 Cultivation trial of various SSIs of NBS-1 and NBS-5 for the selection चित्र : 2.4 चयन के लिए एनबीएस -1 और एनबीएस -5 के विभिन्न एसएसआई के खेती परीक्षण

### 35 बटन मशरूम उपभेदों का मूल्यांकन

बटन मशरूम के कुल 35 विदेशी उपभेदों को एकत्र किया गया और 150 किलो शॉर्ट विधि कंपोस्ट पर प्रत्येक का मुल्यांकन किया गया। उपज का आकलन तीन फ्लश और चार सप्ताह तक किया गया था। उपभेदों में एनबीएस -2, एनबीएस -3, एनबीएस -4, ले -6, ले -4 ले -1, ले -5, ए -6, एनसीएच -102, हाइब्रिड -6, एस -11, बीएस -41 9, बीएस −520, बीएस −534, एमिएसल मैक्स-एक्स, आरवीआई −1, एबीएन −1, हाइब्रिड −9, बीएस −534, डेल्टा, बेल −2, बीएचएस -24, एएचएम -465, एस -454, वाई -1-एस, एस-465 (फ्लेक्स भोजन), ए -15 (फ्लेक्स भोजन), एम **−7215**, एम **−7218**, यू 3**−54** और यू **−3** (नियंत्रण के रूप में) शामिल थे। । जांच की गई 35 उपभेदों में से कुल 9 चयनित उपभेदों (यू 3-54, हाइब्रिड -9, ए -15 (फ्लेक्स फूड्स), एस -465 (फ्लेक्स फूड), एएचएम -465, एबीएन -1, ले -4, U-3 और -11) का एक बड़ा पैमाने पर उपज और गुणवत्ता मानकों के लिए मूल्यांकन किया गया। 10 किलोग्राम खाद में से 10 बैग के 5 प्रतिकृति पर मूल्यांकन किया गया था। सफेद बटन खुम्ब के 9 चयनित उपभेदों में से, एसएसआई यू 3-54 ने सर्वश्रेष्ठ प्रदर्शन किया। गुणवत्ता वाले पैरामीटर जैसे कि गिल आकार, ढेर मोटाई, स्टाइप लेंग, स्टाइप मोटाई, रंग को भी रिकॉर्ड किया गया।

#### **Yield evaluation of 35 button mushroom Strains**

A total of 35 exotic strains of button mushroom were collected and evaluated each on 150 kg short method compost. The yield was recorded for 4 weeks in three flushes. The strains included NBS-2, NBS-3, NBS-4, LE-6, LE-4. LE-1, LE-5, A-6, NCH-102, Hybrid-6, S-11, BS-419A, BS-520, BS-534, Amycel Max-x, RVI-1, ABN-1, Hybrid-9, BS-534, Delta, Bel-2, BHS-24, AHM-465, S-454, WI-1, S-465 (Flex food), A-15 (Flex food), M-7215, M-7218, U3-54 and U-3 (as control). Out of the 35 strains tested, a total of 9 selected strains (U3-54, Hybrid-9, A-15 (Flex Foods), S-465 (Flex foods), AHM-465, ABN-1, LE-4, U-3 and S-11) were evaluated at a larger scale for yield and quality parameters. Evaluation was carried out on 5 replications of 10 bags each of 10 kg compost. Out of 9 selected strains of white button mushroom, SSI U3-54 performed the best. The quality parameteres as such gill size, pileus thickness, stipe lengh, stipe thickness, colour were recorded.

| Table: 2.3 Biologi                                        | Biological efficiency of different strains of button mushroom |         |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------|---------|--|--|--|--|
| तालिका : 2.3 बटन खुम्ब के विभिन्न स्टेनों की जैविक दक्षता |                                                               |         |  |  |  |  |
| Strains                                                   | BE (%)                                                        | Strains |  |  |  |  |

| Strains  | BE (%) | Strains        | BE (%)      |
|----------|--------|----------------|-------------|
| AHM-465  | 15.71  | Hybrid-9       | 14.02       |
| LE-4     | 15.91  | U-3            | 15.50       |
| U3-54    | 16.85  | S-11           | 15.21       |
| ABN-1    | 11.71  | NBS-5          | 14.00       |
| Flex-465 | 14.68  | SE & CD (0.05) | 1.02 & 2.07 |

# वर्तमान में विकसित बटन मशरूम (यू 3-54) के एकल बीजाणु का मूल्यांकन

2013—14 के दौरान एक नया एकल बीजाणु पृथक किया गया था संस्थान स्तर के मूल्यांकन के बाद, 2014—17 के दौरान एआईसीआरपी—मशरूम केंद्रों में आईवीटी, एवीटी —1 और एवीटी —2 के तहत अलग—अलग का मूल्यांकन किया गया। तीन साल के मूल्यांकन के बाद, इस स्ट्रेन के रिलीस की सिफारिश की गयी | 2014—17 के दौरान नई किस्म का प्रदर्शन नीचे दिया गया है

# Evaluation of recently developed single spore isolate of button mushroom (U3-54)

A new single spore isolate was developed during 2013-14. After Institute level evaluation, the isolate was evaluated at AICRP-Mushroom centres under IVT, AVT-1 and AVT-2 during 2014-17. After the evaluation of three years, the variety is recommended for release. The performance of the new variety during 2014-17 is given below

Table 2.4 Yield of different strains of white button mushroom (yield kg/100kg compost) (2014-15) तालिका 2.4 सफेद बटन खुम्ब के विभिन्न उपभेदों की उपज (उपज किलो / 100 किग्रा कंपोस्ट) (2014-15)

| Agaricus<br>bisporus<br>strain | Pantnagar | Ludhiana | Murthal | Pune  | Solan | Nauni | Average |
|--------------------------------|-----------|----------|---------|-------|-------|-------|---------|
| NBS-1                          | 20.69     | 11.00    | 8.09    | 18.17 | 16.27 | 13.38 | 14.60   |
| NBS-2                          | 14.79     | 17.10    | 8.98    | 16.96 | 13.11 | 10.67 | 13.60   |
| NBS-3                          | 16.55     | 12.80    | 5.74    | 17.46 | 13.34 | 17.78 | 13.95   |
| NBS-4                          | 17.00     | 10.60    | 9.71    | 18.03 | 14.10 | 7.81  | 2.88    |
| NBS-5                          | 12.05     | 13.50    | 10.80   | 17.17 | 17.90 | 20.50 | 15.32   |
| U3-54                          | 20.36     | 18.30    | 19.16   | 21.28 | 17.01 | 20.66 | 19.46   |
| U3-58                          | 12.05     | 19.90    | 18.16   | 19.05 | 14.65 | 17.60 | 16.90   |
| U- 3 Control                   | -         | 14.50    | -       | 18.82 | -     | -     | 16.66   |
| CD (0.05)                      | 0.90      | 1.20     |         | 0.81  | 1.22  | 0.82  |         |

Table 2.5 Yield of different strains of white button mushroom (yield kg/100kg compost) (2015-16) तालिका 2.5 : सफेद बटन खुम्ब के विभिन्न उपभेदों की उपज (उपज किलो / 100 किग्रा कंपोस्ट) (2015-16)

| A. bispor us strain | Pantnagar | Ludhiana | Murthal | Pune  | Solan | Nauni | *Palampur | Samastipur | Average |
|---------------------|-----------|----------|---------|-------|-------|-------|-----------|------------|---------|
| NBS-1               | 17.79     | 9.87     | 3.30    | 17.39 | 17.50 | 19.99 | 6.60      | 23.56      | 15.63   |
| NBS-5               | 13.27     | 13.62    | 9.40    | 21.50 | 16.80 | 21.93 | 10.00     | 24.98      | 17.36   |
| U-3-54              | 22.71     | 20.85    | 16.00   | 19.27 | 18.50 | 23.76 | 12.30     | 23.04      | 20.59   |
| U-3-58              | 19.82     | 18.25    | 12.70   | 16.48 | 17.70 | 22.67 | 10.00     | 27.76      | 19.34   |
| U-3                 | 20.40     | 11.20    | 11.00   | 21.12 | 14.00 | 20.49 | 11.50     | 22.97      | 17.31   |
| CD (0.05)           | 2.09      | 0.85     | 1.23    | 1.36  | 1.32  | 1.88  | _         | 1.14       |         |

Table 2.6 Strain evaluation of Button mushroom strains (yield kg/100kg compost) (2016-17) तालिका 2.6 : बटन खुम्ब उपभेदों की मूल्यांकन (उपज किलो/100 किग्रा खाद) (2016-17)

| A. bispor us strain | Pantnagar | Ludhiana | Murthal | Pune  | Solan | Nauni | *Palampur | Samastipur | Average |
|---------------------|-----------|----------|---------|-------|-------|-------|-----------|------------|---------|
| NBS-1               | 17.68     | 9.55     | 3.08    | 19.47 | 17.50 | 21.61 | 7.5       | 22.38      | 15.47   |
| NBS-5               |           | 17.63    | 11.49   | 18.83 | 16.80 | 24.33 | 15.4      | 22.63      | 18.16   |
| U-3-54              | 14.64     | 13.15    | 19.72   | 20.28 | 18.50 | 26.97 | 15.0      | 21.13      | 18.67   |
| U-3-58              | 19.23     | 21.50    | 20.27   | 21.48 | 17.70 | 25.39 | 14.3      | 19.75      | 19.95   |
| U-3                 | 13.13     | 14.35    | 13.79   | 18.04 | 14.00 | 22.92 | 11.2      | 19.63      | 15.89   |
| CD (0.05)           | 3.95      | 2.14     | 3.89    | 5.25  | 2.42  | 6.50  | 4.60      | 1.36       |         |



Fig.2.5 Crop of U3-54 strain at a commercial farm चित्र 2.5 : एक वाणिज्यिक फार्म में यू 3-54 के स्ट्रेन की फसल

## ढींगरी मशरुम पी सजर काजू के संकर उपभेदों का मूल्यांकन

चार संकरों को 4 अलग—अलग पैतृक उपभेदों के एकल स्पोर की मेटिंग द्वारा विकसित किया गया । अक्टूबर 2016 और जनवरी 2017 में गेहूं के भूसे पर पॉलिथीन बैग मे इन स्ट्रेनों का मूल्यांकन पैतृक नस्लों के साथ किया गया था। बैग २ और 4 किलोग्राम गेहूं के भूसे से भरे हुए थे और अलग—अलग स्ट्रेन के स्पान के साथ इनक्यूलेट किया गया था। प्रयोगों के साथ चार प्रतिकृतियां में लगाया गया और उपज डेटा दर्ज किया गया था। तुलना माता—पिता के उपभेदों से की गई थी पैतृक उपभेदों की तुलना में संकरों का श्रेष्ठता मार्जिन कम था।

#### Oyster mushroom Evaluation of *P. sajor caju* hybrid strains

Four hybrids strains developed by mating of single spores from 4 different parental strains.

These strains were evaluated on wheat straw in polythene bags during October 2016 and January 2017 along with parental strains. Bags were filled with 2 and 4 kg wheat straw and inoculated with grain spawn of different strains. The experiments were done with four replications and yield data was recorded. The comparisons were made with parental strains

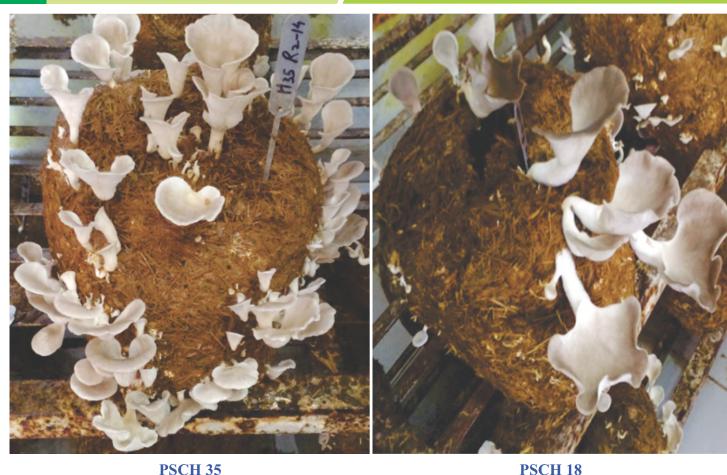



Fig 2.6 The hybrid PSCH35 was found superior in 2 kg bag and 4kg bags from all parental strains.

Margin of supervisory was less as compared to the parental strains.

चित्र 2.6 हाइब्रिड पीएससीएच 35 सभी पैतृक नस्लों से 2 किलो बैग और 4 किग्रा बैग में बेहतर पाया गया। पर्यवेक्षी का मार्जिन अभिभावकीय उपभेदों की तुलना में कम था।

# ढींगरी माय्सेलियम और विकास पर कोलचिसीन के प्रभाव:-

कोलिचसीन को लोकप्रिय रूप से पोधों मे प्लोएडी बढाने के लिए उपयोग मे लाया जाता है जो को कोशिकाओं की बाहरी परत का विभाजन रोक देता है डीएमआरपी —205 (पी जेमोर) में ओतोपोल्प्प्लोइड के उत्पादन के लिए कोलिचसीन के प्रभाव की जांच की गई थी। मल्ट एगर मीडिया में माय्सेलियम को क्रमशः 0, 0.625, 0.125, 0.250, 0.50 और 1 प्रतिशत पर कोलिचसीन के साथ संवर्धित किया गया था। 1 प्रतिशत पर कोलिचसीन के साथ संवर्धित किया गया था। 1 प्रतिशत सघनता मायसेलियम के लिए 100 प्रतिशत घातक पाया गया था। माय्सेलियम को सेफरिन्न द्रव के साथ स्टेन किया गया और डिजिटल कैमरा के साथ प्रकाश माइक्रोस्कोप से उनके नाभिक व्यास को मापा गया। नियंत्रण के मुकाबले नाभिक व्यास में विभिन्न स्तरों पर बड़ोतरी देखी गयी। प्लास्टिक कंटेनर में माईसेलियम को उगाने पर नियंत्रण के मुकाबले आकार और संरचनाओं की विविधताओं को देखा गया

# Effect of colchicine treatment on oyster mycelium and growth

Colchicine is popularly known to induce increase ploidy in plant by inhibiting cytokinesis. The effect of colchicines was examined for the production of autopolyploid in DMRP-205 (*P. djmor*). The mycelium was cultured in malt agar media with colchicines percentage at 0, 0.625, 0.125, 0.250, 0.50 and 1 percent respectively. The 1 percent concentration was found 100 percent lethal for the mycelium. The mycelia were stained with Safranin-O and their nuclei diameters were measured, light microscope with a digital camera. The nuclei were increased in diameter at different degrees compared to control. The mycelium was allowed to grow on the plastic container showed varied mycelium color and structures in morphology compared to control.



Fig. 2.7 Effect of colchicine treatment on mycelium growth of *P.djmor* चित्र— 2.7 — पी जामोर के माय्सेअलियम विकास पर कोल्चिसीन उपचार का प्रभाव

**Treatment with colchicines (DMRP-205)** 

**Control (DMRP-205)** 

धान पुआल खुम्ब

धीमी गति से बड़ते एसएसआई द्वारा, तेजी से बढ़ने वाले उच्च उपज एसएसआई और संकर की उत्पति का वोल्वरिएल्ला वोलवसेआ में दूसरा प्रयास

तीन आशाजनक अभिभावक स्ट्रेन से विकसित एसएसआई की स्क्रीनिंग :--

माल्ट युक्त अगर माध्यम की पेट्रीजिश तैयार किए गए। खुम्ब बीजाणु छाप से प्राप्त बीजाणु का पतला घोल माल्ट युक्त अगर मध्यम पर डाला गया । दो दिनों के ऊष्मायन के बाद, प्रत्येक माता—िपता के 65 एकल स्पोर को चुना गया और माल्ट माध्यम पेट्रीजिश में स्थानांतिरत किया गया और 35 डिग्री सेल्सियस पर ऊष्मायन किया गया । ऊष्मायन के सात दिनों के बाद स्ट्रेन वी.वी.—13—2 (45, 40, 23, 22, 44, 28, 18, 19, 42, 41, 50) से 11, स्ट्रेन जीवीवी —01 (18, 48, 15, 39, 20, 49) से 5, और स्ट्रेन बीबीएसआर —007 (45, 1, 23, 25, 8, 5, 22, 35, 55) से 7 तेजी से बदने वाले एसएसआई का चयन किया गया। धीमी गित से बढ़ रहे एसएसआई को स्ट्रेन वी.वी.—13—2 (2, 3, 4), स्ट्रेन जीवीवी —01 (34, 37, 44, 36) और स्ट्रेन बीबीएसआर —007 (41, 10, 6, 15) से माय्सेअलियम विकास विशेषताओं के आधार पर चुना गया था

#### Paddy Straw Mushroom

Second attempt to generate fast growing high yielding SSIs and the hybrids from slow growing SSIs of *Volvariella volvacea* 

Isolation and screening of SSIs from three promising parent strains:-

Petridishes containing malt extract agar medium were prepared. Spore prints obtained from fruit bodies were first serially diluted and then poured over the malt extract agar medium. After two days of incubation as the growth was visible, 65 single spore isolates from each parent strain were selected and transferred to malt extract medium in Petridishes and incubated at 35°C. After seven days of incubation, 11 fast growing SSIs from strain VV-13-2 (45, 40, 23, 22, 44, 28, 18, 19, 42, 41, 50), 7 from strain GVv-01 (18, 48, 15, 39, 20, 49) and 9 from strain BBSR-007 (45, 1, 23, 25, 8, 5, 22, 35, 55) were selected. The slow growing SSIs from strain VV-13-2 (2, 3, 4), GVv-01 (34, 37, 44, 36) and BBSR-007 (41, 10, 6, 15) were also selected based upon their

19

## परखनलियों में भरी हुई धान पुआल पर तेजी से बढ़ते हुए एसएसआई के माय्सेअलियम का नीचे की ओर तुलनात्मक विकास

कुल 26 तेजी से बढ़ने वाले एसएसआई को अधिक उपज देने वाले और मोर्फोलोजिकल रूप से भिन्न अभिमुखता −2108. डीएमआरओ −247 ओएस डीएमआरओ-484 से प्राप्त किया गया। इन एसएसआई का परिक्षण 38x200 मिमी आकार के परखनलियों में भरे हुए निष्प्रभावित धान के भूसे (70% नमी) पर पैतृक स्ट्रेन के साथ माय्सेअलियम के नीचे की ओर होने विकास के लिए किया गया। परखनलियों में इनोकेल्ड धान के पुआल सब्सट्रेट को 12 दिनों के लिए 34 ± 1 डिग्री सेल्सियस पर उष्मायन किया गया था। निचले स्तर के माइस्सेलियल विकास को उष्मायन के 7 वें से 11 वें दिन बाद मापा गया था। अभिभावक उपभेदों स्ट्रेन के मुकाबले उच्चतर डाउनवर्ड मायसेलियल विकास का प्रदर्शन करने वाले एसएसआई का चयन उपज मूल्यांकन के लिए किया गया था। चयनित एसएसआई— बीबीएसआर —007 (45), बीबीएसआर -007 (5), बीबीएसआर -007 (35), बीबीएसआर -007 (22), बीबीएसआर -007 (8), जीवीवी -01 (15), वीवी -13 -2 (1 9), वी.वी.-13-2 (22), वीवी-13-2 (28), वीवी-13-2 (23), वीवी-13-2 (41), वीवी-13-2 (45) थे।

mycelial growth characteristics.

# Comparative downward mycelial growth of the fast growing SSIs on pounded paddy straw filled in tubes.

Total 26 fast growing SSIs obtained from high yielding and morphologically distinct parent strains OE-210, DMRO-247 and DMRO-484, were tested for their downward mycelial growth on sterilized pounded paddy straw (70% moisture) filled in test tubes of 38 mm × 200 mm size along with their parent strains. The inoculated paddy straw substrate in test tubes was incubated at 34±1 °C for 12 day. The downward mycelial growth was measured in mm on 7<sup>th</sup> to 11<sup>th</sup> day of inoculation. The SSIs exhibiting higher downward mycelial growth compared with parent strains were selected for yield evaluation trial. The SSIs selected were - BBSR-007(45), BBSR-007(5), BBSR-007(35), BBSR-007(22), BBSR-007(8), GVv-01(15), VV-13-2(19), VV-13-2(22), VV-13-2(28), VV-13-2(23), VV-13-2(41), VV-13-2(45).

Table 2.7 Downward mycelial growth of fast growing SSIs on pounded paddy straw तालिका 2.7— तेजी से बढते हए एसएसआई का धान के भूसे पर नीचे की ओर माय्सेअलियम विकास

| Sl. No. | SSIs         | Downward mycelial growth (mm) at different days of incubation |                      |  |  |
|---------|--------------|---------------------------------------------------------------|----------------------|--|--|
|         |              | 7 <sup>th</sup> Day                                           | 11 <sup>th</sup> Day |  |  |
| 1       | BBSR-007(55) | 63.33                                                         | 120.00               |  |  |
| 2       | BBSR-007(45) | 66.66                                                         | 118.30               |  |  |
| 3       | BBSR-007(22) | 81.66                                                         | 120.00               |  |  |
| 4       | BBSR-007(8)  | 83.33                                                         | 120.00               |  |  |
| 5       | BBSR-007(23) | 23.33                                                         | 63.33                |  |  |
| 6       | BBSR-007(35) | 56.66                                                         | 119.33               |  |  |
| 7       | BBSR-007(1)  | 58.33                                                         | 101.66               |  |  |
| 8       | BBSR-007(5)  | 65.00                                                         | 120.00               |  |  |
| 9       | BBSR-007(25) | 60.00                                                         | 113.33               |  |  |
| 10      | GVv-01(49)   | 53.33                                                         | 116.66               |  |  |
| 11      | GVv-01(48)   | 48.33                                                         | 100.00               |  |  |
| 12      | GVv-01(18)   | 51.66                                                         | 106.66               |  |  |
| 13      | GVv-01(20)   | 13.33                                                         | 33.33                |  |  |
| 14      | GVv-01(15)   | 66.66                                                         | 120.00               |  |  |
| 15      | GVv-01(39)   | 33.33                                                         | 109.33               |  |  |
| 16      | VV-13-2(19)  | 60.00                                                         | 118.33               |  |  |
| 17      | VV-13-2(22)  | 93.33                                                         | 120.00               |  |  |
| 18      | VV-13-2(28)  | 73.33                                                         | 120.00               |  |  |

| 19 | VV-13-2(23) | 76.66 | 120.00 |
|----|-------------|-------|--------|
| 20 | VV-13-2(50) | 0.00  | 0.00   |
| 21 | VV-13-2(40) | 43.33 | 66.66  |
| 22 | VV-13-2(41) | 80.00 | 120.00 |
| 23 | VV-13-2(44) | 60.00 | 120.00 |
| 24 | VV-13-2(18) | 23.33 | 40.00  |
| 25 | VV-13-2(45) | 70.00 | 120.00 |
| 26 | VV-13-2(42) | 56.66 | 120.00 |
| 27 | BBSR-007    | 80.00 | 120.00 |
| 28 | GVV-01      | 70.00 | 120.00 |

# वी वी .13.2, बीबीएसआर -07 और वी.वॉल्वेसिया के जीवीवी -01 में तनाव के धीमे बढ़ते हुए एसएसआई से संकर की पैदावार:-

स्ट्रेन बीबीएसआर -07 और जीवीवी -01 के धीमे विकास करने वाले एकल स्पोर को माल्ट अगर माध्यम की पेटरीप्लेट मे इनोकुलेट किया गया। दो एकल स्पोर के बिट को मारकर रेखा के द्वारा पेटरीप्लेट मध्य से बराबर दूरी पर रखा गया। इनोकुलेटेड पेटरीप्लेटो को 35 डिग्री सेल्सियस पर ऊष्मायन किया गया ताकि पूर्ण विकास हो सके। दोनों कल्चर के विकास के पश्चात कल्चर जुडाव रेखा से बिट लेकर माल्ट अगर माध्यम मे स्थानांतरित कर 35 डिग्री सेल्सियस पर ऊष्मायन किया गया ताकि संकर कल्चर का विकास हो सके। निम्नलिखित संकर इस प्रकार है:-

बीबीएसआर -007 (41)+ जीवीवी -01 (34), बीबीएसआर -007 (26) + जीवीवी -01 (34), बीबीएसआर -007 (28)+ जीवीवी -01 (34), बीबीएसआर -007 (10) + जीवीवी -01 (34), बीबीएसआर -007 (6) +जीवीवी -01 (34), बीबीएसआर -007 (48) **+** जीवीवी -01 (34), बीबीएसआर -007 (15) +जीवीवी -01 (34), बीबीएसआर -007 (17) + जीवीवी -01 (34), बीबीएसआर -007 (41) + जीवीवी -01 (37), बीबीएसआर -007 (26) + जीवीवी -01 (37), बीबीएसआर -007 (28) + जीवीवी -01 (37), बीबीएसआर -007 (10) + जीवीवी -01 (37), बीबीएसआर -007 (6) + जीवीवी -01 (7), बीबीएसआर- 007 (48) + जीवीवी -01 (37), बीबीएसआर -007 (15) **+** जीवीवी -01 (37), बीबीएसआर -007 (17) **+** जीवीवी -01 (37), बीबीएसआर -007 (41) + जीवीवी -01 (44), बीबीएसआर -007 (26) + जीवीवी -01 (44), बीबीएसआर -007 (28) + जीवीवी -01 (44), बीबीएसआर -007 (10) **+** जीवीवी -01 (44), बीबीएसआर -007 (6) **+** जीवीवी -01 (44), बीबीएसआर -007 (48) + जीवीवी -01 (44), बीबीएसआर -007 (15) + जीवीवी -01 (44), बीबीएसआर -007 (17) + जीवीवी -01 (44), बीबीएसआर -007 (41) + जीवीवी -01 (36), बीबीएसआर -007 (26) + जीवीवी -01 (36), बीबीएसआर -007 (28) + जीवीवी -01 (36), बीबीएसआर -007 (10) + जीवीवी -01 (36),

# Generation of hybrids from the slow growing SSIs of strains VV-13-2, BBSR-07 and GVv-01 of *V. volvacea*.

The slow growing SSIs of parent strains BBSR-007 &

GVv-01 were inoculated on malt extract agar medium

Petridishes, separated into two parts with the help of

marker, so that bids from both the culture can be placed correctly and at the same distance from the separating line. The inoculated Petridishes were incubated at 35°C till the growth was full. After that, bid from the junction of two cultures i.e. from the separation line was taken and transferred to test tubes containing MEA medium, followed by incubation at 35°C for the full growth of hybrids. The hybrids developed were – BBSR-007(41)+GVv-01(34), BBSR-007(26)+GVv-01(34), BBSR-007(28)+GVv-01(34), BBSR-007(10)+GVv-01(34), BBSR-007(6)+GVv-01(34), BBSR-007(48)+GVv-01(34), BBSR-007(15)+GVv-01(34), BBSR-007(17)+GVv-01(34), BBSR-007(41)+GVv-01(37), BBSR-007(26)+GVv-01(37), BBSR-007(28)+GVv-01(37), BBSR-007(10)+GVv-01(37), BBSR-007(6)+GVv-01(7),BBSR-007(48)+GVv-01(37), BBSR-007(15)+GVv-01(37), BBSR-007(17)+GVv-01(37), BBSR-007(41)+GVv-01(44), BBSR-007(26)+GVv-01(44), BBSR-007(28)+GVv-01(44), BBSR-007(10)+GVv-01(44), BBSR-007(6)+GVv-01(44), BBSR-007(48)+GVv-01(44), BBSR-007(15)+GVv-01(44), BBSR-007(17)+GVv-01(44), BBSR-007(41)+GVv-01(36), BBSR-007(26)+GVv-01(36), BBSR-007(28)+GVv-01(36), BBSR-007(10)+GVv-01(36), BBSR-007(6)+GVv-01(36), BBSR-007(48)+GVv-01(36)BBSR-007(15)+GVv-01(36), BBSR-007(17)+GVv-01(36); VV-13-2(2)+GVv-01(34), VV-13-2(3)+GVv-01(34), VV-13-2(7)+GVv-01(34), VV-13-2(2)+GVv-01(37), VV-13-2(3)+GVv-01(37), VV-13-2(7)+GVv-01(37), VV-13-2(2)+GVv-01(36), VV-13-2(3)+GVv-01(36), VV-13-2(7)+GVv-01(36), VV-13-2(2)+GVv-01(44), VV-13-2(3)+GVv-01(44), VV-13-2(7)+GVv-01(44).

बीबीएसआर— 007 (6) + जीवीवी —01 (36), बीबीएसआर—007 (48) + जीवीवी —01 (36), बीबीएसआर —007 (15) +जीवीवी —01 (36), बीबीएसआर—007 (17) + जीवीवी—01 (36)य वी.वी.—13—2 (2) + जीवीवी—01 (34), वीवी—13—2 (3) + जीवीवी—01 (34), वीवी—13—2 (7) + जीवीवी—01 (34), वीवी—13—2 (2) + जीवीवी—01 (37), वीवी—13—2 (3) + जीवीवी—01 (37), वीवी—13—2 (2) + जीवीवी—01 (36), वीवी—13—2 (3) + जीवीवी—01 (36), वीवी—13—2 (2) + जीवीवी—01 (36), वीवी—13—2 (3) + जीवीवी—01 (44), वीवी—13—2 (3) + जीवीवी—01 (44), वीवी—13—2 (3) + जीवीवी—01 (44), वीवी—13—2 (7) + जीवीवी—01 (44)। धान के भूसे से भरी परखनली में धीमी गित से बढ़ते हुए, एस.एस. आई द्वारा विकसित संकरों का नीचे की ओर तुलनात्मक विकास का मूल्यांकन:-

कुल 25 धीमी गित से बढ़ने वाले एसएसआई को अधिक उपज देने वाले और मोर्फोलोजिकल रूप से भिन्न अभिमुखता वाले ओएस —2108, डीएमआरओ —247 और डीएमआरओ—484 से प्राप्त किया गया। इन एसएसआई का परिक्षण 38x200 मिमी आकार के टेस्ट ट्यूबों में भरे हुए निष्प्रभावित धान के भूसे (70% नमी) पर पैतृक स्ट्रेन के साथ माय्सेअलियम के नीचे की ओर होने विकास के लिए किया गया। परखनली में इनोकेल्ड धान के पुआल सब्सट्रेट को 12 दिनों के लिए 34 ± 1 डिग्री सेल्सियस पर उष्मायन किया गया था। निचले स्तर के माइस्सेलियल विकास को उष्मायन के 5 वें से 9 वें दिन बाद मापा गया था। अभिभावक उपभेदों स्ट्रेन के मुकाबले केवल 2 संकर [BBSR—007(28)GVV—01(34)—BBSR—007(17)GVV—01(37), उच्चतर डाउनवर्ड मायसेलियल विकास का प्रदर्शन किया जिनका चयन अन्य अध्यन के लिए किया गया।

# Comparative downward mycelial growth of the hybrids developed from slow growing SSIs of *V. volvacea* on pounded paddy straw filled in tubes:-

Total 26 hybrids developed from the selected slow growing SSIs of parent high yielding and morphologically distinct strains OE-210, DMRO-247 and DMRO-484 were tested for their downward mycelial growth on sterilized pounded paddy straw (70% moisture) in test tubes of 38 mm  $\times$  200 mm size along with their parent SSIs and the parent strains. The inoculated paddy straw substrate in test tubes was incubated at 34±1 °C for 12 day. The downward mycelial growth was measured in mm on 5th to 9th day of inoculation. Only two hybrids [BBSR-007(28)+GVV-01(34)& BBSR-007(17)+GVV-01(37)] exhibited higher downward mycelial growth compared to their parents and hence selected for further studies.

Table 2.8 Downward mycelial growth of hybrids developed from slow growing SSIs of *V. volvacea* strains on pounded paddy straw तालिका : 2.8 धान के भूसे से भरी परखनली में धीमी गति से बढ़ते हुए, एस.एस. आई द्वारा विकसित संकरों का नीचे की ओर तुलनात्मक विकास

| Sl. No. | Hybrids               |                     | Downward mycelial growth (mm) at different days of incubation |  |  |
|---------|-----------------------|---------------------|---------------------------------------------------------------|--|--|
|         |                       | 5 <sup>th</sup> Day | 9 <sup>th</sup> Day                                           |  |  |
| 1       | GVV-01(34)+VV-13-2(2) | 28.33               | 73.33                                                         |  |  |
| 2       | GVV-01(34)+VV-13-2(3) | 20.00               | 85.00                                                         |  |  |
| 3       | GVV-01(34)+VV-13-2(7) | 36.66               | 81.66                                                         |  |  |
| 4       | GVV-01(37)+VV-13-2(2) | 0.00                | 0.00                                                          |  |  |
| 5       | GVV-01(37)+VV-13-2(3) | 26.66               | 51.66                                                         |  |  |
| 6       | GVV-01(37)+VV-13-2(7) | 36.66               | 86.66                                                         |  |  |
| 7       | GVV-01(36)+VV-13-2(2) | 0.00                | 0.00                                                          |  |  |
| 8       | GVV-01(36)+VV-13-2(3) | 26.66               | 53.33                                                         |  |  |

| 9  | GVV-01(36)+VV-13-2(7)   | 20.00 | 48.33 |
|----|-------------------------|-------|-------|
| 10 | GVV-01(44)+VV-13-2(2)   | 44.66 | 80.00 |
| 11 | GVV-01(44)+VV-13-2(3)   | 23.33 | 53.33 |
| 12 | GVV-01(44)+VV-13-2(7)   | 0.00  | 0.00  |
| 13 | BBSR-007(41)+GVV-01(37) | 30.00 | 61.66 |
| 14 | BBSR-007(26)+GVV-01(34) | 30.00 | 78.33 |
| 15 | BBSR-007(28)+GVV-01(34) | 80.00 | 90.00 |
| 16 | BBSR-007(28)+GVV-01(37) | 33.33 | 86.66 |
| 17 | BBSR-007(10)+GVV-01(34) | 31.66 | 73.33 |
| 18 | BBSR-007(10)+GVV-01(44) | 20.00 | 48.33 |
| 19 | BBSR-007(6)+GVV-01(34)  | 0.00  | 0.00  |
| 20 | BBSR-007(6)+GVV-01(44)  | 31.66 | 76.66 |
| 21 | BBSR-007(48)+GVV-01(34) | 43.33 | 90.00 |
| 22 | BBSR-007(48)+GVV-01(44) | 0.00  | 0.00  |
| 23 | BBSR-007(15)+GVV-01(34) | 0.00  | 0.00  |
| 24 | BBSR-007(17)+GVV-01(34) | 23.33 | 90.00 |
| 25 | BBSR-007(17)+GVV-01(37) | 63.33 | 86.66 |
| 26 | BBSR-007(17)+GVV-01(44) | 28.33 | 60.00 |
| 27 | BBSR-007GVV-01          | 55.00 | 90.00 |
| 28 | GVV-01                  | 30.00 | 90.00 |
|    |                         |       | -     |

## तीन स्ट्रेन से चयनित तेजी से विकसित होने वाले एकल स्पोर का फल उपज क्षमता के लिए प्रारंभिक मूल्यांकन परीक्षण

तीन स्ट्रेन से चयनित कुल 11 एसएसआई को उनके फल उपज क्षमता और संबंधित मापदंडों के लिए मूल्यांकित किया गया था । इनका मूल्यांकन कपास गिनिंग मिल कचरे और धान के भूसे (1: 1, डब्ल्यू डब्ल्यू) से तैयार खाद पोषाधार पर किया गया था। तुलना के लिए पैतृक स्ट्रेन को कंट्रोल लिया गया था। एसएसआई का मूल्यांकन 18 किलो खाद बिस्तर पर आरबीडी का उपयोग करके किया गया था। प्रत्येक 7 अनुकरण में एसएसआई और पैतृक स्ट्रेन को भी रखा गया था। फसल के चरण के दौरान वी वोल्वेसा की खेती के आदर्श मानको का पालन किया गया। केवल एक एसएसआई (वीवी–01–13–23) पैतृक स्ट्रेन के मुकाबले तुलनात्मक उपज दे रहा था।

हालांकि, यह अभी भी सबसे अच्छा प्रदर्शन करने वाले स्ट्रेन बीबीएसआर –007 से कम था। इस एसएसआई को आगे उपज मूल्यांकन परीक्षण के लिए चुना गया था।

# Initial evaluation trial for selected fast growing SSIs developed from three strains for their fruit body yield potential.

Total 11 selected SSIs of three parent strains were evaluated for their fruit body yield and related parameters on composted substrate prepared from cotton ginning mill waste + paddy straw (1:1, w/w) along with their parents as controls. The SSIs were evaluated using 18 kg compost/bed in RBD. Seven replications were kept for each SSI and parent strains. Standard cultural practices perfected for *V. volvacea* cultivation were followed during cropping phase. Only one SSI (VV-01-13-23) gave yield comparable to that of the parent strains. However, it was still less than the best performing parent strain BBSR-007. This SSI was selected for further yield evaluation trial.

| Table 2.9 Initial | evaluation tria  | l for selected fas | st growing sing | gle spore iso   | olates of V. volvacea. |
|-------------------|------------------|--------------------|-----------------|-----------------|------------------------|
| तालिका 2.9        | वी.वोल्वोसिया के | चयनित तेजी से ब    | इते एकल बीजाणू  | का प्रारंभिक म् | ाूल्यांकन परीक्षण।     |

| Single spore isolates | Fruit body yield (g) in each bed/no. of fruit bodies |        |         |         |         |         |         |           |
|-----------------------|------------------------------------------------------|--------|---------|---------|---------|---------|---------|-----------|
|                       | 1                                                    | 2      | 3       | 4       | 5       | 6       | 7       | yield (g) |
| BBSR-007-<br>45       | 21/1                                                 | 335/21 | 185/13  | 360/14  | 98/7    | -       | -       | 999/56    |
| BBSR-007-5            | 247/18                                               | 78/2   | -       | 191/14  | -       | 178/10  | -       | 694/44    |
| BBSR-007-             | 1                                                    | 31/1   | 41/2    | 45/3    | 121/6   | -       | -       | 238/12    |
| BBSR-007-<br>22       | 1168/48                                              | 338/12 | 625/23  | 264/17  | 497/20  | 219/14  | 392/10  | 3503/144  |
| BBSR-007-8            | -                                                    | 135/2  | -       | 20/1    | 38/3    | -       | -       | 193/6     |
| VV-01-13-19           | 211/12                                               | 192/14 | 81/2    | 156/12  | 175/13  | 657/29  | -       | 1472/82   |
| VV-01-13-22           | 219/12                                               | 69/5   | 264/14  | -       | 537/23  | 49/2    | -       | 1138/56   |
| VV-01-13-28           | 439/17                                               | 230/7  | 129/7   | 711/19  | 293/12  | 218/4   | 750/20  | 2770/79   |
| VV-01-13-23           | 574/29                                               | 953/30 | 411/12  | 1510/53 | 664/26  | 988/27  | 848/33  | 5952/210  |
| VV-01-13-41           | 230/9                                                | _      | -       | -       | -       | -       | 36/2    | 266/11    |
| VV-01-13-45           | -                                                    | -      | 55/2    | -       | -       | -       | -       | 55/2      |
| BBSR-007              | 1288/39                                              | 506/22 | 1520/64 | 895/29  | 348/22  | 1529/62 | 1078/31 | 7164/269  |
| GVV-01                | 852/32                                               | 598/27 | 604/21  | 551/26  | 1139/49 | 444/29  | 1014/39 | 5202/223  |

## धन पुआल कम्पोस्टेड पोषाधार पर नव विकसित संकरो और एसएसआई का प्रति खुम्ब फल-उत्पादन के लिए प्रारंभिक मृल्यांकन :-

8 चयनित तेजी से बढ़ने वाले बीजाणू स्पोर, 3 संकर और 2 पैतृक स्ट्रेन सहित कुल तेरह स्ट्रेन का मूल्यांकन आरबीडी में 10 किलोग्राम धान पुआल सब्सट्रेट प्रति बेड पर फल उपज क्षमता के लिए किया गया। खेती जून-जूलाई, 2016 के दौरान की गयी और मानक खेती की प्रक्रियाओं का उपयोग किया गया था। प्रत्येक स्ट्रेन के लिए आठ बेड रखे गए थे । फसल के मूल्यांकन के लिए इस्तेमाल किए गए आठ तेजी से बढ़े हुए एसएसआई में से कोई भी एसएसआई की पैदावार पैतृक स्ट्रेन से अधिक नहीं थी केवल एक एसएसआई (वीवी-13-2-23) था, जिसने एक पैतृक स्ट्रेन (बीबीएसआर -007) के मुकाबले तुलनात्मक उपज दी। इस परीक्षण के बाद तीन अन्य एसएसआई को अगले उपज परीक्षण के लिए चुना (बीबीएसआर -007-22,वीवी-13-2-28, वीवी-13-2-23) - 1 केवल एक संकर स्ट्रेन (बीबीएसआर-07-17) जीवीवी-01-37) ने दो पैतृक स्ट्रेन के मुकाबले अधिक फल उत्पादन किया और यह आगे उपज मूल्यांकन परीक्षणों के लिए चुना गया।

# Initial evaluation of newly developed hybrids and SSIs for their fruit body yield on composted substrate:-

Total thirteen strains including 8 selected fast growing SSIs, 3 hybrids and 2 parent strains were evaluated for their fruit body yield potential on composted substrate prepared from paddy straw using 10 kg substrate/bed in RBD. Standard package of practice was used and it was conducted during June-July, 2016. Eight beds were kept for each strain. Out of eight fast growing SSIs used for fruit body yield evaluation not a single SSI gave fruit body yield higher than the parent strains. There was only one SSI (Vv-13-2-23), which gave yield comparable to that of one parent (BBSR-007). From this trial, three SSIs (BBSR-007-22, Vv-13-2-28, Vv-13-2-23) were selected further for the next coming fruit body yield evaluation trial. Only one hybrid (BBSR-07-17 + GVv-01-37) gave fruit body yield higher than the two parent strains and it was selected for further yield evaluation trials.

Table 2.10 Fruit body yield in different newly screened fast growing single spore isolates and hybrids of Volvariella volvacea.

तालिका 2.10 वी. वोल्वेसिया में नवविकसित संकरो एवं तेजी से बढ़ने वाले विभिन्न एस.एस. आई. का खुम्ब फल उत्पादन

| Hybrids/<br>SSIs       | Fruit body yield (g) from each bed/no. of fruit bodies |        |        |        |         |        |        |         | Total yield/no.    |  |
|------------------------|--------------------------------------------------------|--------|--------|--------|---------|--------|--------|---------|--------------------|--|
|                        | 1                                                      | 2      | 3      | 4      | 5       | 6      | 7      | 8       | of fruit<br>bodies |  |
| BBSR-007-5             | -                                                      | -      | -      | 298/6  | 104/5   | 454/25 | 222/3  | 68/5    | 1146/44            |  |
| BBSR-007-22            | 466/26                                                 | 438/34 | 487/28 | 496/21 | 364/31  | 462/23 | 86/5   | 111/27  | 2520/195           |  |
| Vv-13-2-19             | 372/11                                                 | 655/46 | 28/3   | 33/2   | 381/21  | 337/14 | 101/9  | 95/3    | 2002/119           |  |
| Vv-13-2-22             | -                                                      | -      | -      | -      | 25/2    | -      | -      | -       | 25/2               |  |
| Vv-13-2-28             | 502/23                                                 | 323/12 | 515/25 | 278/7  | 636/27  | 73/4   | 48/2   | 168/6   | 2543/106           |  |
| Vv-13-2-23             | 522/38                                                 | 338/26 | 687/50 | 518/16 | 385/21  | 500/45 | 89/9   | 100/9   | 3139/214           |  |
| Vv-13-2-41             | -                                                      | -      | -      | 12/1   | -       | -      | -      | -       | 12/1               |  |
| GVv-01-49              | -                                                      | -      | -      | -      | -       | -      | -      | -       | -                  |  |
| BBSR-07-17 + GVv-01-34 | 443/14                                                 | 416/17 | 379/20 | 541/37 | 223/5   | 386/25 | -      | -       | 2388/118           |  |
| BBSR-07-17 + GVv-01-37 | 499/18                                                 | 478/26 | 509/17 | 609/21 | 583/30  | 487/15 | 302/26 | 1238/81 | 4705/232           |  |
| BBSR-07-28 + GVv-01-34 | 202/19                                                 | 322/22 | 419/18 | 309/8  | 648/33  | 472/30 | 68/8   | 17/1    | 2457/139           |  |
| BBSR-007               | 589/24                                                 | 515/34 | 470/29 | 560/38 | 1012/68 | -      | 86/6   | 24/4    | 3256/203           |  |
| GVv-01                 | 488/22                                                 | 629/18 | 605/32 | 538/49 | 597/26  | 373/17 | 493/22 | 626/39  | 4349/225           |  |

## धन पुआल कम्पोस्टेड पोषाधार पर नव विकसित संकरो और एसएसआई का प्रति खुम्ब फल-उत्पादन के लिए दूसरा प्रारंभिक मूल्यांकन

8 चयनित तेजी से बढ़ने वाले एकल स्पोर, 10 संकर और 2 पैतृक स्ट्रेन सहित कुल 22 स्ट्रेनों का मूल्यांकन आरबीडी में 10 किलोग्राम धान पुआल पोषाधार प्रति बेंड पर फल उपज क्षमता के लिए किया गया। खेती जुलाई-अगस्त, 2016 के दौरान की गयी और मानक खेती की प्रक्रियाओं का उपयोग किया गया था प्रत्येक स्ट्रेन के लिए आठ बेड रखे गए थे। प्रति खुम्ब फल-उत्पादन मूल्यांकन के लिए इस्तेमाल किए गए आठ तेजी से बढ़े हुए एसएसआई में से एसएसआई (वीवी-13-2-23) ने पैतृक स्ट्रेन के मुकाबले की तुलना में 13.22% अधिक खुम्ब का उत्पादन किया। एक एसएसआई ने पैतृक स्ट्रेन के मुकालबे बराबर उपज दी जबिक बाकी 6 एसएसआई ने कम उपज दी जिसका अंतर नगण्य था। 10 संकरों में से 5 संकर (बीबीएसआर-007-17 + जीवीवी -01-37, बीबीएसआर -007-ई **+** जीवीवी -01-टी, बीबीएसआर -007-ई **+** जीवीवी -01-वाई , बीबीएसआर -007-एफ + जीवीवी-01-वी, बीबीएसआर-007-एफ + जीवीवी-01-जेड) ने अधिक उत्पादन दिया और यह पैतृक स्ट्रेन से 17.61 से 82.

#### Second initial evaluation trial of newly developed hybrids and SSIs for their fruit body yield on paddy straw based composted substrate.

Total twenty strains including 8 selected fast growing SSIs, 10 hybrids and 2 parent strains were evaluated for their fruit body yield potential on composted substrate prepared from paddy straw using 10 kg substrate/bed in RBD. Standard package of practice was used and it was conducted during July-August, 2016. Eight beds were kept for each strain. Out of eight fast growing SSIs used for fruit body yield evaluation only one, SSI (Vv-13-2-23) gave 13.22% higher fruit body yield compared to the parent strain. One SSI gave yield at par to the parent strain, while rest 6 SSIs gave low yield and in majority cases it was negligible. Out of 10 hybrids, the fruit body yield was higher in 5 hybrids (BBSR-007-17 + GVv-01-37, BBSR-007-e + GVv-01-T, BBSR-007-e + GVv-01-Y, BBSR-007-F + GVv-01-V, BBSR-007-f + GVv-01-Z)and it was higher by 17.61 to 82.95% over parent strains. In 4 hybrids the yield enhancement ranged between 39.68 to 82.95%, which is quite significant.

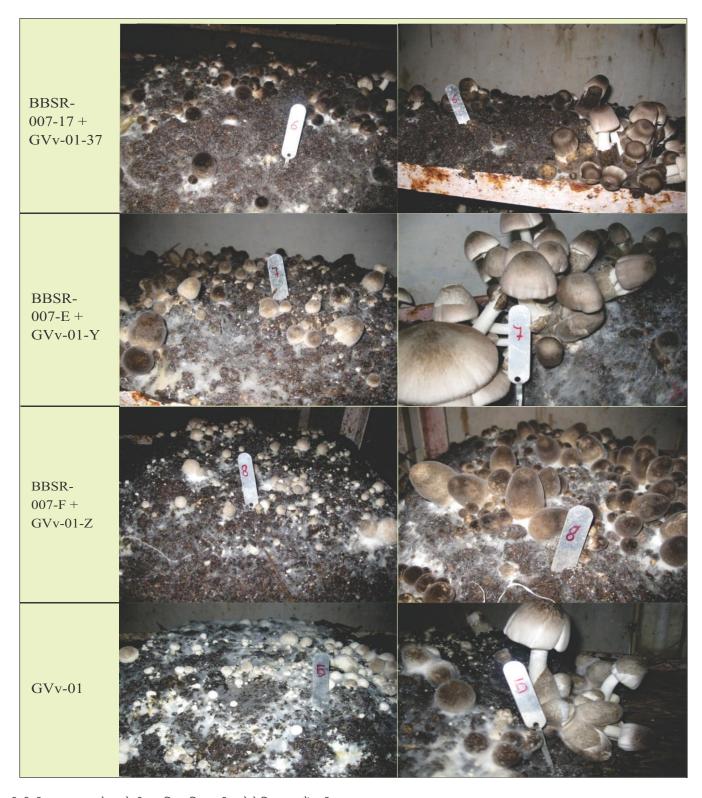
25

Table 2.11 Fruit body yield in different newly screened fast growing single spore isolates and hybrids of Volvariella volvacea.

तालिका 2.11 वी. वोल्वेसिया में नवचयनित संकरो एवं तेजी से बढ़ने वाले विभिन्न एस.एस. आई. का खुम्ब फल उत्पादन

| Hybrids/                   | Fruit   | body yie | eld (g) fron | n each bed | l/no. of fr | uit bodie | es     |          |
|----------------------------|---------|----------|--------------|------------|-------------|-----------|--------|----------|
| SSIs                       | 1       | 2        | 3            | 4          | 5           | 6         | 7      |          |
| BBSR-007                   | 481/19  | -        | 135/9        | 132/6      | 144/13      | 231/11    | 132/12 | 1255/70  |
| GVv-01                     | 216/7   | 92/7     | 150/15       | 230/15     | 40/4        | 298/7     | 263/22 | 1289/77  |
| Vv-13-2-23                 | 227/10/ | 218/9    | 337/24       | 41/3       | 292/15      | 176/9     | 130/9  | 1421/79  |
| Vv-13-2-28                 | -       | -        | 42/2         | -          | 36/2        | _         | 190/11 | 268/15   |
| BBSR-007-02                | -       | -        | 10/1         | -          | 36/2        | -         | _      | 46/3     |
| BBSR-007-17                | 54/2    | -        | -            | -          | 295/15      | _         | _      | 349/17   |
| BBSR-007-22                | 173/17  | 31/2     | 106/10       | 31/1       | 41/5        | 303/17    | 210/22 | 895/74   |
| GVv-01-101                 | 109/8   | 11/1     | 568/33       | 275/26     | 134/7       | 167/12    | _      | 1264/87  |
| GVv-01-106                 | -       | -        | -            | -          | -           | -         | 71/4   | 71/4     |
| GVv-01-108                 | -       | -        | 13/1         | 110/15     | -           | 24/4      | 118/7  | 265/27   |
| BBSR-007-17 +<br>GVv-01-34 | 274/12  | 49/3     | 115/8        | 123/8      | 119/8       | 59/2      | 259/12 | 998/53   |
| BBSR-007-17 + GVv-01-37    | 755/24  | 116/4    | 377/11       | 106/5      | 386/13      | 254/11    | 302/15 | 2296/83  |
| BBSR-007-28 + GVv-01-37    | 87/4    | 10/1     | 225/14       | 237/13     | 275/12      | 16/2      | 99/5   | 949/51   |
| BBSR-007-d +<br>GVv-01-T   | 20/2    | 326/12   | -            | -          | -           | -         | -      | 346/14   |
| BBSR-007-e +<br>GVv-01-T   | 310/14  | 114/7    | -            | 313/16     | 393/22      | 155/7     | 191/11 | 1476/77  |
| BBSR-007-a + GVv-01-Z      | -       | -        | -            | -          | -           | -         | -      | -        |
| BBSR-007-e + GVv-01-Y      | 231/9   | 205/10   | 375/25       | 97/4       | 45/1        | 180/12    | 695/50 | 1828/111 |
| BBSR-007-F + GVv-01-V      | 221/9   | 206/6    | 370/165      | 124/7      | 60/3        | 228/12    | 544/29 | 1753/82  |
| BBSR-007-C + GVv-01-T      | 199/18  | -        | 20/2         | 341/27     | 92/4        | 35/2      | 82/4   | 769/57   |
| BBSR-007-f+<br>GVv-01-Z    | 434/18  | 164/2    | 183/5        | 63/3       | 263/8       | 293/16    | 357/18 | 1757/70  |

95% अधिक था।


4 संकरों में उपज वृद्धि 39.68 से 82.95% के बीच थी, जो सांख्यिकी रूप से अलग है।

संकर बीबीएसआर -007-एफ + जीवीवी-01-वी मे एश और रेशे की मात्रा अधिक पाई गयी। जबकि संकर बीबीएसआर -007-ई + जीवीवी-01-टी मे विटामिन सी, विटामिन डी और क्रूड फाइबर, संकर बीबीएसआर-007-17 +

The hybrid BBSR-007-F + GVv-01-V exhibited superiority in ash and crude fibre contents, while hybrid BBSR-007-E + GVv-01-T in vitamin C, vitamin D and crude fibre, hybrid BBSR-007-17 + GVv-01-37 in protein, vitamin C, potassium, manganese, zinc and selenium, hybrid BBSR-007-F+ GVv-01-Z in manganese, selenium. The SSI Vv-13-2-23 exhibited highest level of protein, zinc and

Fig 2.8 Morphological characteristics of the high yielding hybrid strains and the SSI चित्र 2.8: अधिक उपज वाले संकरों एवं एस.एस. आई की मार्फोलोजिकल विशेषता

| Hybrid<br>strain/SSI         | Photograph |
|------------------------------|------------|
| BBSR-<br>007-F+<br>GVv-01-V  |            |
| BBSR-007                     |            |
| BBSR-<br>007-E +<br>GVv-01-T |            |
| Vv-13-2-23                   |            |



जीवीवी—01—37 में प्रोटीन, विटामिन सी, पोटेशियम, मैंगनीज, जस्ता और सेलेनियम, और संकर बीबीएसआर —007—एफ जीवीवी —01—जेड मैंगनीज, सेलेनियमस की मात्रा बेहतर पाई गयी। पैतृक स्ट्रेन बीबीएसआर —007 में प्रोटीन, विटामिन डी, पोटेशियम और जिंक बेहतर था। एक और पैतृक स्ट्रेन जीवीवी —01 पोटेशियम और सेलेनियम में समृद्ध था लेकिन प्रोटीन, मैंगनीज और जस्ता की मात्रा में कम पाया गया।

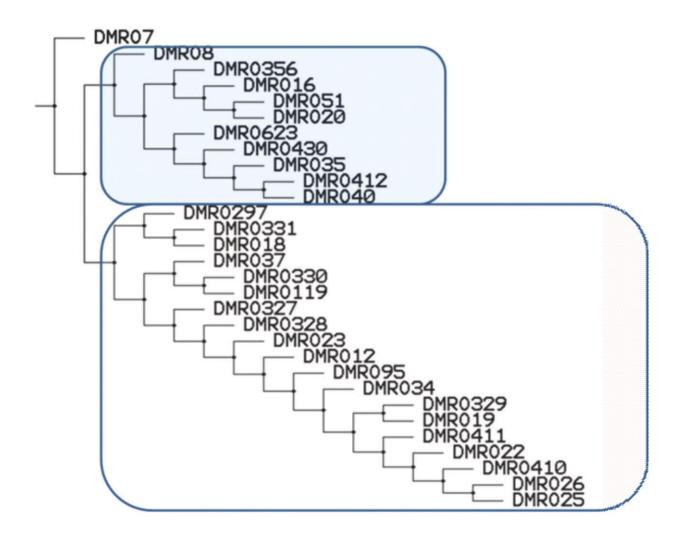
selenium. Parent strain BBSR-007 was superior in protein, vitamin D, potassium and Zinc. Another parent strain GVv-01 was rich in potassium and selenium but poor in protein, manganese and zinc.

|                    |       |        |        |       |       | •     |       |       |
|--------------------|-------|--------|--------|-------|-------|-------|-------|-------|
| Parameter          | 1     | 2      | 3      | 4     | 5     | 6     | 7     | 8     |
| Protein (%)        | 31.23 | 39.78  | 32.78  | 45.46 | 30.1  | 42.57 | 29.22 | 36.45 |
| Fat (%)            | 1.86  | 2.54   | 1.55   | 1.93  | 2.59  | 2.02  | 1.90  | 1.54  |
| Crude fibre (%)    | 2.07  | 1.09   | 2.00   | 1.58  | 1.26  | 1.63  | 1.40  | 1.74  |
| Ash (%)            | 10.95 | 10.53  | 9.32   | 10.34 | 10.08 | 10.32 | 8.58  | 9.34  |
| Vitamin C mg/100 g | 40.67 | 42.33  | 52.35  | 44.47 | 42.97 | 46.76 | 44.83 | 43.13 |
| Vitamin D μg/100 g | 1098  | 1150.8 | 1434.7 | 708.1 | 926.7 | 952.7 | 967.3 | 607.4 |
| Potassium (%)      | 3.7   | 4.0    | 3.6    | 3.4   | 4.0   | 3.9   | 3.5   | 3.7   |
| Manganese (mg/kg)  | 13.48 | 16.27  | 14.46  | 18.87 | 11.53 | 22.64 | 14.45 | 22.46 |
| Zinc (mg/kg)       | 56.76 | 84.61  | 60.82  | 83.63 | 59.58 | 72.89 | 56.51 | 67.10 |
| Selenium (mg/kg)   | 0.18  | 0.23   | 0.20   | 0.27  | 0.26  | 0.31  | 0.24  | 0.26  |

Table 2.12 Nutritional profile of latest hybrid strains and single spore isolates of *V. volvacea* तालिका 2.12 वी. वोल्वेसिया में नविकसित संकरों एवं एस.एस.आई. का पोषक तत्वों के लिए विश्लेषण

 $1-BBSR-007-F+GVv-01-V,\ 2-BBSR-007,\ 3-BBSR-007-E+GVv-01-T,\ 4-Vv-13-2-23,\ 5-GVv-01,\ 6-BBSR-007-17+GVv-01-37,\ 7-BBSR-007-E+GVv-01-Y,\ 8-BBSR-007-F+GVv-01-Z$ 

#### शिटाके आनुवांशिक सुधार


- भाकृअनुप— खु. अनु. नि कल्चर बैंक से 35 शिटके उपभेदों को लिया गया जिसमे से 16 उपभेदों फलित हुए और 13 उपभेदों के बीजाण छाप को एकत्र किया गया है।
- मोर्फोमेत्रिक, शारीरिक और आणविक डेटा के आधार पर विविधताओं के आंकलन के लिए इन उपभेदों का एक पय्लोजेनेटिक ट्री बनाया गया।
- कुल निम्नलिखित 1470 एकल बीजाणु को पृथक किया गया: DMRO 623 (L1): 130, DMRO 18 (L2): 111, DMRO 327 (L3): 121, DMRO 329 (L4): 150, DMRO 412 (L5): 101, DMRO 25 (L6): 133, DMRO 328 (L7): 120, DMRO 34 (L8): 130, DMRO 51 (L12): 30, DMRO 20 (L13): 101, DMRO 8 (L14): 111, DMRO 276 (L15): 111, DMRO 25 (L16): 121.
- स्पोर्स 0.2% माल्ट अगर मध्यम पर अंकुरित किए गए थे और प्रजनन के उद्देश्य के लिए उनकी गैर उर्वर प्रकृति का पता लगाने के लिए क्लैंप कनेक्शन के लिए परीक्षण किया गया था।
- L3 के निम्नलिखित एसएसआई में क्लैंप कनेक्शन पाये गए थे (DMRO 327) L3 5, L3 —11, L3 —26, L3 —28, L3 39, L3 —40, L3 —43, L3 44, L3 —45, L3 —47, L3 —49, L3 —52, L3 —60, L3 —64, L3 —65, L3 —66, L3 —72, L3 73, L3 76, L3 —78, L3 —89, L3 —96, L3 —113, L3 —117.
- L4 के निम्नलिखित एसएसआई में क्लैंप कनेक्शन पाये गए थे L4 (DMRO 329) L4 25, L4 —27, L4 —30, L4 —33, L4 35, L4 43, L4 45, L4 47, L4 —52, L4 —61, L4 —64, L4 70, L4 73, L4 77, L4 80, L4 —81, L4 82, L4 —90, 19. L4 91, L4 —92, L4 —95, L4 —96, L4 —99, L4 —101, L4 103, L4 106, L4 —106, L4 —107, L4 108, L4 111, L4 112.

#### **Shiitake Improvement:-**

- Out of 35 shiitake strains procured from ICAR-DMR culture bank, 16 strains fruited and spore prints of only 13 strains could be collected.
- The strains were evaluated for diversity on the basis of morphometric, physiological and molecular data and a phylogenetic tree was constructed
- A total 1470 SSIs were isolated from following strains: DMRO 623 (L1): 130, DMRO 18 (L2): 111, DMRO 327 (L3): 121, DMRO 329 (L4): 150, DMRO 412 (L5): 101, DMRO 25 (L6): 133, DMRO 328 (L7): 120, DMRO 34 (L8): 130, DMRO 51 (L12): 30, DMRO 20 (L13): 101, DMRO 8 (L14): 111, DMRO 276 (L15): 111, DMRO 25 (L16): 121.
- The spores were germinated on 0.2% malt extract agar medium and tested for clamp connection to ascertain their non-fertile nature for breeding purpose.
- Clamp connection was present in following SSIs of L3 (DMRO 327) L3 5, L3 -11, L3 -26, L3 -28, L3-39, L3 -40, L3 -43, L3 44, L3 -45, L3 -47, L3 -49, L3 -52, L3 -60, L3 -64, L3 -65, L3 -66, L3 -72, L3 -73, L3 76, L3 -78, L3 -89, L3 -96, L3 -113, L3 -117.
- Clamp connection was present in following SSIs of L4 (DMRO 329) L4 25, L4 -27, L4 -30, L4 -33, L4-35, L4 -43, L4 -45, L4 -47, L4 -52, L4 -61, L4 -64, L4 -70, L4 -73, L4 -77, L4 -80, L4 -81, L4 -82, L4 -90, 19. L4 -91, L4 -92, L4 -95, L4 -96, L4 -99, L4 -101, L4 103, L4 106, L4 -106, L4 -107, L4 -108, L4 -111, L4 112.
- The SSIs with clamp

क्लैंप कनेक्शन वाले एकल बीजाणु का उपयोग उपज और गुणवत्ता के मानकों के लिए किया जाएगा, जबिक बिना क्लैंप कनेक्शन वाले एकल बीजाणु का संकर प्रयोगों के लिए किया जाएगा।

connection will be evaluated for yield and quality parameters while the SSIs with No clamp connections will be used for the hybridization experiments.



चित्र 2.9 – विभिन्न पोशाघार में कवकजाल वृद्धि डेटा और रेडियल विकास डेटा के अधर पर पर फ्य्लोजेनेटिक ट्री का निर्माण

डेटा मैट्रिक्स को विनक्लेडा संस्करण का उपयोग करते हुए मात्रात्मक डेटासेट के रूप में तैयार किया गया था। (कॉपीराइट के निक्सन 1999–2002) फ्य्लोजेनेटिक विश्लेषण के लिए टीएनटी कार्यक्रम का उपयोग करके अधिकतम पार्सिमाइनी विश्लेषण किया।

Fig. 2.9 Phylogenetic tree drawn using Radial growth data on different media supplemented with extracts of different substrates and downward linear growth data on the same substrates. The data matrix was prepared as quantitative dataset using Winclada version 1.00.08 (copyright K Nixon 1999-2002). Maximum parsimony analysis was done using TNT programme for phylogenetic analysis (Goloboff et al. 2008) using 1000 bootstrap comparisons.

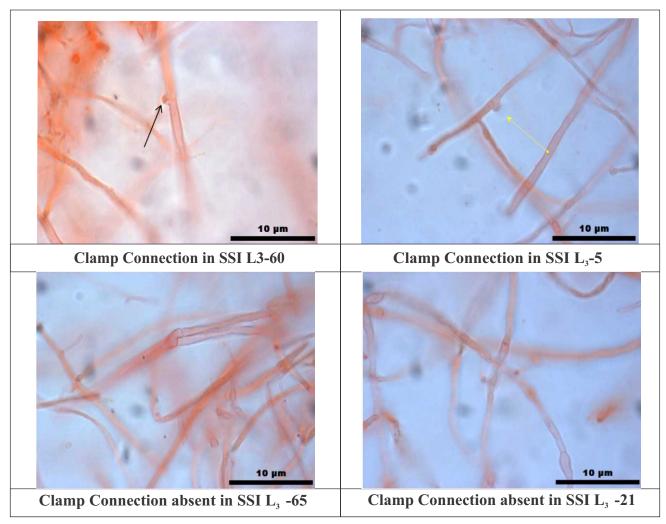



Fig. 2.10 Screening of SSI's for the presence of clamp connection चित्र 2.10 एस.एस. आई में क्लेंप कनैक्शन की उपस्थिति का विश्लेषण

## (ख) फसल उत्पादन (B.) Crop Production

बटन खुम्ब

बटन खुम्ब की खेती के लिए खाद बनाने हेतु बटन और ढ़ींगरी खुम्ब के अपशिष्ट पोषाधार का उपयोग:-

इस परीक्षण में बटन और ढींगरी मशरूम के एसएमएस को 30% डब्ल्यू / डब्ल्यू का उपयोग गेहू के भूसे के प्रतिस्थापन में किया गया था, नियंत्रण के रूप में सामग्रियों की मानक संरचना को लिया गया था । अरसी बैग जिनकी क्षमता 10 किग्रा कंपोस्ट थी खुम्ब फलों की पैदावार के लिए अध्ययन किया गया और हर उपचार में 10 बैग प्रत्येक 8 प्रतिकृति के लिए रखे गए । प्रत्येक उपचार के लिए दो स्ट्रेन (यू -3 और एस -11) का मूल्यांकन 40 बैग / स्ट्रेन की दर पर के लिए इस्तेमाल किया गया था। गेहूं की भूसी से तैयार खाद का रूपांतरण अनुपात नियंत्रण उपचार में निम्नतम 2.96 (मानक तैयार करने) से 3.67 में 30% गेहूं पुआल के बीच होता है, जिसमें ढींगरी खुम्ब अपशिष्ट पोषाधार को बिना नत्रजन संतुलन के प्रतिस्थापित किया जाता है। 1 टन कंपोस्ट के उत्पादन के लिए इनपूट की लागत में अंतर सबसे अधिक रु 3348 नियंत्रण में, और सबसे निम्न 2903 रु 30% गेहूं का भूसे में बटन खुम्ब अपशिष्ट पोषाधार के साथ प्रतिस्थापन में पाया गया।

**Button Mushroom** 

Trial on use of button and oyster mushroom spent substrate for compost making for button mushroom cultivation:-

In this trial SMSs of button and oyster mushroom were used @ 30% w/w in replacement of wheat straw, keeping standard composition of ingredients as the control treatment. Eighty bags (800 kg compost) each with 10 kg compost capacity with 8 replications of 10 bags each from each treatment were kept for fruit body yield studies. For each treatment two strains (U-3 and S-11) were used for evaluation trial @40 bags/strain. The conversion ratio of wheat straw to ready compost ranged between lowest of 2.96 in control (standard formulation) to highest of 3.67 in 30% wheat straw substituted with oyster mushroom SMS without N balancing. The difference in cost incurred towards the inputs for production of 1 ton of compost varied from highest of Rs. 3348 in case of control to lowest of Rs. 2903 in case of 30% wheat straw substituted with button mushroom SMS.

Table 2.13 Composition of compounding mixture in different composting treatments with button and oyster mushroom SMS

तालिका 2.13 बटन खुम्ब और ढीगरी खुम्ब के विभिन्न खाद उपचार में अपशिष्ट पोषाधार का संयोजन

| Compost ingredients                            | Quantity of composting ingredients (kg) in different composting treatments |         |         |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------|---------|---------|--|--|--|
|                                                | Treat-1 (control)                                                          | Treat-2 | Treat-3 |  |  |  |
| Wheat straw                                    | 1400                                                                       | 490     | 490     |  |  |  |
| Poultry manure                                 | 980                                                                        | 343     | 490     |  |  |  |
| Wheat bran                                     | 210                                                                        | 73.5    | 105     |  |  |  |
| Urea                                           | 21                                                                         | 7.4     | 10.5    |  |  |  |
| Gypsum                                         | 56                                                                         | 28      | 28      |  |  |  |
| Spent mushroom compost (at 60% moisture)       | -                                                                          | 380     | 340     |  |  |  |
| N % in the beginning of the composting         | 1.59                                                                       | 1.65    | 1.83    |  |  |  |
| Conversion rate (wheat straw to ready compost) | 2.96                                                                       | 3.45    | 3.67    |  |  |  |
| Cost of inputs (Rs.)/ton of compost output     | 3348                                                                       | 2903    | 3160    |  |  |  |

विभिन्न उपचारों के साथ तैयार खाद का विश्लेषण नमी (%), पीएच, विद्युत चालकता, कुल जेल्डाल नाइट्रोजन, लिग्निन, सेलूलोज और हेमिसेल्यूलोज सामग्री के लिए किया गया था। मानक बनावट विधि से तैयार किए गए खाद में नमी सबसे अधिक थी। यह ढींगरी और बटन खुम्ब के अपशिष्ट पोषाधार के साथ तैयार किए गए कंपोस्ट में समान स्तर पर (65. 67%) था। विभिन्न कंपोस्टों के पीएच भी एक दूसरे के बराबर थे (7.41 से 7.56)। बटन खुम्ब अपशिष्ट पोषाधार के साथ तैयार कंपोस्ट में विद्युत चालकता सबसे ज्यादा थी बाकी दो उपचारों में यह लगभग एक ही था। नत्रजन प्रतिशत, बटन खुम्ब अपशिष्ट पोषाधार से बनी खाद में अधिक था। लिग्निन सबसे अधिक बटन मशरूम एसएमएस की खाद में 45.07% इसके बाद ढींगरी खुम्ब अपशिष्ट पोषाधार की खाद मे पाया गया था। सेलुलोज नियंत्रण उपचार में सबसे अधिक था, जबकि हेमीसेल्यूलोज ढ़ीगरी खुम्ब अपशिष्ट पोषाधार और नियंत्रण उपचार में अधिक था।

The compost prepared with different formulations was analyzed for moisture (%), pH, electrical conductivity, total kjeldahl nitrogen, lignin, cellulose and hemicelluloses contents. Moisture was highest in compost prepared with standard formulation. It was at same level (65.67%) in composts prepared with SMS of oyster and button mushroom. pH of different composts was also almost at par with each other (7.41 to 7.56). Electrical conductivity was highest in compost prepared with button mushroom SMS. In rest two cases it was almost same. Nitrogen % was also highest in compost prepared with button mushroom SMS, followed by compost with oyster mushroom SMS. Lignin content was highest of 45.07% in compost with button mushroom SMS, followed by compost with oyster mushroom SMS. Cellulose was highest in control treatment, while hemicellulose in composts with oyster mushroom SMS and control treatment

Table 2.14 Quality characteristics of the compost in different treatments तालिका : 2.14 प्रयोग में विभिन्न खाद उपचारों की गुणवत्ता

|                   |              | Quality characteristics of compost in different treatments |           |              |            |               |                      |  |  |  |  |
|-------------------|--------------|------------------------------------------------------------|-----------|--------------|------------|---------------|----------------------|--|--|--|--|
| Composts          | Moisture (%) | pН                                                         | EC (Ds/m) | Nitrogen (%) | Lignin (%) | Cellulose (%) | Hemicellulose<br>(%) |  |  |  |  |
| Treat-1 (control) | 68.33        | 7.44                                                       | 2.53      | 1.63         | 29.13      | 14.20         | 46.46                |  |  |  |  |
| Treat-2           | 65.67        | 7.56                                                       | 2.96      | 1.87         | 45.07      | 13.60         | 29.71                |  |  |  |  |
| Treat-3           | 65.67        | 7.41                                                       | 2.55      | 1.73         | 40.83      | 12.50         | 46.79                |  |  |  |  |

चार सप्ताह की फसल के बाद दर्ज खुम्ब फलों की उपज तीन अलग—अलग उपचारों में उतनी ही पाई गयी जितनी स्ट्रेन U—3 में देखी गयी । हालांकि, एस —11 में खुम्ब की पैदावार नियंत्रण और बटन खुम्ब अपिशष्ट पोषाधार के साथ 30% गेहूं की भूसे के प्रतिस्थापन वाली खाद में बराबर थी । ढ़ींगरी खुम्ब अपिशष्ट पोषाधार के साथ तैयार खाद में खुम्ब की पैदावार इन दो उपचारों की तुलना में कम थी। बटन खुम्ब अपिशष्ट पोषाधार और स्ट्रेन यू —3 के साथ तैयार खाद को छोड़कर औसत फल भार (ग्राम) तीन खाद उपचारों में बराबर था, जिसमें दो स्ट्रेन थे । स्ट्रेन एस —11 में औसत फल भार बटन खुम्ब अपिशष्ट पोषाधार के साथ तैयार खाद में भी सबसे कम पाया गया।

The fruit body yield recorded for four weeks of cropping reveals significantly at par yield in strain U-3 in different treatments. However in strain S-11 the fruit body yield was at par in control and compost prepared with substitution of 30% wheat straw with button mushroom SMS. In compost prepared with oyster mushroom SMS the fruit body yield was lower than these two treatments. The mean fruit body wt. (g) was at par in three compost treatments with two strains, except of compost prepared with button mushroom SMS and strain U-3. In case of strain S-11 the mean fruit body wt. is also lowest in compost prepared with button mushroom SMS.

Table 2.15 Fruit body yield in different composting treatments with SMS substitution of button and oyster mushroom

तालिका 2.15 बटन एवं ढींगरी खुम्ब के अपशिष्ट पोषाधार से बनी प्रतिस्थापित खाद उपचारों में खुम्ब फल उत्पादन

| Treatments   |       |       | Nos. of fruit compost | bodies/q | Mean fruit body wt. (g) |       |  |
|--------------|-------|-------|-----------------------|----------|-------------------------|-------|--|
| 110001101101 | U-3   | S-11  | U-3                   | S-11     | U-3                     | S-11  |  |
| T-1          | 10.71 | 15.95 | 767                   | 1159     | 13.96                   | 13.77 |  |
| T-2          | 10.47 | 15.02 | 831                   | 1141     | 12.60                   | 13.17 |  |
| T-3          | 10.33 | 14.29 | 759                   | 1053     | 13.61                   | 13.57 |  |
| CD 0.05      | 1.43  | 1.97  | 84.25                 | 105.66   | 1.68                    | 1.59  |  |

तीन अलग-अलग प्रकार के कंपोस्ट्स से मशरूम बैग गीला बुलबुला रोग संक्रमण 5 फरवरी से 26 फरवरी, 2016 के बीच देखे गए । तीन प्रकार के कंपॉस्ट्स में दो स्ट्रेन के कुल बैगो मे से संक्रमित बैग की संख्या को देखा गया और कुल फल निकायों में से संक्रमित फल निकायों की संख्या भी देखी गयी। U-3 स्ट्रेन मे उच्चतम संक्रमण प्रतिशत था जो ढींगरी मशरूम एसएमएस (35%) के साथ तैयार होता है, इसके बाद मानक विधि से तैयार खाद (20%) मे तद्पश्चात बटन मशरूम एसएमएस (17.5%) के खाद मे पाया गया । एस -11 स्ट्रेन मे उच्चतम संक्रमण मानक विधि से बनी खाद (40%) मे पाया गया इसके बाद कम्पोज द्वारा बटन मशरूम एसएमएस खाद पे (37.5%) और सबसे कम ढींगरी मशरूम एसएमएस खाद में पाया गया। विभिन्न उपचारों से उच्चतम प्रतिशत संक्रमित फल की कुल संख्या यू –3 स्ट्रेन में ऑइस्टर मशरूम एसएमएस (35. 63%) से तैयार खाद में पाई गयी, इसके बाद मानक विधि से बनी खाद मे (33.69%) तदपश्चात बटन मशरूम एसएमएस से तैयार खाद मे थी (19.15%)। स्ट्रेन एस -11 के मामले में, संक्रमित फलों के निकायों का प्रतिशत बटन और ढींगरी मशरूम एसएमएस (२६.८१ और २६.०९%) से कंपोस्ट में लगभग समान था, इसके बाद मानक विधि से बनी खाद मे (19.70%) मे था।

The mushroom bags from three different types of composts were observed for the wet bubble disease infection. The bags were observed for the numbers of bags infected out of total bags in each treatment/strain and numbers of infected fruit bodies out of total fruit bodies harvested in two strains in three types of composts. In strain U-3 highest percentage of bags were infected in compost prepared with oyster mushroom SMS (35%), followed by compost prepared with standard formulation (20%) and compost with button mushroom SMS (17.5%). In strain S-11, highest percentage of bags were infected in compost from standard formulation (40%), followed by compost with button mushroom SMS (37.5%) and least in compost with oyster mushroom SMS. With respect to total numbers of infected fruit bodies from different treatments, highest percentage in strain U-3 was in compost prepared from Oyster mushroom SMS (35.63%), followed by compost with standard formulation (33.69%) and compost with button mushroom SMS (19.15%). In case of strain S-11, the percentage of infected fruit bodies was almost same in composts from button and oyster mushroom SMS (26.81 and 26.09%), followed by compost with standard formulation (19.70%).

Table 2.16 Wet bubble disease infection in mushroom bags with composts prepared with SMS of different mushrooms and spawned with different strains

तालिका 2.16 खुम्बो के अपशिष्ट पोषाधारों से बनी खाद पर, विभिन्न स्टेनों पर गीला बुलबुला रोग का संक्रमण प्रतिशत

|            |      | room bags<br>ed (%) | Fruit bodies infected (Nos. and %) |                           |                           |                              |                           |                           |
|------------|------|---------------------|------------------------------------|---------------------------|---------------------------|------------------------------|---------------------------|---------------------------|
| Treatments | U-3  | S-11                |                                    | U-3                       |                           |                              | S-11                      |                           |
|            |      |                     | Infected fruit bodies (nos.)       | Total fruit bodies (nos.) | Infected fruit bodies (%) | Infected fruit bodies (nos.) | Total fruit bodies (nos.) | Infected fruit bodies (%) |
| T-1        | 20   | 40                  | 63                                 | 187                       | 33.69                     | 53                           | 269                       | 19.70                     |
| T-2        | 17.5 | 37.5                | 9                                  | 47                        | 19.15                     | 63                           | 235                       | 26.81                     |
| T-3        | 35   | 12.5                | 57                                 | 160                       | 35.63                     | 12                           | 46                        | 26.09                     |

### I. बटन खुम्ब के व्यवसायिक स्ट्रेनों का खुम्ब फल उत्पादन के लिए मूल्यांकन

डीएमआर कल्चर बैंक में उपलब्ध दस संभावित उच्च उपज वाले उपभेदों का मूल्यांकन मानक विधि से बनी खाद और लघु विधि कंपोस्टिंग द्वारा तैयार की गई खाद पर किया गया था। एफवाईएम कॉयर पिथ आधारित स्टीम पेस्टाइज्ड आवरण सामग्री का उपयोग बैग के आवरण के लिए किया गया था। प्रथाओं के मानक पैकेज का उपयोग फसल उगाहने के लिए किया गया था। स्ट्रेन 465 में 14.80 किलो 100 किग्रा खाद की पैदावार से प्राप्त की गई थी, इसके बाद फल की पैदावार एस —130 (14.70 किलो) में अच्छी रही। स्ट्रेन एस —11 ने भी इन दो नस्लों के समान उपज का स्तर दिया। स्ट्रेन DMR—03 ने चौथी अधिकतम उपज दी। पांच सबसे अच्छी उपज वाले स्ट्रेनो में, उच्च औसत खुम्ब फल भार S—130 में 15.32 ग्राम था, उसके बाद स्ट्रेन एस —11 में 14.54 ग्राम, स्ट्रेन 465 में 14.63 ग्राम और स्ट्रेन एस —11 में 14.54 ग्राम मिला।

# I.Evaluation of commercially available button mushroom strains for their fruit body yield potential

The ten potential high yielding strains available in DMR culture bank were evaluated for their yield potential on compost prepared with standard formulation and by short method of composting. FYM + coir pith based steam pasteurized casing material was used for casing the bags. Standard package of practices were used for crop raising. Highest fruit body yield of 14.80 kg/100 kg compost was obtained from strain 465, followed by strain S-130 (14.70 kg). Strain S-11 also gave almost same level of yield as of these two strains. Strain DMR-03 gave the fourth highest yield. Amongst the best five yielding strains, the mean fruit body wt. was highest 15.32 g in S-130, followed by 15.31 g in strain DMR-03, 14.63 g in 465 and 14.54 g in strain S-11.

Table 2.17 Fruit body yield in different strains of button mushroom तालिका 2.17 बटन खुम्ब के विभिन्न स्ट्रेनों का खुम्ब फल उत्पादन

| Strains | Yield (kg/100 kg compost) | No. of fruit bodies/100 kg compost | Mean fruit body wt. (g) |
|---------|---------------------------|------------------------------------|-------------------------|
| 7215    | 6.80                      | 481                                | 14.13                   |
| Delta   | 9.48                      | 671                                | 14.12                   |
| 7218    | 10.72                     | 756                                | 14.18                   |
| Le-1    | 10.97                     | 797                                | 13.76                   |
| Le-6    | 10.83                     | 736                                | 14.71                   |
| 454     | 10.93                     | 742                                | 14.73                   |
| Bel-2   | 7.08                      | 491                                | 14.42                   |

| Le 4    | 12.79 | 898   | 14.25 |
|---------|-------|-------|-------|
| S-130   | 14.70 | 960   | 15.32 |
| DMR-03  | 13.52 | 883   | 15.31 |
| S-11    | 14.26 | 981   | 14.54 |
| 465     | 14.80 | 1012  | 14.63 |
| CD 0.05 | 1.29  | 86.28 | 1.47  |

प्रत्येक स्ट्रेन के लिए 24 थैलों में, गीला बुलबुले के संक्रमण का सबसे कम प्रतिशत एस —11 और बेल—2 के स्ट्रेन में था। इसके बाद स्ट्रेन 465 (30.77%) और स्ट्रेन ले —6 (33. 33%) मे था। यदि हम गीले बुलबुले से संक्रमित फल निकायों के प्रतिशत को देखे तो संक्रमित फलों का सबसे कम प्रतिशत एस —11 (23.1 9%), DMR-03 (28.57%) और स्ट्रेन डेल्टा (31. 25%) मे पाया गया।

Out of 24 bags for each strain, lowest percentage of infection of wet bubble was in strains S-11 and Bel-2 (29.17%). It was followed by strain 465 (30.77%) and strain Le-6 (33.33%). If we go by the percentage of fruit bodies infected with wet bubble, the lowest percentage of infected fruit bodies were from strain S-11 (23.19%), followed by strain DMR-03 (28.57%) and strain Delta (31.25%).

Table 2.18 Wet bubble disease infection in different strains of white button mushroom तालिका 2.18 विभिन्न बटन खुम्ब स्ट्रनों में गीला बुलबुला रोग का संक्रमण

| Strains | Infected mushroom bags (%) | Infected fruit bodies (nos.) | Total fruit bodies (nos.) | Infected fruit bodies (%) |
|---------|----------------------------|------------------------------|---------------------------|---------------------------|
| 7215    | 54.17                      | 46                           | 145                       | 31.72                     |
| Delta   | 41.67                      | 30                           | 96                        | 31.25                     |
| 7218    | 54.17                      | 93                           | 216                       | 43.05                     |
| Le-1    | 83.33                      | 156                          | 398                       | 39.20                     |
| Le-6    | 33.33                      | 28                           | 57                        | 49.12                     |
| 454     | 41.67                      | 36                           | 92                        | 39.13                     |
| Bel-2   | 29.17                      | 22                           | 60                        | 36.67                     |
| Le-4    | 41.67                      | 45                           | 114                       | 39.47                     |
| S-130   | 45.83                      | 51                           | 125                       | 40.80                     |
| DMR-03  | 50.00                      | 20                           | 70                        | 28.57                     |
| S-11    | 29.17                      | 16                           | 69                        | 23.19                     |
| 465     | 30.77                      | 12                           | 33                        | 36.36                     |

#### शिटाके खुम्ब

## गेहूं पुआल पर शिटाके की खेती के लिए उपयुक्त स्ट्रेन का चयन

शिटाके के कुल 35 स्ट्रेन को भा.कृ.अनु.प.—खुम्ब अनुसंधान निदेशालय, सोलन के जीन बैंक से प्राप्त किया गया था। प्रारंभिक चयन गेहू पुआल आधारित पोषाधार पर 20 ± 2° से.ग्र. मे स्पोरोफोर्स बनाने की क्षमता के आधार पर किया गया था। परीक्षण की गई 35 उपभेदों में से, 9 स्ट्रेन ने गेहूं की भूसे पर खुम्ब का उत्पादन किया और इनकी वृद्धि दर, बाह्य एंजाइमों के प्रोफाइल और उपज की क्षमता का भी परीक्षण किया गया।

माईसीलीयम अथवा कवकजाल विकास और 9 स्ट्रेन के कवकजाल विकास की क्षमता का अध्ययन गेहूं उद्धरण अगार माध्यम मे

#### Shiitake mushroom

## Selection of promising strains of shiitake for cultivation on wheat straw

A total no. of 35 strains of shiitake were obtained from the gene bank of the ICAR-Directorate of Mushroom Research, Solan. Preliminary screening was done to test the ability of the strains to produce sporophores on wheat straw based substrate at 20±2°C. Out of the 35 strains tested for initial fruiting, nine strains were showed the fruiting on wheat straw and these nine strains were further selected to test their growth rates, profile of extracellular enzymes and yield potential.

एवं गेहूं चोकर मिश्रित भूसे पर किया गया। गेहूं अगार माध्यम को बनाने के लिए 50 ग्राम गेहूं का भूसा एक लीटर पानी मे उबाला गया और उसका उद्धरण लिया गया तत्पत्चात प्राप्त रस मे 15 ग्राम प्रति लीटर की मात्रा मे अगार डालकर मिश्रण को 121 से .ग्र पर 90 मिनट पे 15 पौंड प्रेसर पर जीवाणूरहित किया गया। विभिन्न स्ट्रेनो की माईसीलीयम बिट (8 मिली मीटर व्यास) को मल्ट अगार माध्यम की पेट्री प्लेट में संरोपित कर 25±2°C पर उष्मायित किया गया। रेडियल ग्रोथ रेट (सेमी प्रति दिन) का आकलन 10 दिनों के ऊष्मायन के बाद प्रति दो दिनों के अंतराल पर दो सीधा अक्षों पर माइसेलियम के व्यास को मापने के साथ किया गया। रैखिक विकास दर का अध्ययन परखनली मे भरी सामान्य गेहू पुआल पर और पॉलीप्रोपीलेन (पीपी) बैग में भरे चोकर मिश्रित गेहूं के भूसे पर किया गया था।

अलग–अलग उपभेदों की एकसमान आकार माईसीलीयम बिट को, परखनली में 10 सेमी की समान लंबाई मे भरी सामान्य पुआल में संरोपित किया गया।

इसी प्रकार, अलग-अलग उपभेदों के स्पान को भी को 4 प्रतिशत पोषाधार के गीले वजन के आधार पर पीपी बैग में भर दिया गया था। संरोपित परखनली और बैग 25 ± 2 डिग्री सेल्सियस पर ऊष्मायन के लिए रखे गए थे। माईसीलीयम की रैखिक विकास दर (सेमी दिन) को हर सात दिनों के अंतराल पर मापा गया था और जानकारी की प्रस्तृति 21 दिनों के बाद प्रतिदिन विकास दर के आधार पर की गयी थी।

गेहू उद्धरण अगार माध्यम पर अलग–अलग उपभेदों की रेडियल ग्रोथ रेट 0.40 से 0.42 सेंटीमीटर दिन के बीच थी और रेखीय विकास दर सामान्य गेहू भूसे पर 0.38 से 0.45 सेमी दिन के बीच और चोकर मिश्रित गेहूं के भूसे पर 0.41 से 0.5 9 सेमी दिन पर रही।

गेहू उद्धरण अगार माध्यम पर विभिन्न उपभेदों की रेडियल और रैखिक वृद्धि दर में सामान्य भूसे और चोकर मिश्रित गेहू के भूसे के बीच कोई महत्वपूर्ण अंतर नहीं पाए गया। हालांकि, विभिन्न उपभेदों की रैखिक वृद्धि दर मे चोकर मिश्रित गेहू के भूसे पर काफी भिन्नता पाई गयी। चोकर मिश्रित गेहू के भूसे में गेहू चोकर को नत्रजन के स्रोत की तरह उपयोग करने से सामान्य भूसे की तुलना में सभी उपभेदों मे माईसीलीयम वृद्धि दर में काफी वृद्धि पाई गयी। उक्त परिणाम कवक विकास पर उपलब्ध नत्रजन की उत्तेजना प्रभाव को न्यायोचित टहरा रहे हैं। उच्चतम विकास दर DMRO-327 (0.59 सेमी / दिन), DMRO -34 (0.56 सेमी / दिन) और DMRO-412 (0.54 सेमी / दिन) में दर्ज की गई थी। चुंकि प्रारंभिक विकास चरणों में संक्रमण का खतरा अधिक होता हैं, इसलिए पुआल मे खेती के लिए सबसे महत्व पूर्ण है की केवल उन्ही स्ट्रेन का चयन किया जाये जिनका की माईसीलीयम उपनिवेशण समय कम हो। प्रारंभिक माईसीलीयम उपनिवेशण की गति तेज होने से सब्सट्रेट का उपयोग भी ठोस किश्वन प्रक्रिया से तेज होता है जो की स्ट्रेन की दिए गए पोषाधार पर अनुकूलन क्षमता को निर्धारण करती

#### Mycelial growth studies

Mycelial growth ability of the nine strains was studied on the wheat extract agar (WEA) medium; wheat straw and substrate prepared by mixing wheat straw and wheat bran in 4:1 ratio. The WEA medium was prepared by boiling 50 g of wheat straw in a liter of water, and decanted to collect the extract. The agar powder was added @ 15g L<sup>-1</sup> of the above extract and then sterilized at 121°C for 90 minutes at 15psi pressure. The mycelium disks (8 mm dia.) of different strains pre-cultivated on malt extract agar medium were inoculated into the petri dishes and incubated at 25±2°C. Radial growth rate (cm/day) was recorded by measuring the diameter of the mycelia along with two perpendicular axes. Linear growth rate was studied on sterilized wheat straw and sterilized substrate. The mycelial discs of uniform size of different strains were inoculated in wheat straw filled in the glass tubes to the equal length of 10 cm. Similarly, the grain spawn of different strains was inoculated into the wheat straw based substrate filled in pp bags @ 4% on wet weight basis. The inoculated glass tubes and bags were kept for incubation at 25±2°C and recorded the linear growth rate (cm/day) of mycelia at every seven days interval.

The radial growth rate of different strains on WEA medium varied between 0.40 to 0.42 cm/day and the linear growth rate ranged between 0.38 to 0.45 cm/day on wheat straw and 0.41 to 0.59 cm/day on wheat straw based substrate. The radial and linear growth rates of different strains on WEA medium and on wheat straw was found non significant. However, linear growth rate of different strains varied significantly on substrate. Addition of wheat bran as a source of nitrogen to the straw significantly increased the mycelial growth rate of all the strains compared to the un supplemented straw. The results are justifying the stimulation effect of available nitrogen on vegetative growth of fungal strains. The highest growth rate was recorded in strain no. DMRO-327 (0.59 cm/day) followed by DMRO-34 (0.56 cm/day) and DMRO-412 (0.54 cm/day).

As the risk of contamination is high at the early growth stages, reduction in time required for complete mycelial colonization is of prime importance while choosing a specific strain for cultivation on straw. The speed of initial mycelial colonization expedites the further utilization of the substrate during the process of solid state fermentation and decides the adaptability of specific strain to the given substrate. The correlations

है। सब्सट्रेट पर माइसेलियम रेखीय विकास दर और विभिन्न उपभेदों की जैविक दक्षता बीच के सहसंबंध का आर मूल्य 0. 752 पाया गया जो की सांख्यिकीय रुप से महत्वपूर्ण है। विकास दर और उपज की क्षमता के बीच में पाया गया यह सकारात्मक संबंध उपरोक्त अनुमान का समर्थन करता है। दिलचस्प बात यह है कि तेज माईसीलीयम उपनिवेशण दर वाले स्ट्रेन ने धीरे बढ़ती हुई स्ट्रेन की तुलना में खुम्ब उत्पादन के लिए अधिक दिन का समय लिया। इसका कारण यह हो सकता है की हाइड्रोलाइटिक एंजाइमों ने ऊष्मायन चरण में लंबी अवधि तक अधिकतम संसाधन उपयोग किया ताकि अधिकतम उपज की क्षमता प्राप्त हो सके। वर्तमान आंकड़ों के मुताबिक, यह पता चलता है कि गेहूं के पुआल पर पूरक नाइट्रोजन के द्वारा विकास दर का अध्ययन स्ट्रेन-पोषाधार की संगतता स्थापित करने के लिए एक अच्छा संकेत है।

tested between the linear growth rate on substrate and BE of different strains was found significant with the r value of 0.752. This positive relation found between speed of growth rate and yield potentiality supports the above inference. Interestingly, the strains with quick colonization rate took more no. of days for fructification compared to slow growing strains. This may be due to the maximum resource utilization by quick growing strains by secreting the hydrolytic enzymes for a longer period in the incubation phase and in turn to express the optimum yield potentiality. In light of the present data, it is considered that study of growth rate on nitrogen supplemented wheat straw is a good indication to establish the strain-substrate compatibility.

Table 2.19 Mycelial growth rate of different strains of shiitake तालिका : 2.19 शिटाके खुम्ब के विभिन्न स्टूनों में कवक जाल विकास दर

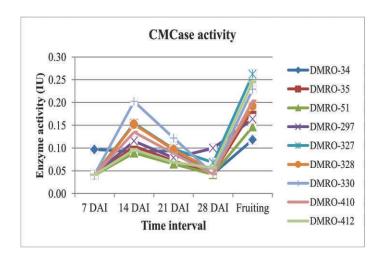
| Strain    | Radial growth<br>on WEA<br>medium (cm<br>/ day) | Linear growth<br>on<br>wheat straw<br>(cm/day) | Linear growth<br>on straw<br>based substrate<br>(cm/day) |
|-----------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| DMRO -34  | $0.42 \pm 0.00$                                 | 0.40±0.04                                      | 0.56±0.01                                                |
| DMRO -35  | $0.41 \pm 0.01$                                 | 0.38±0.03                                      | 0.41±0.03                                                |
| DMRO -51  | $0.42 \pm 0.01$                                 | 0.42±0.01                                      | 0.49±0.01                                                |
| DMRO -297 | 0.42±0.01                                       | 0.41±0.02                                      | 0.49±0.02                                                |
| DMRO -327 | 0.42±0.01                                       | 0.45±0.01                                      | 0.59±0.02                                                |
| DMRO -328 | $0.40\pm0.00$                                   | 0.38±0.01                                      | 0.42±0.01                                                |
| DMRO -330 | 0.42±0.00                                       | 0.41±0.01                                      | 0.45±0.01                                                |
| DMRO -410 | $0.41 \pm 0.01$                                 | 0.39±0.01                                      | 0.47±0.01                                                |
| DMRO -412 | 0.41±0.00                                       | 0.45±0.03                                      | 0.54±0.03                                                |
| CD        | NS                                              | NS                                             | 0.054                                                    |
| SE(m)     | 0.006                                           | 0.018                                          | 0.018                                                    |

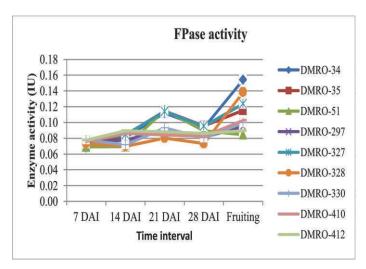
## बाह्य एंजाइम की गतिविधियों का अध्ययन नमुनाकरण और कच्चे एंजाइम निकालने की तैयारी

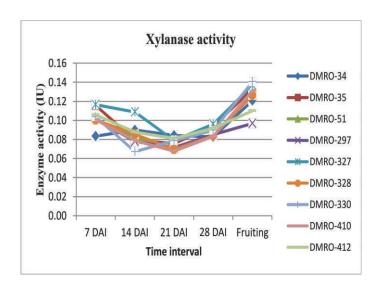
कुल पांच नमूने, उष्मायन के सात दिन (नमूना 1), 14 दिन (नमूना 2), 21दिन (नमूना 3), 28 दिन (नमूना 4) और (नमूना 5) फल उत्सर्जन पर लिया गये। प्रत्येक स्ट्रेन के माईसीलीयम को निश्चित अंतराल पर पोषाधार से एकत्रित किया गया और उसे होमोजिनाईस, लयोफिलाईस 38

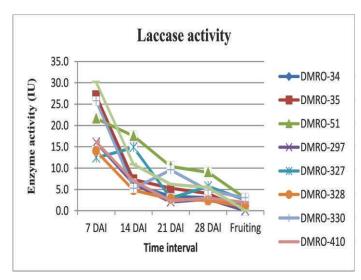
## Study of extracellular enzyme activity Sampling and preparation of crude enzyme

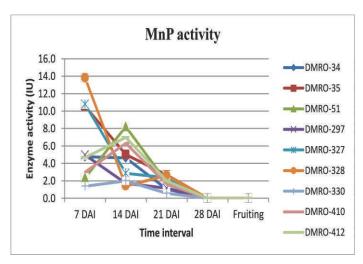
A total number of five samples were drawn from the incubation room at an interval of seven (sample 1), 14 (sample 2), 21 (sample 3), 28 (sample 4) days from the date of spawning and the last sample at the primordial formation stage (sample पीसकर पाउडर बनाया गया । पाउडर को परीक्षण के लिए 4°C तक संग्रहीत किया गया था। क्रूड एंजाइम का अर्क 10 मिलीलीटर विआयनीकृत पानी में 1.0 ग्राम पाउडर के साथ मिलाकर तैयार किया गया था। क्रूड एंजाइम अर्क को मसलिन कपड़े के माध्यम से फिल्टर किया गया था और कम तापमान पे 12000 आर. पी. एम. पर 15 मिनट के लिए अपकेंद्रित्र किया गया। तदपश्चात परीक्षण के लिए कच्चे एंजाइम का अर्क इस्तेमाल किया गया। अलग-अलग स्ट्रेन के एंजाइम गतिविधियों के नमुनों को तीन बार परीक्षित किया गया था और IU/g के रूप में उल्लेखित किया गया है। पोषाधार से निकलने वाले प्रति मिनट प्रति ग्राम उत्पाद, यदि 1Umol एंजाइम निकलता है तो उसे IU/ a परिभाषित किया जाता है । एल इडोडोड एक सफेद सडांध कवक होने के कारण विभिन्न लिग्नोकेलेलोसिक अपशिष्टों का उपयोग करने के लिए विभिन्न प्रकार के ऑक्सीडेज और हाइड्रोलिस उत्पन्न करती है। अलग–अलग विकास चरणों में अलग–अलग स्ट्रेनो में इन अतिरिक्त सेलुलर एंजाइम गतिविधियों में विविधता के अध्ययन से सब्सट्रेट के बायोकॉनवर्जन में एंजाइमों की भूमिका में अंतर्दृष्टि आती है। व्यक्तिगत स्ट्रेनो में मात्रात्मक भिन्नता के बावजूद, पोषाधार में एंजाइम स्नाव के क्रम ने सभी स्ट्रेनों में समानता पाई गई है। ऑक्सिडेस एंजाइम की गतिविधि जैसे लैककेस और एमएनपी स्पानींग के 7 दिनों के बाद अधिकतम पायी गयी तदपश्चात इनकी गतिविधि में गिरावट आई। वीपी की गतिविधि पोषाधार की पूर्ण उपनिवेशकता तक बड़ी थी और इसके बाद कम हो गई थी। लेकिन लैककेस गतिविधि स्पानींग चरण से खुम्ब उत्पादन चरण तक सभी स्ट्रेनो मे घटी चली गयी। इसी तरह, जब पोषाधार में मायसेलियम स्पष्ट रूप से स्थापित हो गया था एमएनपी की गतिविधि का पता नही चल पाया। खुम्ब फल उत्सर्जन के समय सभी एंजाइम की गतिविधि मे सेल्युलासेस और सीएमसीज की गतिविधि अधिकतम पायी गयी उसके बाद एफपीएस और जियालेन पाए गए। वर्तमान अध्ययन में, सभी उपभेदों की सीएमसीसीई, एफपीएस और जियालेनेस गतिविधियों में दो अलग-अलग शिखर देखे गए, पहला स्पॉन रन के प्रारंभिक चरणों और दूसरा शिखर फल उत्सर्जन के समय। स्पॉन चलाने की प्रारंभिक अवस्थाओं में मौजुद गतिविधियों के कारण शिखर देखा गया जिसका रूप उपनिवेशीकरण की प्रगति के साथ गतिविधियों के कारण एक पठार सा हो गया । दूसरा शिखर मौलिक गठन मंच से जुड़ा था । एंजाइम गतिविधिं में वृद्धि, स्ट्रेन द्वारा फल शरीर गठन के लिए घुलनशील कार्बोहाइड्रेंट का उपयोग करने का सूचक हो सकता है ।


हालांकि, एंजाइम गतिविधियों और अलग—अलग स्ट्रेनों के जैविक दक्षता के बीच कोई सम्बन्ध नहीं पाया गया, पर सेल्यूलस की गतिविधि कम पैदावार वाले स्ट्रेनों की तुलना में उच्च उपज देने वाले स्ट्रेनों में काफी अधिक थी। सीएमसीसी और जालिनेस की गतिविधि DMRO—327 उच्चतम देखी गयी और इसी स्ट्रेन में उच्चतम बी.इ. 60.23% भी दर्ज की गयी। ये 5). The substrate colonized by the mycelium of different strains from each block at specified interval was collected, homogenized, lyophilized and powdered by mechanical grinding. The powder was stored at 4°C till the assay. Crude enzyme extracts were prepared by adding 1.0 g of powder to 10ml of deionized water. The extract was filtered through muslin cloth to remove the solids and cold centrifuged at 12000 x g for 15min. Then the crude enzyme extracts were used immediately for assays. The enzyme activities of different strains was assayed in triplicate and expressed as IU g<sup>-1</sup> defined as the amount of enzyme producing 1µmol of product per min per g of substrate extracted.


Ledodes being a white rot fungus produces wide range of oxidases and hydrolases for degradation and utilization of various lignocellulosic wastes. The study of variations in these extra cellular enzyme activities in individual strains at different growth stages gives an insight into the role of enzymes in bioconversion of the substrate. Despite of quantitative variation in individual strains, the pattern of enzyme secretion into the substrate followed the similar fashion in all the strains. The activities of CMCase, FPase and xylanase were found highest at the time of primordial formation.


The activity of oxidase enzymes such as laccase and MnP were found highest at 7 days of spawning and later the enzyme activity declined. The activity of VP was increased till the complete colonization of substrate and reduced thereafter. But laccase activity followed the descending trend from spawn run stage to fruiting stage in all the strains. Similarly, the activity of MnP was untraceable, once the mycelium clearly established in the substrate.


Among the activity of cellulases, CMCase was found highest followed by FPase and Xylanse at the time of fruiting. CMCase, FPase and xylanase activities of all the strains were followed two different peaks, one at the initial stages of spawn run and another peak at the time of primordial formation. The peak at initial stages of spawn run may be due to the activities present in the spawning material and then the activities gradually reached a plateau with the progression of colonization. The second peak was corresponded with the primordial formation stage. This raise in enzyme activity at fruiting is an indication of ability of the strains to utilize the water soluble carbohydrates for fruit body formation. Even though, the correlation between the enzyme activities and biological efficiency of different strains were found non significant, the activity of cellulases was significantly greater


in high yielding strains than in the











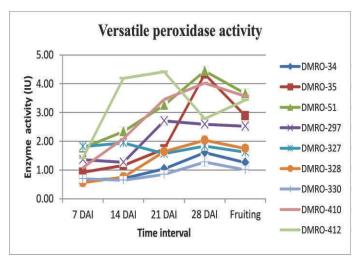



Fig. 2.11 Extracellular enzyme activity of various shiitake strains at different growth stages. चित्र : 2.11 शिटाके के विभिन्न विकास चरणों पर बाह्य एंजाइम गतिविधि

परिणाम स्पष्ट रूप से फलने में सेल्यूलस गतिविधियों की भूमिका का संकेत देते हैं जिस कारण और सेल्युलोज समृद्ध पोषाधार में शिटाकें की उत्पादकता वृद्धि कर सकते है।

#### खेती करने का परीक्षण

खेती परीक्षण के लिए आवश्यक पोषाधार सूखे वजन के आधार पर 80:19:1 के अनुपात में गेहूं का भूसा (4-6 सेमी आकार में कटा हुआ), गेहूं चोकर और जिप्सम मिश्रण करके तैयार किया गया था। पोषाधार की नमी की मात्रा 66% पर समायोजित की गई थी। एक किलो पोषाधार को डबल पीपी बैग में भरा गया और 121 डिग्री तापमान पर दो घंटे के लिए 15 पी एस आई स्थिर दबाव आटोक्लेव किया गया । गेहं के अनाज पर तैयार किए गए विभिन्न स्ट्रेनो के स्पॉन 4% गीला वजन के आधार पर इनॉक्युलेट किया गया था। प्रत्येक स्ट्रेन के लिए नौ ब्लाकों तैयार किए गए और 25 ± 2 ° सी पर ऊष्मायन के लिए रखा गया। एक बार जब पोषाधार की सतह पर बम्प का गठन प्रकट हुआ , तो पीपी बैग को निकाल कर बर्फ के ठंडे पानी (4-6° सी) में 10 मिनट के लिए पूरी तरह डूबाया गया। ताकि खुम्ब पैदा हो सके। फलित और उत्पादकता मूल्यांकन के लिए ठंडे पानी से उपचारित ब्लाकों को फसल के कमरे में स्थानांतरित किया गया था। तापमान और सापेक्षिक आर्द्रता क्रमशः 20 ± 2 ° सी और 85 ± 5% पर रखा गया था। परिपक्व फल निकायों को टोपी के अनावरित होने से पहले काटा गया और ताजा मशरूम के अनुसार जैविक दक्षता (बीई) निकाली गयी । प्रत्येक स्ट्रेन के अनावरित पांच चुनिंदा निकायों का चयन किया गया और मोर्फमेट्रिक अवलोकन जैसे, व्यक्तिगत फलों का वजन, पाइल्स मोटाई, पाइल्स व्यास और डंठल की लंबाई दर्ज की गई।

गेहूं के भूसे पर शिटाकें के विभिन्न स्ट्रेनो की उत्पादकता पर दो सतत खेती परीक्षणों के दर्ज आंकड़ों को प्रस्तुत किया गया है। शिटाकें स्ट्रेनो की मध्यम उत्पादकता के लिए, बूरादा से लगाए जाने पर तीन महीने से अधिक की पूर्व फसल अविध की आवश्यकता होती है। लेकिन, पुआल आधारित पोषाधार पर पहली फसल के लिए दर्ज किया गया औसत समय 88 दिनों से कम है। वर्तमान अध्ययन के आंकड़ों से स्पष्ट रूप से पता चलता है कि गेहूं के भूसे पर शिटाकें द्वारा फसल चक्र को पूरा करने में कमी देखी गयी है। पुआल आधारित पोषाधार में यह तेजी से विकास करता है और जल्द फल उत्पादन भी करता है। इसका कारण पुआल की कोशिका दीवार में उपलब्ध सेलूलोज और हेमिसेलुलाज यौगिकों की अधिक मात्रा है जो की बुरादे की तुलना में अधिक है।

strains with low yields. The activity of CMCase and xylanase were significantly highest in strain no DMRO-327 which was also recorded highest BE of 60.23%. These results are clearly indicating the role of cellulases activities at fruiting and in turn increasing the productivity of shiitake in cellulose rich substrates.

#### **Cultivation trial**

The substrate required for cultivation trials was prepared by mixing wheat straw (chopped into 4-6 cm size), wheat bran and gypsum in the ratio of 80:19:1 on dry weight basis. Moisture content of the substrate was adjusted at 66%. One kg of the substrate filled in the double PP bags and sterilized in autoclave at 121°C temperature and 15 psi pressure for two hours. The spawn of different strains prepared on wheat grain was inoculated @ 4% on wet weight basis under aseptic conditions. Nine blocks were prepared for each strain and kept for incubation at 25±2°C. Once the bump formation appears on the surface of the substrate, the pp bags were peeled off and completely colonized blocks were dipped in the ice cold water (4-6°C) for 10 min as a shock treatment to induce fruiting. The cold water treated blocks were transferred to the cropping room for fructification and productivity evaluation. The temperature and relative humidity were maintained at 20±2°C and 85±5%, respectively for fruiting. The matured fruit bodies were harvested before unveiling the cap and yield was expressed in terms of biological efficiency (BE) as per cent weight of fresh mushrooms per dry weight of the substrate. Five randomly selected unopened fruiting bodies of each strain were selected and the morphometric observations viz., individual fruit body weight, pileus thickness, pileus diameter and stalk length were recorded.

The data recorded from two continuous cultivation trials on productivity of different strains of shiitake on wheat straw is presented. For moderate productivity of shiitake strains, it requires more than three months pre harvest period on saw dust. But, the average time recorded for first harvest on straw based substrate is lesser than 88 days. In the present study the data clearly showed the reduction in time required for completion of cropping cycle by growing shiitake on enriched wheat straw. This faster growth and early fruiting in straw based substrate is because of the presence of higher amounts of easily available cellulose and hemicelluloses compounds in the straw cell wall compared to the wood substrate.

Table 2.20 Productivity of different strains of shiitake on wheat straw based substrate तालिका 2.20 शिटाके खुम्ब के विभिन्न स्ट्रेनों की गेहूं के भूसे पर उत्पादकता

|           | IP           | Days for      | Total yield (g)    |               |                 |               |        |              |
|-----------|--------------|---------------|--------------------|---------------|-----------------|---------------|--------|--------------|
| Strain    | (No. of days | first harvest | Trial -1           | Trial-2       | Mean            | BE (%)        | PP     | PR           |
| DMRO -34  | 92.00        | 99.33         | 150.58 ±37.25      | 130.70 ±11.22 | 140.64±24.20 ab | 41.88±7.24 ab | 103.33 | 0.44±0.11 ab |
| DMRO -35  | 70.66        | 83.33         | 32.37 ±6.97        | 43.32 ±7.21   | 37.84±7.07 b    | 11.24±2.10 b  | 101.33 | 0.10±0.02 b  |
| DMRO -51  | 76.33        | 88.00         | 44.03 ±6.12        | 49.08 ±8.66   | 46.56±1.86 b    | 13.84±0.53 b  | 92.00  | 0.14±0.02 b  |
| DMRO -297 | 66.33        | 75.33         | 40.25 ±4.55        | 50.22 ±15.70  | 45.24±5.80 b    | 13.44±1.69 b  | 79.33  | 0.15±0.02 b  |
| DMRO -327 | 84.00        | 91.17         | 211.10 ±11.38      | 193.54 ±13.98 | 202.32±12.59 a  | 60.23±3.74 a  | 95.17  | 0.67±0.03 a  |
| DMRO -328 | 89.67        | 98.00         | 81.94 ±16.56       | 74.46 ±18.89  | 78.20±15.99 ab  | 23.28±4.75 ab | 102.00 | 0.24±0.05 ab |
| DMRO -330 | 74.66        | 82.50         | 34.10 ±3.86        | 66.30 ±22.65  | 50.20±12.97 b   | 14.88±3.82b   | 96.00  | 0.11±0.01 b  |
| DMRO -410 | 67.33        | 76.67         | 71.02 ±5.30        | 115.81 ±43.69 | 93.42±19.25 ab  | 27.72±5.64 ab | 99.00  | 0.22±0.02 ab |
| DMRO -412 | 87.00        | 95.00         | $152.75 \pm 18.87$ | 127.87 ±24.44 | 140.31±20.79 ab | 41.79±6.17ab  | 80.67  | 0.57±0.07 ab |
| CD        | 7.72         | 5.06          | 27.00              | 38.36         | 27.88           | 8.27          | 4.15   | 0.09         |
| SE(m)     | 2.55         | 1.67          | 8.93               | 12.68         | 9.22            | 2.74          | 1.37   | 0.03         |

Means  $\pm$  standard deviation for three replicates, when followed by the same letters, the means were not significantly different (p=0.05)

IP -Incubation Period (time needed for primordial appearance)

PP- Production Period (time from spawning to the last harvest of fruit bodies)

PR-Production Rate (BE/no. of days from spawning to last harvest)



Fig. 2.12 Growing of shiitake on wheat straw based substrate चित्र : 2.12 शिटाके खुम्ब की गेहूं के भूसे पर खेती

उपरोक्त दोनों परीक्षणों में, सभी उपभेदों में केवल प्रथम फसल काटी गयी थी और इसके बाद के ठंडे पानी के उपचारों के साथ कोई और उपज प्रतिक्रिया नहीं मिली थी। विभिन्न प्रकार के ताजे खुम्ब की पैदावार 37.84 ग्राम से 202.32 ग्राम प्रति गीला पोषाधार तक होती है। डीएमआरओ -327 में उच्चतम उपज का कुल औसत 202.32 ग्राम प्रति किलोग्राम गीला पोषाधार दर्ज किया गया, इसके बाद डीएमआरओ -34 (130.70 जी) और डीएमआरओ -412 (140.31 जी) मे उच्च उपज दर्ज की गयी। कुल जैविक उपज के आधार पर डंकन के तुलनात्मक परीक्षण का उपयोग कर, उपभेदों को तीन श्रेणियों में बांटा गया। डीएमआरओ –327 को उच्च उपज देने वाले स्ट्रेन के रूप में वर्गीकृत किया गया था और डीएमआरओ -34, 412, 410, 328 को मध्यम उपज और डीएमआरओ –35, 51, 2 9 7, 330 को निम्न उपज वाले उपभेदों के रूप में वर्गीकृत किया गया था। 0.67 के उत्पादन दर के साथ डीआरएआर -327 में 60.23% जैविक दक्षता देखी गयी। मध्यम उपज क्षमता वाले स्ट्रेनो में 0.37 की उत्पादन दर के साथ औसत 33. 67% जैविक दक्षता पाई गई। कम उपज की क्षमता के तहत वर्गीकृत स्ट्रेनो की उत्पादन दर 0.13 से कम और जैविक दक्षता 13.35% थी।

प्रारंभिक उपनिवेशण की गित और स्ट्रेनो की जैविक दक्षता पर विचार करके DMRO—327, 34 और 412 का चयन पास्चरसेड पोषाधार की ब्लॉक प्रौद्योगिकी पर बढ़ने के लिए किया गया था। उत्पादन कैनेटीक्स भी ऊष्मायन अवधि और उपज के स्तर के बीच संबंध की व्याख्या करता है। कम उपज की क्षमता के रूप में वर्गीकृत उपभेदों ने पहली बार फसल के लिए 82.29 दिन की औसत अवधि ली, जबिक उच्च और मध्यम उपज देने वाले स्ट्रेन ने पहली बार फसल के लिए 92 दिनों की औसत अवधि ली। वर्तमान आंकड़ों से यह अनुमान लगाया जा सकता है कि उच्च उपज देने वाली नस्लों में बेहतर उत्पादकता के लिए अधिक ऊष्मायन अवधि आवश्यक है। इन उपभेदों के बीच ये महत्वपूर्ण बदलाव, जीनोटाइप और पोषाधार के बीच विशिष्ट संबंध को दर्शाते हैं।

## मोर्फोमेट्रिक अवलोकन

विभिन्न उपज गुणों जैसे औसत खुम्ब फल वजन और पीलियस की मोटाई स्ट्रेनो में काफी अलग थी । डीएमआरओ —327 का सभी स्ट्रेनो में अधिकतम फल वजन (48.58 ग्रा) देखा गया, इसके बाद डीएमआरओ —328 (38.21 ग्रा) में पाया गया। पाइल्स की मोटाई बाजार के लिए आवश्यक भौतिक गुणवत्ता पैरामीटर है ये ताजा उत्पाद के लिए भी महत्वपूर्ण कारक है यह मोटाई डीएमआरओ —327 (16.33 मिमी) में उच्चतम पायी गयी, इसके बाद DMRO—328 (15.33 मिमी) और डीएमआरओ —51 (14.33 मिमी) में भी उच्च पायी गयी । पीलियस की मोटाई के आधार पर, स्ट्रेनो को तीन ग्रेड में विभाजित किया गया था जैसे की जी 1> 15 मिमी मोटाई, जी 2 — 10 से 15 मिमी और जी 3 — <10 मिमी मोटाई

In both the trials, only one flush was harvested in all the strains and no further yield response was noticed with the subsequent cold shock treatments. The fresh mushroom yields of different strains ranged from 37.84 g to 202.32 g per one kg of wet substrate. The highest yield was recorded with DMRO- 327 with a pooled mean yield value of 202.32 g per kg of wet substrate followed by DMRO-34 (130.70g) and DMRO-412 (140.31g). Based on the total biological yield, the strains were grouped into three categories by using the Duncan's comparison test. DMRO-327 was grouped as high yielding strain and DMRO-34, 412, 410, 328 were grouped as strains with medium yield potential and DMRO-35, 51, 297, 330 grouped as low yielding strains. The strain no DMRO-327 was showed BE of 60.23% with the production rate of 0.67. The strains with medium yield potentiality expressed the average BE of 33.67% with the production rate of 0.37. The mean BE of strains grouped under low yield potential was 13.35% with a production rate of < 0.13.

By considering the speed of initial colonization and BE of the strain no. DMRO-327, 34 and 412, they were further selected to grow on pasteurized substrate in block technology. The production kinetics also interprets the relation between incubation period and yield levels. The strains categorized as low yield potential, took an average period of 82.29 days for first harvest, whereas high and medium yielding strains took an average period of 92 days for first harvest. From the present data it can be inferred that, longer incubation period is required for better productivity in high yielding strains. These significant variations among the strains illustrate the specific relation between genotype and substrate.

#### Morphometric observations

The yield attributing factors such as average fruit body weight and thickness of pilues are varying significantly among different strains (Table 3). Strain no DMRO-327 was showed significantly maximum fruit body weight (48.58g) followed by DMRO-328 (38.21g). The thickness of the pileus which is the essential physical quality parameter for drying and fresh market was found highest in DMRO-327(16.33mm) followed by strain no DMRO-328 (15.33mm) and DMRO-51(14.33mm). Based on the thickness of pileus the strains were segregated into three grades such as  $G_1 > 15$  mm thickness,  $G_2 - 10$  to 15 mm and  $G_3 - <10$  mm thickness.

Table 2.21 Physical quality attributes of different shiitake strains grown on wheat straw based substrate तालिका. 2.21 गेहूं के भूसे पर उत्पादित शिटाके खुम्ब के विभिन्न स्ट्रेनों की भौतिक गुणवत्ता

| Strain    | Average fruit<br>body weight<br>(g) | Pileus thick ness (mm) | Pileus diameter (cm) | Stipe length (cm) |
|-----------|-------------------------------------|------------------------|----------------------|-------------------|
| DMRO -34  | 25.35±5.86                          | 13.00±0.57             | 8.73±1.01            | 6.13±1.00         |
| DMRO -35  | 21.90±4.06                          | $12.67 \pm 0.88$       | $7.37 \pm 0.21$      | $5.07 \pm 1.07$   |
| DMRO -51  | 21.61±7.23                          | 14.33±1.86             | 8.23±0.51            | $3.70\pm0.10$     |
| DMRO -297 | 19.66±3.49                          | 13.67±0.33             | 7.57±0.55            | 3.40±0.35         |
| DMRO -327 | $48.58 \pm 16.58$                   | $16.33 \pm 0.882$      | $9.70\pm1.42$        | $5.93\pm0.46$     |
| DMRO -328 | 38.21±16.67                         | 15.33±0.58             | 8.67±2.24            | $5.70\pm0.78$     |
| DMRO -330 | $23.34\pm5.70$                      | $12.33\pm1.20$         | $7.97 \pm 0.49$      | $4.97 \pm 0.21$   |
| DMRO -410 | 23.15±9.39                          | 11.83±0.44             | $8.80\pm1.74$        | $4.60\pm0.10$     |
| DMRO -412 | 20.78±0.79                          | 9.50±0.29              | 8.93±2.69            | 4.37±1.25         |
| CD        | 17.24                               | 2.68                   | NS                   | 1.24              |
| SE(m)     | 5.70                                | 0.89                   | 0.87                 | 0.41              |

गुणवत्ता गुणों के आधार पर स्ट्रेनो का यह समूह प्रजनन कार्य में उत्कृष्ट गुणवत्ता वाले पुआल आधारित पोषाधार के अनुकूल स्ट्रेनो को विकसित करने में मदद करेगा । डीएमआरओ -327 और 328 को से फल निकायों के आधार पर जी 1 वर्गीकृत किया गया था। डीएमआरओ -412 के उपज के स्तर अपेक्षाकृत अच्छे हैं लेकिन इनमें फल निकायो की गुणवत्ता कमजोर है इसलिए जी 3 के पैमाने में वर्गीकृत किया गया है । अलग-अलग उपभेदों के पीलियस व्यास से संबंधित परिणामों में कोई महत्वपूर्ण अन्तर नहीं पाया गया था।

हालांकि, सहसंबंध का अध्ययन डंठल की लंबाई, व्यास अनुपात एवं औसत खुम्ब वजन किया गया जिससे यह पता चला है कि स्टाईप की लंबाई बढने से खुम्ब वजन कम होता है

## प्लुरोटस एरेंजाई (काबुल ढ़ींगरी) की खेती :-

प्लुरोटस एरेंजाई की उत्पादन तकनीक को भाकृअनुप– खु. अनु.नि., सोलन ने जैव नाइट्रोजन सामग्री के साथ पूरक बुरादे पर आधारित पोषाधार मे मानकीकृत किया है। खेती के लिए आवश्यक पोषाधार 16-18 घंटों के लिए पानी में अच्छी तरह से भिगोने के बाद तैयार किया गया था। गेहूं के चोकर को 20% गीला करने के बाद पोषाधार में डाला गया और अच्छी तरह मिलाया गया। दो किलो गीला पोषाधार प्रत्येक पोलीप्रोपीलीन बैग (8x16 ") में भरा गया था। पीइ बैग के मुंह को गैर-शोषक कपास के साथ प्लग किया गया था। 22 पी एस ई दबाव में भरे हुए बैग को 90-120 मिनट तक आटोक्लेव किया गया। निर्जीविकरण के बाद, बैग को कमरे के तापमान पर ठंडा किया गया और सूखे वजन के आधार पर 3% / अनाज स्पॉन मिला दिया गया। इनॉक्युलेटेड बैग को 25 ± 2 डिग्री सेल्सियस पर ऊष्मायन

This grouping of strains based on quality attributes further helps in the breeding work to develop strains adapted to straw based substrate with ideal quality. The fruit bodies from strain no DMRO-327 and 328 were categorized under  $G_1$ . The yield levels of DMRO-412 are comparatively good but the quality of the fruit bodies is inferior and graded in the scale of G<sub>3</sub>. The results pertaining to the pileus diameter of different strains were found non significant. However, the study on correlation between the stalk length to pileus diameter ratio and average fruit body weight showed that higher the stipe length lesser the weight of fruit body.

#### Cultivation of Pleurotus eryngii (Kabul Dhingri)

The production technology of *Pleurotus eryngii* on saw dust based substrate supplemented with organic nitrogen materials has been standardized at ICAR-DMR, Solan. The substrate required for cultivation was prepared by wetting the sawdust thoroughly in water for 16-18 hours. After wetting 20% of wheat bran was added in the substrate and mixed thoroughly. Two kg of wet substrate was filled in each polypropylene bag (8x16"). The bags were plugged with non-absorbent cotton by inserting polypropylene ring at the mouth of bags. The filled bags were sterilized in autoclave for 90-120 min at 22 psi pressure. After the sterilization, the bags were cooled down to room temperature and they were inoculated with wheat grain based

किया गया था । स्पॉन रन 15—20 दिनों में पूरा हो गया था। ब्लाकों को 10—15 डिग्री सेल्सियस के तापमान पर फसल के कमरे में रखा गया था और 80—85% की सापेक्ष आर्द्रता बनाई गयी थी। खुम्ब विकास के लिए प्रतिदिन पांच घंटे प्रकाश (800—1000 लक्स) प्रदान किया गया था। 5—7 दिनों के बाद खुम्ब के फल निकाय विकसित करना शुरू हो गया था। परिपक्व फल निकायों को 3—4 दिनों के बाद काटा गया। प्रारंभिक परीक्षण में 30% की जैविक दक्षता दर्ज की गई थी।

spawn @ 3% on dry weight basis. Inoculated bags were incubated at 25±2°C. Spawn run was completed in 15-20 days. After the completion of spawn run PP bags were removed. Blocks were then placed in the cropping room at a temperature of 10-15°C and relative humidity of 80-85% was maintained. Light (800-1000 lux) was provided for five hours daily for optimum development of fruiting bodies. Pin heads started developing 5-7 days after removing the bags. Matured fruit bodies were harvested 3-4 days after pinning. Biological efficiency of 30% was recorded in the initial trial.



Fig 2.12 Cultivation trials of king oyster mushroom using sawdust based substrate चित्र 2.12 लकड़ी के बुरादे युक्त पोषाधार पर काबुल ढ़ींगरी की खेती

### कोरडयसेप्स मिलिटारिस के इन विट्रो खेती

कोरडयसेप्स मिलिटारिस को सफलतापूर्वक संशोधित माल्ट माध्यम पर इन विट्रो स्थितियों में उगाया गया। 8 घंटे की रौशनी के साथ 18—22 डिग्री सेल्सियस की तापमान सीमा को फलने के लिए प्रदान किया गया था।

#### In vitro cultivation of Cordyceps militaris

Cordyceps militaris was successfully cultivated under in vitro conditions using modified Malt Extract Medium. For induction of fruiting a temperature range of 18-22°C along with 8 hrs light period was provided.



Fig 2.13 Fruiting of *Cordyceps* in artificial media चित्र 2.13 कृत्रिम माध्यम पर काड्रीसेप्स का फलन

## (ग). फसल सुरक्षा (C) Crop Protection

## खुम्ब में आईपीएम पर सत्यापन परीक्षण

खुम्ब खेती में प्रभावी ढंग से बीमारियों (गीला बुलबुला) और मशरूम मक्खियों को नियंत्रित करने के लिए निम्लिखत आईपीएम प्रक्रियाओं का प्रयोग किया जाना चाहिए।

पक्के समेंट की जमीन पर खाद का निर्माण, खाद में समुचित नमी और समुचित पेस्टुरराइजेशन जो की 65 से.ग्र पर 6 घंटे तक, पर्याप्त वायु संचार के साथ दिया जाय, 65 प्रतिशत नमी पर 65 डिग्री सेल्सियस पर पेस्टुरराइजेशन, 2% फोर्मलिन के साथ खाली कमरे का उपचार, 7 दिनों की केसिंग के बाद दीवारों पर मैलाथियन का छिडकाव 0.01%, पहली प्रलश के बाद दीवारों पर डेल्टामैथ्रीन @ 0.01% का छिडकाव, द्वितीय प्रलश के बाद दीवारों पर डिचोरविस @ 0.01% का छिडकाव, जीवाणु रोगों को नियंत्रित करने के लिए 150 पीपीएम् ब्लीचिंग पाउडर का छिडकाव, फुन्गल ग्नाट्स को मॉनिटर करना और नियंत्रित करना, प्रकाश जाल का प्रयोग, कमरों का पूर्ण निर्जिविकरण (किमकल या गर्म भाप से), बैग को फेकने से पहले उनका 2 प्रतिशत फोर्मलिन से छिडकाव, फसल से पहले कमरे के अंदर 8—10 घंटे 70 सी तापमान को बनाए रखना है।

## गीला बुलबुला रोग के प्रबंधन के लिए दो जीवाणुओं का मूल्यांकन

दो जीवाणुओं बी—9 और बी —18 को पृथक रूप से गीला बुलबुला रोग के प्रबंधन के लिए परीक्षित किया गया। बीमारी के इनोकुलुम और पेस्टुरराइज केसिंग को जीवाणुओं के साथ मिलाकर 10 दिन तक 25 से ग्र मे ऊष्मायित किया गया। उपचारित केसिंग को पूरी तरह से स्पॉन रन बैग पर उपयोग किया गया। रोग का आंशिक नियंत्रण दर्ज किया गया।

### एम. पर्निकोसा पर नीम कवच के विभिन्न सांद्रता का प्रभाव

नीम कवच की पांच अलग सांद्रता पर इन विट्रो स्थितियों में एम पर्निकोसा के खिलाफ परीक्षित किया गया था। माय्सीलियम विकास, 3% सांद्रता पर पूरी तरह रुकी हुई पाई गयी।

#### Validation trials on IPM in mushrooms

Several trials were conducted to validate the integrated approach for the management of wet bubble diseases, mushrooms flies and developed an integrated strategy as follows.

Composting on cemented floor; maintenance of proper moisture in compost; proper pasteurization of compost at 59°C for 6 hours with ample aeration and proper pasteurization of casing at 65°C with 65% moisture. Treat the empty room with 2% formalin, application of malathion on walls @ 0.01% after 7 day of casing and application of deltamethrin @ 0.01% on walls after first flush, application of dichlorvos @ 0.01% on walls after second flush. Spray 150ppm bleaching powder for controlling bacterial diseases; use light trap for monitoring and controlling fungal gnats, cook out (chemical/steam); drenching with 2% formalin before disposing off the bags or maintain the temperature of 70°C inside the rooms for 8-10 hours.

## Evaluation of two bacterial isolates for management of wet bubble disease

Two bacterial isolates viz. B-9 and B-18 were tested individually as well as in combination for the management of wet bubble disease. Disease inoculums was added in the pasteurized casing along with the bacterial isolates and incubated for 10 days at 25°C temperature. Treated casing material was applied on fully spawn run bags. Partial control of disease was recorded where both the bacteria was added.

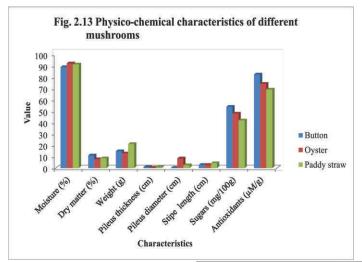
## Effect of different concentration of neem kavach on *Mycogone perniciosa*

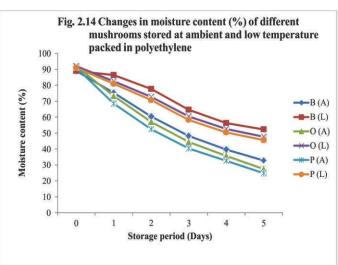
Five different concentrations of neem kavach was tested against *M. perniciosa* under in vitro conditions. At 3% concentration complete inhibition of mycelia growth was recorded.

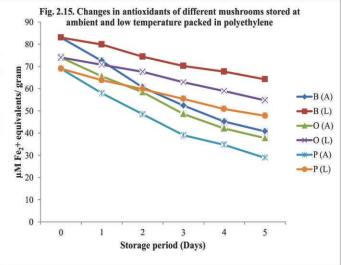
## (घ). फसलोत्तर प्रौद्योगिकी / पश्च फसल प्रबंधन (D) Post Harvest Management

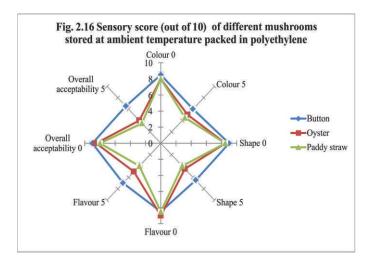
खुम्ब एक पोषक—तत्व समृद्ध आहार है परन्तु अत्यधिक नमी और उच्च श्वसन दर के कारण बहुत तेजी से खराब हो जाता है। इस कारण खुम्ब की आपूर्ति एवं उपलब्धता सुदूर बाजारों में सीमित रह जाती है। खुम्ब की उत्पादन और उत्पादकता हर साल बढ़ रही है, लेकिन लंबी अवधि के लिए आपूर्ति को बनाए रखने के लिए फसल पकने के पश्चात होने वाले नुकसान पर अंकुश लगाना आवश्यक है तािक खुम्ब उन स्थानों पर अधिकतम उपभोक्ताओं तक पहुंच सके जहां यह उपलब्ध न हो। खुम्ब उत्पादक, खुम्ब उत्पादन को बढ़ाने के लिए इसलिए अनिच्छुक हैं क्योंकि खुम्ब की जीवनाविध बहुत कम है जो की उत्पादकों को न्यूनतम कीमत पर बिक्री करने के लिए मजबूर करता है।

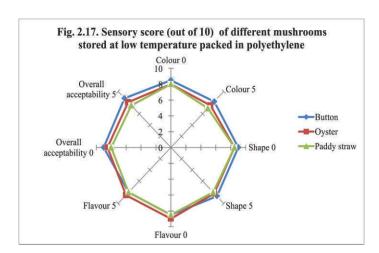
फसलोत्तर विकृति को प्रतिबंधित करने के लिए और खुम्ब की जीवनावधि में वृद्धि करने के वर्ष 2016 में सामान्य तापमान 20—22°C और कम तापमान 4—6°C पर बटन (एगरिकस बिस्पॉरुस), ढींगरी मशरूम (प्लीरॉटस एसपी) और धान पुआल मशरूम (वोल्वायरिला वाल्वेसाई) के लिए एक शोध किया गया । इस शोध में खुम्ब को अलग—अलग (200, 400, 600, 800 और 1000 ग्राम) क्षमताओं के कम धनत्व पॉलीथीन और पालीप्रॉपिलिन बैग (150 गेज) में संवेष्टन किया गया था । इसके उपरांत विभिन्न उपचारों के भौतिक—रासायनिक, जैव—रासायनिक और संवेदी गुणवत्ता मानकों को विभिन्न अंतरालों पर दर्ज किया गया था।


शोध में खुम्ब के भौतिक—रासायनिक मानकों में महत्वपूर्ण अंतर दर्ज किए गए थे जो की उनके आकार और आनुवंशिकी के वजह से थे । सभी मानक जैसे नमी, वजन और कुल एंटीऑक्सीडेंट दोनों तापमानो की भंडारण अविधयां में समान्य की अपेक्षा कमी पाई गयी थी, लेकिन 5 दिनों के भंडारण के दौरान ये परिवर्तन बहुत तेज पाए गए थे। सभी खुम्ब में से बटन मशरूम की सबसे ज्यादा जीवनाविध पाई गयी जो की 3 दिन सामान्य तापमान और 18 दिन तक निम्न तापमान में दर्ज की गयी। ढींगरी और पुआल मशरूम की जीवनाविध 6 दिन निम्न तापमान पर और क्रमशः दो और एक दिन सामान्य तापमान दर्ज की गयी।


संवेदी मूल्यांकन में, यह पाया गया कि सामान्य तापमान और कम तापमान पर 5 दिनों के पॉलीथीन भंडारण में खुम्ब रंग, आकृति, स्वाद और बाजार स्वीकार्यता काफी कम हो गयी। यह गिरावट कम तापमान की तुलना में सामान्य तापमान में अधिक पाई गयी। पैकिंग मात्रा 400 ग्राम बटन मशरूम और 200 ग्राम ढींगरी और पुआल मशरूम में अनुकूलतम पाए गए थे। पैकिंग सामग्री में, पॉलीइथिलीन बैग को पॉलीप्रोपीलीन बैग की तुलना में उत्तम पाया गया।


Mushroom is nutritionally rich but highly perishable crop owing to its respiration rate and moisture content. Because of high respiration rate and moisture content, the mushrooms are spoiled very fast restricting their supply and availability at the distant places and markets. The production and productivity of mushroom is increasing every year but to maintain the supply for a longer duration the postharvest spoilage is to be checked so that it reaches to maximum consumers at the places where it is not grown. The mushroom growers are reluctant to increase the production as the shelf life of their produce is very low forcing them to sale it at minimum prices.


To restrict the postharvest spoilage and increasing the shelf life of mushroom an experiment was conducted at ambient (20-22°C) and low temperature (4-6°C) having button (*Agaricus bisporus*), oyster mushroom (*Pleurotus* sp.) and paddy straw mushroom (*Volvariella volvacea*) at ICAR-Directorate of Mushroom Research, Solan during 2016. The mushrooms were packed in low density polyethylene and polypropylene bags (150 gauge) of different (200, 400, 600, 800 and 1000 gm) capacities. The physico-chemical, bio-chemical and sensory quality parameters of all the treatments were recorded at different intervals.


A significant difference among the physicochemical characters of the mushrooms were recorded because of their shape and genetic make-up. There was a significant reduction in all the parameters like moisture, weight and total antioxidants with advancement of storage period both at ambient and low temperature but the changes were very fast at ambient conditions during 5 days storage. Among the different mushrooms button mushroom recorded the highest storage shelf life of 18 days at low temperature which was only 3 days at ambient conditions. The oyster and paddy straw mushrooms were found to have shelf life of 6 and 6 days at low temperature and 2 and 1 day at ambient temperature respectively. In the sensory evaluation, it was found that the colour, shape, flavour and overall acceptability of the mushrooms reduced significantly during 5 days storage in polyethylene bags at ambient and low temperature. The reduction was more at ambient compared to low temperature. Among the packing quantity 400 gm of button mushroom in polyethylene and 200 gm each of oyster and paddy straw mushroom were found optimum. In the packing material, polyethylene bags had an edge over the polypropylene bags.











इस अध्ययन से यह निष्कर्ष निकाला कि खराब होने वाले खुम्ब की जीवनावधि को बढ़ाया जा सकता है परन्तु इसके लिए खुम्ब का संवेष्टन अनुकूलतम पॉलीथीन बैग और कम तापमान (4–6 °C) होना चाहिए

#### फसल प्रबंधन पर प्रशिक्षण

किसानों, महिला कृषको और उद्यमियों के लिए उत्पाद विशिष्ट प्रशिक्षण आयोजित किया गया जिसमे खुम्ब के व्यंजन जैसे मसालों, सूप, केक, बिस्कुट और कैंडीज से विभिन्न मूल्यवर्धित उत्पादों की तैयारी पर प्रशिक्षण प्रदान किये गए। रिपोर्टिंग अवधि के दौरान तीन ऐसे प्रशिक्षण प्रदान किए जा चुके थे। The study concluded that the shelf life of highly perishable mushrooms may be enhanced substantially if they are packed in polyethylene bags of optimum quantity (400 gm in button mushroom and 200 gm each of oyster and paddy straw mushroom) and stored at low temperature (4-6°C).

## Training on post-harvest management of mushrooms

Product specific hands training programmes were organized to the farmers, farm women and entrepreneurs on the preparation of various value added products from mushrooms such as pickles, soups, cakes, biscuits and candies. Three such trainings were imparted during the reporting period.



Fig 2.18 Training on preparation of value added products from mushrooms चित्र 2.18 खुम्ब से मूल्य वर्धित उत्पादों की तैयारी पर प्रशिक्षण

## 3. प्रौद्योगिकी हस्तांतरण (3.) Transfer of Technology

#### आयोजित प्रशिक्षण कार्यक्रम

वर्ष 2016—17 के दौरान निदेशालय ने कृषि विज्ञान केंद्र / राज्य कृषि विश्वविद्यालय के किसानों, उद्यमियों, अधिकारियों और वैज्ञानिकों के लिए ग्यारह निदेशालय परिसर में और निदेशालय के बाहर प्रशिक्षण कार्यक्रम (तालिका में विवरण) का आयोजन किया।

#### Training programmes conducted

During 2016-17, the Directorate organized eleven on-campus and off-campus training programmes (Details in Table) for farmers, farmwomen, entrepreneurs, officers and scientists of KVKs/SAUs.

Table 3.1. List of training programmes organized by the ICAR-Directorate of Mushroom Research, Solan (HP)

तालिका 3.1 भा.कृ.अन्.प. – खु. अन्. नि. द्वारा आयोजित प्रशिक्षण कार्यक्रमों की सूची

| साराका वर्ग का नात्कृत्वा चुर जतुर । । अस्त जानाविस प्राराबान का क्या का सूना |                                                                                                                                                    |                        |                    |                                                  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|--------------------------------------------------|
| Sr. No.                                                                       | Topic and venue of the Training                                                                                                                    | Date                   | Number of trainees | Course Director and Coordinator                  |
| 1                                                                             | Sponsored training on mushroom cultivation technology for farmers and farm women of Meghalaya at ICAR-DMR, (sponsored by Government of Meghalaya). | 11-14<br>April<br>2016 | 20                 | Dr. V. P. Sharma<br>Dr. Mahantesh Shirur         |
| 2                                                                             | Training on mushroom cultivation technology for entrepreneurs- I                                                                                   | 21-30 April<br>2016    | 56                 | Dr. O. P. Ahlawat<br>Ms. Mamta Gupta             |
| 3                                                                             | Training on mushroom cultivation technology for farmers- I                                                                                         | 12-18 May,<br>2016     | 68                 | Dr. SatishKumar<br>Mr. Sudheer Kumar Annepu      |
| 4                                                                             | Training programme on mushroom cultivation technology under Tribal Sub Plan (TSP) for farmers and farmwomen from Kinnaur                           | 28–30<br>June<br>2016. | 20                 | Dr. Mahantesh Shirur                             |
| 5                                                                             | Training on mushroom cultivation technology for scientists and SMSs of KVK and SAUs.                                                               | 14-20 July<br>2016     | 11                 | Dr. Satish Kumar<br>Dr. Mahantesh Shirur         |
| 6                                                                             | Training under TSP at AICRP<br>Samastipur, RAU, PUSA, Bihar.                                                                                       | 29-31<br>August 2016.  | 41                 | Dr. V. P. Sharma<br>Dr. Mahantesh Shirur         |
| 7                                                                             | Individual training programme under NEH for residents of North Eastern States.                                                                     | 7–10 Sep.<br>2016      | 3                  | Dr. Mahantesh Shirur                             |
| 8                                                                             | Training on mushroom cultivation technology for farmers- II                                                                                        | 22-28 Sep. 2016        | 53                 | Dr. Mahantesh Shirur<br>Mr. Sudheer Kumar Annepu |
| 9                                                                             | Training programme under TSP at ICAR-Research Complex for Eastern Region, Ranchi Centre from                                                       | 15–19<br>Nov. 2016     | 30                 | Dr. Shwet Kamal<br>Dr. Mahantesh Shirur          |
| 10                                                                            | Training on mushroom cultivation technology for entrepreneurs – II                                                                                 | 21-30<br>Nov. 2016     | 53                 | Dr. R. C. Upadhyay<br>Dr. Mahantesh Shirur       |
| 11                                                                            | Training on mushroom cultivation technology for residents of Nort Eastern States under NEH at Dimapur, Nagaland.                                   | 5-7<br>Dec. 2016       | 32                 | Dr. Satish Kumar<br>Dr. Mahantesh Shirur         |

| 12 | Training on mushroom cultivation    | 7-9 March | 30 | Dr. Satish Kumar     |
|----|-------------------------------------|-----------|----|----------------------|
|    | technology for tribals of Rajasthan | 2017      |    | Dr. Mahantesh Shirur |
|    | under TSP at MPUAT, Udaipur         |           |    |                      |



Fig 3.1 Interaction with the participants during the training programme चित्र–3.1 प्रशिक्षण कार्यक्रम के दौरान प्रतिभागियों के साथ सहभागिता



Fig 3.2 Practical demonstration of substrate preparation during the training programme चित्र— 3.2 प्रशिक्षण कार्यक्रम के दौरान पोषाधार तैयार करने का व्यावहारिक प्रदर्शन

### टीएसपी और एनईएच के तहत प्रशिक्षण कार्यक्रम और उपलब्धियां

- टीएसपी के तहत झारखंड के पश्चिम सिंहभूम के कृषि विज्ञान केंद्र में एक स्पॉन प्रयोगशाला की स्थापना की गई है। झारखंड राज्य के आदिवासी लोगों की स्पॉन की मांग को पूरा करने के इरादे से यह स्पॉन प्रयोगशाला स्थापित की गई है।
- किन्नौर (एचपी) से आदिवासी लोगों के लिए भाकृअनुप —खुम्ब अनुसंधान निदेशालय चम्बाघाट, सोलन (एचपी) में 27—31 जून 2016 में प्रशिक्षण आयोजित किया गया। किन्नौर जिले के कुल 22 आदिवासी किसानों ने इसमें भाग लिया । प्रशिक्षण कार्यक्रम में भाग लेने वाले किसानों को फसल प्रबंधन के लिए आवश्यक मशीनरी वितरित की गयी थी । भाकृअनुप—खुम्ब अनुसंधान निदेशालय, सोलन के प्रकाशन का एक पूरा सेट भी प्रशिक्षुओं को दिया गया था।
- बिहार राज्य के आदिवासियों के लिए खुम्ब की खेती प्रौद्योगिकी पर प्रशिक्षण 27—30 अगस्त 2016 में आयोजित किया गया। कुल 41 किसानों ने प्रशिक्षण में भाग लिया। भाकृअनुप —खुम्ब अनुसंधान निदेशालय के प्रकाशन का एक पूरा सेट, प्रशिक्षुओं को दिया गया था।
- झारखंड राज्य से आदिवासी लोगों के लिए खुम्ब की खेती प्रौद्योगिकी पर प्रशिक्षण 15—19 नवंबर 2016 को भाकृअनुप —आरसीईआर, रांची केंद्र में आयोजित किया गया था। प्रशिक्षण में 30 से अधिक आदिवासी ने भाग लिया। इसी तरह टीएसपी के तहत, 7—9 मार्च 2017 को महाराणा प्रताप कृषि और प्रौद्योगिकी विश्वविद्यालय, उदयपुर में प्रशिक्षण आयोजित किया गया जहां 30 प्रतिभागियों को प्रशिक्षित किया गया। इस प्रशिक्षण कार्यक्रम में मशरूम फसल प्रबंधन के लिए आवश्यक छोटे हस्त स्प्रेयर महिला कृषको को वितरित किया गया।

## उत्तर पूर्वी राज्य

 उत्तर पूर्वी राज्यों के निवासियों के लिए खुम्ब की खेती प्रौ द्यो गिकी पर एक प्रशिक्षाण कार्यक्रम आईसीएआर—अनुसंधान केंद्र मेदिपेमा, नागालैंड में आयोजित किया गया। सितंबर 2016 और मार्च 2017 में आईसीएआर—डीएमआर में व्यक्तिगत प्रशिक्षण कार्यक्रमों के दो समूह में आयोजन किया गया।

## खुम्ब मेला -2016

एक दिवसीय मशरूम मेला 10 सितंबर, 2016 को निदेशालय की एक प्रमुख गतिविधि के रूप में आयोजित किया गया था। इसका उद्घाटन डॉ हरि चंद शर्मा, डॉ वाई एस परमार यूनिवर्सिटी ऑफ हॉर्टीकल्चर एंड वानिकी, नौनी, के माननीय उपकुलपति द्वारा किया गया।

## Training programmes and achievements under TSP and NEH

- A spawn laboratory has been set up at Krishi Vigyan Kendra, West Singhbhum, Jharkhand under TSP. The spawn lab is established with an intention to cater to the demand for spawn from tribal people in Jharkhand state.
- Training for tribal people from Kinnaur (HP) was conducted at ICAR-Directorate of Mushroom Research, Chambaghat, Solan (HP) from 27-31 June 2016. Total 22 tribal farmers participated from Kinnaur district (H.P). The machinery required for crop management was distributed to the farmers attending the training programme. A complete set of literature of ICAR-DMR, Solan was also given to the trainees.
- Training on mushroom cultivation technology for tribals of Bihar State was conducted from 27-30 August 2016. Total 41 farmers attended the training. A complete set of literature of ICAR-DMR, Solan was given to the trainees.
- Training on mushroom cultivation technology for tribal people from Jharkhand state was organised at ICAR-RCER, Ranchi centre from 15-19 November 2016. Totally 30 participants attended the training. Similarly, training under TSP was organized at Maharana Pratap University of Agriculture and Technology, Udaipur from 07-09 March 2017, where 30 participants were trained and the small hand sprayers required for crop management in the mushroom growing rooms were distributed to the women attending the training programme.

#### **NEH**

 A training programme on mushroom cultivation technology for the residents of North Eastern States was conducted at ICAR-Research Centre, Medziphema, Nagaland. Two batches of individual training programmes were organized at ICAR-DMR, in September 2016 and March 2017.

#### **Mushroom Mela-2016**

One day Mushroom Mela was organized on 10<sup>th</sup> September, 2016 as a flagship activity of the Directorate. It was inaugurated by Dr. Hari Chand Sharma, Hon'ble Vice Chancellor of Dr.Y.S. Parmar University of Horticulture & Forestry, Nauni, Solan (HP). Dr. S.K. Chakravarty, Director, ICAR-Central Potato Research Institute, Shimla (HP) was the Guest of Honour. It was attended by about 1000 farmers, farmwomen, mushroom growers, researchers,

इस मेले के विशिष्ट अतिथि डॉ एस के चक्रवर्ती, भाकृअनुप—केन्द्रीय आलू अनुसंधान संस्थान के निदेशक, थे। इस मेले में हिमाचल प्रदेश, हरियाणा, पंजाब, ओडिशा, महाराष्ट्र, राजस्थान, आंध्रप्रदेश, दिल्ली, कर्नाटक, असम, बिहार, केरल और तिमलनाडु के विभिन्न राज्यों से लगभग 1000 किसानो, महिला कृषको, मशरूम उत्पादकों, शोधकर्ताओं, विस्तार कार्यकर्ताओं एवं व्यापारियों ने भाग लिया। भारत के 18 विभिन्न राज्यों के प्रतिनिधियों ने मेला में भाग लिया।

खुम्ब की खेती और अन्य संबंधित पहलुओं की बेहतर प्रौद्योगिकियों पर एक प्रदर्शनी आयोजित की गई जिसमें विभिन्न सरकारी संगठनों, आईसीएआर संस्थान / विश्वविद्यालय, सरकारी वित्तीय संगठन, खाद और स्पॉन उत्पादकों, एयर हैंडलिंग सिस्टम के निर्माताओं, शीतलन प्रणाली के निर्माताओं, मशक्तम उत्पादकों, बीज और कीटनाशक और रासायनिक उत्पादकों और गैर सरकारी संगठनों ने अपनी प्रौद्योगिकियों एवं उत्पादों को प्रदर्शित किया और उनकी सेवाओं को प्रतिभागियों को प्रदान किया। खुम्ब मेला के मुख्य अतिथि डॉ एच सी शर्मा ने प्रदर्शनी का उद्घाटन किया।

प्रतिभागियों को मशरूम की खेती के विभिन्न उन्नत प्रौद्योगिकियों पर जागरूकता पैदा करने के लिए, निदेशालय द्वारा खुम्ब फार्म प्रदर्शित किया गया।

खुम्ब मेले के दोपहर सत्र में, खुम्ब की खेती में आने वाली समस्याओं का जवाब देने के लिए किसान गोष्ठी का आयोजन किया गया था। खुम्ब उत्पादकों और किसानों द्वारा उठाए गए समस्याओं को व्यवस्थित तरीके से विशेषज्ञों के पैनल ने उत्तर दिया।

मशरूम मेले के दौरान, निदेशालय ने बड़े पैमाने पर मशरूम की खेती में अभिनव प्रथाओं को अपनाने और अन्य किसानों को आय के स्रोत के रूप में मशरूम की खेती को बढ़ावा देने के लिए प्रगतिशील खुम्ब उत्पादकों को सम्मानित किया गया।

नीचे दिए गए पांच किसानों को संपूर्ण भारत से चुना गया।

extension workers and businessmen from various states *viz*, Himachal Pradesh, Haryana, Punjab, Odisha, Maharashtra, Rajasthan, Andhra Pradesh, Delhi, Karnataka, Assam, Bihar, Kerala, Tamil Nadu. The representatives from 18 different states of India attended the mela.

An exhibition on improved technologies of mushroom cultivation and other related aspects was organized in which various Govt. Organizations, ICAR Institutes/Universities, Govt. financial organization, compost and spawn producers, manufacturers of Air handling system, chilling system, environment controlled cropping rooms, mushroom product, seed and pesticides and chemical producers and NGOs d i s p l a y e d t h e i r v a l u a b l e information/technologies/products and provided their services to the participants of the Mushroom Mela. Chief guest Dr. H. C. Sharma inaugurated the Exhibition.

In order to create awareness on various improved technologies/practices of mushroom cultivation to the participants, farm visit of the growing units of the Directorate was conducted and demonstrations on improved technologies were given in front of the participants of Mushroom Mela.

In the afternoon session of Mushroom Mela, a Kisan Goshthi was held to answer the problems in mushroom cultivation faced by mushroom growers. The problems raised by mushroom growers and farmers were replied by panel of experts in a very systematic manner.

During the Mushroom Mela, the directorate awarded five (5) progressive/ innovative mushroom growers for adopting innovative practices in mushroom cultivation on larger scale and mobilizing other farmers to adopt mushroom cultivation as source of income. The five farmers mentioned below were selected across India.



Fig 3.3 Distinguished guest visiting exhibition during Mushroom Mela 2016

चित्र 3.3 –विशिष्ट अतिथि ने मशरूम मेला 2016 के दौरान प्रदर्शनी का उद्घाटन किया

"प्रगतिशील खुम्ब उत्पादक" पुरस्कार से सम्मानित उत्पादकों की उपलब्धियां

## सुश्री दिव्या रावत

सुश्री दिव्य रावत — उत्तराखंड के देहरादून जिले के एक प्रगतिशील खुम्ब उत्पादक हैं। भाकृ अनुप्प—खुम्ब अनुसंधान निदेशालय से 2014 में उद्यमियों के लिए मशरूम उत्पादन तकनीक पर प्रशिक्षण लेने के बाद, उन्होंने वर्ष के दौरान सफेद



बटन, ढींगरी और दूधिया खुम्ब की खेती शुरू कर दी थी। इनकी खुम्ब इकाई सौमीया फूड्स वर्तमान में 350 किलो मशरूम उत्पादन करती है।

गढ़वाल और देहरादून के खाली एवं क्षतिग्रस्त इमारतों में खुम्ब उत्पादन के मॉडल की स्थापना से उनकी छवि एक सामाजिक उद्यमी के रूप स्थापित हुई है। कुछ अलग और साथ मिलकर काम करने का दृढ़ संकल्प लिए आज इन्हें उत्तराखंड की "मशरूम महिला" के नाम से जाना जाता है। प्रत्यक्ष और अप्रत्यक्ष रोजगार अवसर उत्पन करने और उत्तराखंड में पलायन रोकने के उनके प्रयासों की सराहनीय प्रशंसा की गई है।

## सुश्री हरेषा वर्मा

सुश्री हरेषा वर्मा उत्तरी भारत (देहरादून) में सफल खुम्ब उत्पादकों में से एक है जिन्होंने बहुत ही कम समय में खुम्ब उत्पादकों में ख्याति अर्जित की है । इन्होने छोटे पैमाने पर मौसमी खेती के रूप में खुम्ब उत्पादन शुरू किया था जो की आज एक वातावरण नियंत्रित



Fig 3.4 Felicitation of progressive mushroom growers during the National Mushroom Mela 2016 चित्र 3.4 –राष्ट्रीय मशरूम मेले 2016 के दौरान प्रगतिशील खुम्ब उत्पादकों को सम्मानित किया गया Achievements of growers felicitated with "Prog--ressive Mushroom Grower" award

#### Ms. Divya Rawat

Ms Divya Rawat - a progressive grower from Dehradun district of Uttrakhand. After taking training on Mushroom production technology for entrepreneurs from ICAR-DMR, Solan in 2014, she started cultivating white button, oyster and milky mushrooms round the year. Her mushroom unit Sowmya Foods presently produces 350 kg mushroom a day.

Her initiative of promoting mushroom production in empty damaged buildings of Garhwal and Dehradun in setting up successful business model in Dehradun for production have bought her recognition as social entrepreneur.

Hard work together with determination to do something different bore fruits. Today she has earned the sobriquet of "Mushroom Lady" of Uttarakhand. Her efforts to provide direct and indirect employment to number of people and stopping the migration in Uttarakhand are praiseworthy.

#### Ms. Hiresha Verma

Ms. Hiresha Verma is one of the successful mushroom growers in North India (Dehradun) who has carved a niche for himself in a very short span of time. What started as a small scale seasonal cultivation

मशरूम इकाई मे परिवर्तित हो गया है। वर्तमान में, उसकी मशरूम उत्पादन इकाई 'हेनजेन इंटरनेशनल फार्म' 500 किलोग्राम ताजा मशरूम प्रति दिन का उत्पादन कर रही है। खुम्ब उद्यमिता के अलावा, उन्होंने कई किसानों को प्रशिक्षित किया है जो उत्तराखंड में खुम्ब की खेती कर रहे हैं। किसानों की आय बढ़ाने के लिए और युवाओं को रोजगार मुहैया कराने में इन्हे बहुत प्रशंसा मिली है।



has turned into a state of the art environment controlled mushroom unit. At present, her mushroom production unit 'Hanzen International farm' is producing 500 Kg of fresh mushrooms per day.

Besides her mushroom entrepreneurship, she has trained many farmers who are cultivating mushrooms in Uttrakhand. Her earnestness to help farmers to increase their income and providing handful employment opportunities to the youth have received much adulation in her region.

### श्री श्रिकर कुलकर्णी और श्री जयथीर्थ कुलकर्णी

कुलकर्णी फार्म फ्रेश फॅमिली पीढ़ियों से कर्नाटक के बेलगांव जिले में गांव— तिगड़ी कृषि कार्य में संल्गन है । कुलकर्णी परिवार की नई पीढ़ी के भाई श्री सतीश, श्री श्रीकर और श्री जयथीरथ का लक्ष्य खुम्ब खेती को आदर्श कृषि व्यवसाय उद्यमिता का उदाहरण स्थापित करना था ।



कुलकर्णी फार्म कर्नाटक में सबसे बड़ा वातावरण नियंत्रित मशरूम उत्पादन इकाई है, जो प्रति वर्ष लगभग 500 टन ताजे खुम्ब पैदा करता है। यूनिट ने मशरूम सब्सट्रेट डिस्पोजल और मार्केटिंग चेन मैनेजमेंट में अपने कुशल उत्पादन प्रणाली का एक उदाहरण स्थापित किया है

#### श्री सी विजयन

वीजी मशरूम, दक्षिण भारत में मशरूम उत्पादों की विस्तृत सारणी के सबसे लोकप्रिय, निर्यातकों और आपूर्तिकर्ताओं में से एक है। वीजी मशरूम इकाई के मालिक श्री सी विजयन ने कमलपुरम, सलेम में वीजी मशरूमकल्वर फार्म शुरू किया। जिसका प्रारंभिक उत्पादन 10 किलो ताजा ढींगरी मशरूम प्रति दिन था।



इसके बाद उन्होंने दूधिया मशरूम का उत्पादन और स्पॉन उत्पादन भी शुरू किया ।

वर्तमान में वीजी मशरूम उत्पादन इकाई प्रतिवर्ष 250 टन से अधिक ताजे खुम्ब का उत्पादन करती है। अपने सफल खुम्ब उत्पादन एवं उद्यमशीलता के अलावा, उन्होंने कई छोटे मशरूम उत्पादकों को निर्देशित किया है। वीजी मशरूम उत्पादकों को अच्छी गुणवत्ता वाले स्पॉन की आपूर्ति भी करते हैं।

#### Mr. Shrikar Kulkarni and Mr. Jayatheerth Kulkarni

Kulkarni farm fresh family is involved in agriculture for generations in their native village-Tigadi in Belagavi district of Karnataka. The new generation brothers of the Kulkarni family; Mr Satish, Mr Shrikar and Mr Jayatheerth ventured into mushroom cultivation to set the example for an ideal agri-business entrepreneurship.

The most meticulously designed environment controlled unit of the Kulkarni farm fresh is the largest mushroom production unit in Karnataka producing nearly 500 tonnes of fresh mushroom per annum. The unit has set an example with their efficient production system, spent mushroom substrate disposal and marketing chain management.

#### Mr. C Vijayan

VG Mushroom is one of the most popular manufactures, exporters and suppliers of wide array of Mushroom Products in Southern India. The proud owner of the VG mushroom unit Mr. C Vijayan started VG Mushroom culture farm at Kamalapuram, Salem with initial production 10 Kg fresh oyster mushroom per day. Subsequently he added milky mushroom production facility and spawn production to VG mushroom unit.

At present VG Mushroom production unit produces more than 250 tonnes of fresh mushroom per annum. Besides his successful mushroom cultivation entrepreneurship, he has guided many small mushroom growers to make their livelihood. He also supplies quality spawn among the growers from the spawn production facility of the VG mushroom.

#### श्री अजय कुमार प्रष्टी

श्री अजय कुमार प्रष्टी, सन 1991 से सफल मशरूम उत्पादक रहे हैं। वर्तमान में, उनकी मशरूम इकाई प्रतिदिन 100 किलोग्राम ताजा ढींगरी मशरूम और धान पुआल मशरूम उत्पादन कर रहे है। श्री प्रष्टी की मशरूम उत्पादन इकाई, एक सुस्थापित स्पॉन यूनिट और मशरूम उत्पादन इकाई है जो की ओडिशा राज्य में ढेंकनाल के



गांव इंदिपुर में स्थित है। ये ढेंकनाल जिले के विभिन्न गांवों में युवा उद्यमियों और महिलाओं के स्वयं सहायता समूहों से विभिन्न मशरूम के विकास में सक्रिय रूप से जुड़े हुए है।

वर्तमान में, शीतलन सुविधाओं के साथ मोबाइल वैन के माध्यम से इन्होने राज्य भर में उपभोक्ताओं के लिए अपना मशरूम वितरण सक्षम बना दिया है। इसके अलावा, उन्होंने मूल्यवर्धन के माध्यम से मशरूम पर कई फसल उत्पादों को लोकप्रिय बनाया है।

#### Mr. Ajaya Kumar Prusty

Mr. Ajaya Kumar Prusty, he has been a successful mushroom grower since 1991. At present, his mushroom unit is producing 100 Kg each fresh oyster mushroom and paddy straw mushroom per day. The mushroom production unit of Mr. Prusty houses one well maintained state of the art spawn unit and mushroom production facility at village Indipur of Dhenkanal in the State of Odisha. He is actively associated in developing different mushroom farms involving young entrepreneurs and women self help groups in different villages of Dhenkanal district.

At present, his innovative marketing approach of marketing through a mobile van with cooling facilities has enabled him to deliver his mushrooms to consumers across the State. Besides, he has popularized many post harvest products on mushrooms through value addition.

## राष्ट्रीय/राज्य स्तर की प्रदर्शनियों में भागीदारी

भाकृअनुप—खुम्ब अनुसंधान निदेशालय सोलन (एचपी) खुम्ब की खेती को बढ़ावा देने के लिए प्रदर्शनियो, विज्ञान मेले में नियमित रूप से भाग लेता है और खुम्ब की खेती की जानकारी का प्रचार किसानों, उद्यमियों और आम तक करता है। भाकृअनुप— खुम्ब अनुसंधान निदेशालय द्वारा मुहैया कराई गई सेवाओं के बारे में मुफ्त प्रकाशन, मूल्य प्रकाशनों की बिक्री, सूचना प्रसार का वितरण भी निदेशालय की विस्तार गतिविधियों में किया जाता है। भाकृअनुप— खुम्ब अनुसंधान निदेशालय सोलन ने वर्ष 2016—17 में निम्नलिखित प्रदर्शनियों प्रदर्शनों में भाग लिया।

#### Participation in national/state level exhibitions

The ICAR-Directorate of Mushroom Research, Solan (HP) participates regularly in exhibitions, science fairs to promote the mushroom cultivation and spread the information about mushroom cultivation, consumption among the farmers, entrepreneurs and the general public. Distribution of free literature, sale of priced publications, information dissemination about the services offered by the ICAR-DMR are undertaken in these outreach extension activities. The ICAR-DMR, Solan participated in the following exhibitions/demonstrations in the year 2016-17.

Table 3.2 Participation in national/state level exhibitions by ICAR-DMR, Solan तालिका 3.2 भा.कृ. अनु. प. –खु. अनु. नि. सोलन द्वारा राष्ट्रीय एवं राज्य स्तर की प्रदर्शनियों में भागीदारी

| Sl.<br>No | Name of the Event participated                                                                                              | Date           | Place                                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------|
| 1.        | Kisan mela and fair on at Piplughat and Devla, Tehsil Sunni, District Shimla during the <i>gram</i> sabha jagarukta abhiyan | 21-22 May 2016 | Piplughat and<br>Deola, Tehsil Sunni,<br>District Shimla (HP) |

| 2  | Participated in the Kisan Mela Exhibition organized by Divya Himachal.               | 3-4 <sup>th</sup> June 2016                           | Solan (HP).                                            |
|----|--------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| 3. | Agriculture fair and exhibition                                                      | 03 November 2016                                      | Basal Panchayat,<br>District: Solan (HP)               |
| 4. | Krishi Khumb at Northern Zone<br>Krishi Mela, Organized by ICAR<br>IIFSR, Modipuram. | 28 <sup>th</sup> to 30 <sup>th</sup><br>November 2016 | Muzzaffarnagar.                                        |
| 5. | Regional kisan goshthi and demonstration on mushroom cultivation technology          | 22 February 2017                                      | Nanava and Deoli<br>village, District<br>Bilaspur (HP) |
| 6  | Krishi Unnati Mela –2016                                                             | 15-17 March 2017                                      | ICAR-IARI, P USA<br>Campus, New Delhi                  |

#### मेरा गांव मेरा गौरव योजना

भाकृअनुप के 87 वें स्थापना दिवस के दौरान माननीय प्रधान मंत्री द्वारा शुरू किए गए "मेरा गांव मेरा गौरव योजना" मे सभी वैज्ञानिकों को गांवों को अपनाने के लिए कहा और अपनाये गए गांवों के किसानों के संपर्क में रह कर प्रयोगशाला के कार्यों को भूमि पर लाने की प्रक्रिया को शीघ करने की अपील की गयी। इस संदर्भ मे भाकृअनुप— खुम्ब अनुसंधान निदेशालय से इस योजना को कार्यान्वित करने के लिए, दो टीमों का गठन किया गया जिसमें प्रत्येक टीम में 4 वैज्ञानिक शामिल थे। इस योजना के कार्यान्वयन के लिए सोलन के आसपास 12 गांवों की पहचान की गई थी।

विशेषज्ञों के साथ परामर्श करके किसानों की सामान्य और कृषि संबंधी समस्याओं की पहचान एवं समाधान करने के लिए विभिन्न गांवों में मासिक यात्राओं, गोष्ठियो, बैठकें आयोजित की गईं। कृषि विज्ञानं केंद्र कन्डाघाट के विशेषज्ञों भी इस योजना के तहत बैठकों और गोष्ठियों के दौरान शामिल रहे।

## ननवा पंचायत में खुम्ब की खेती पर प्रदर्शन और प्रशिक्षण

एक दिवसीय प्रदर्शन और प्रशिक्षण शिविर 22 फरवरी, 2017 को जिला बिलासपुर के ननवा और देवेली गांव में भाकृअनुप— खुम्ब अनुसंधान निदेशालय, सोलन द्वारा संचालित किया गया था। 200 से अधिक किसानो और युवा खुम्ब कृषको ने प्रदर्शन एवं प्रशिक्षण में भाग लिया। दर्शकों के लाभ के लिए एक प्रदर्शनी और प्रदर्शन भी आयोजित किया गयी थी। श्री सुरेश चंदेल समारोह के मुख्य अतिथि थे। उद्घाटन सत्र में, भाकृअनुप— खुम्ब अनुसंधान निदेशालय के निदेशक ने क्षेत्र में उष्णकटिबंधीय खुम्ब की खेती की ओर किसानो का ध्यान आकर्षित किया और खुम्ब की प्रौद्योगिक खेती के बारे में निदेशालय के प्रयासों को खुम्ब को भोजन शैली में बढ़ावा देने के महत्व को बताया। श्री सुरेश चंदेल ने इस दिशा में निदेशालय के प्रयासों को सराहा एवं धन्यवाद किया। डॉ सतीश कुमार, डॉ

#### Mera Gaon, Mera Gaurav Scheme.

'Mera Gaon Mera Gaurav' scheme launched by Hon'ble Prime Minister during the 87<sup>th</sup> Foundation day of ICAR stipulate all the scientists to adopt the villages and remain in touch with farmers of the adopted villages to hasten the lab to land process. To implement the scheme from the ICAR-Directorate of Mushroom Research, two teams were constituted consisting 4 scientists in each team. Twelve villages around Solan were identified for implementation of the scheme.

Monthly visits, goshthis, meetings were conducted in different villages to identify the general and agriculture related problems of the farmers and offer solutions by consulting with the experts. The experts from KVK Kandaghat were involved during special meetings and goshtis under the scheme.

## Demonstration and training on mushroom cultivation at Nanava panchayat.

One day demonstration and training camp was orgnaised by the ICAR-Directorate of Mushroom Research, Solan (HP) at Nanava and Dewli village of district Bilaspur (HP) on 22<sup>nd</sup> February 2017. More than 200 farmers, farmwomen, and youth attended the mushroom demonstration and training. An exhibition and demonstration was also arranged for the benefit of visitors. Sh. Suresh Chandel was the chief guest of the function. In the inaugural session, the Director briefed about the importance of concentrating the cultivation of tropical mushrooms in the region and the efforts of the Directorate for spreading the know-how on mushroom cultivation technology and promote the mushroom consumption among the people. Sh. Suresh Chandel thanked and appreciated the efforts of the Directorate in this direction. Dr.

Satish Kumar, Dr. Yogesh

योगेश गौतम और डॉ महंतेश शिरूर ने भी विभिन्न प्रकार की प्रौद्योगिकियों पर व्याख्यान दिया और कुछ खुम्बो का प्रदर्शन किया।

इस एक दिवसीय शिविर के दौरान, किसान गोष्ठी भी आयोजित की गयी जिसमें किसानों, महिला कृषको और उद्यमियों ने मशरूम की खेती के दौरान हो रही समस्याओं के बारे में वैज्ञानिकों से चर्चा की। भाकृअनुप— खुम्ब अनुसंधान निदेशालय के निदेशक, सोलन ने आश्वासन दिया कि क्षेत्र में मशरूम की खेती को बढ़ावा देने के लिए निदेशालय अधिकतम संभव सहायता करेगा।

### डिजिटल सामग्री के माध्यम से खुम्ब की खेती प्रौद्योगिकी पर प्रशिक्षण: मास्टर प्रशिक्षकों के लिए क्षमता विकास कार्य शाला

वैज्ञानिकों, लाइन विभागों और कृषि विज्ञान केन्द्रों के विषय वस्तु विशेषज्ञों (एसएमएस) को खुम्ब उत्पादन के पहलुओं पर डिजिटल सामग्री के माध्यम से खेती प्रौद्योगिकी मे क्षमता निर्माण हेतु तीन दिवसीय कार्यशाला का आयोजन खुम्ब अनुसंधान निदेशालय मे 22—24 मार्च 2017 को किया गया।

#### रूपांकन एवं शिक्षण विधियों

चुने हुए 13 केवीके के प्रतिभागियों, लाइन विभागों, एआईसीआरपी (मशरूम) केंद्रों से 17 वैज्ञानिको और भाकृअनुप—खुम्ब अनुसंधान निदेशालय के तकनीकी स्टाफ ने कार्यशाला में भाग लिया। कार्यशाला को तीन मॉड्यूल्स में विभाजित किया गया था

- 1.विभिन्न खाद्य खुम्ब की खेती और फसल प्रबंधन
- 2.फसल संरक्षण
- 3. मूल्य वर्धन / पश्य-फसल प्रबंधन।

खुम्ब अनुसंधान निदेशालय में तैयार आठ प्रौद्योगिकी वृत्त चित्रों (टीडी) जो की ढ़ींगरी मशरूम, दूधिया मशरूम, धान पुआल मशरूम, बटन मशरूम, शीटके मशरूम, स्पान उत्पादन, मौसमी मशरूम और मशरूम के व्यंजनों पर आधारित थी कार्यशाला का मुख्य बिंदु था साथ ही साथ छोटे समूह प्रस्तुति (एसजीपी), प्रदर्शन (डेमो), विशेषज्ञ वार्ता (ईटी) और समूह चर्चा (जीडी) भी कार्यशाला का हिस्सा थी।

Gautam and Dr. Mahantesh Shirur delivered lectures on different mushrooms and their growing technologies for the gathering and the demonstration of some mushrooms was shown to the farmers.

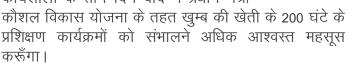
During the event, a *kisan goshthi* was also held in which the farmers, farmwomen and entrepreneurs discussed with the scientists from DMR about the problems they frequently encountered during the mushroom cultivation. The Director, ICAR-DMR, Solan assured that, DMR will extend maximum possible help to promote mushroom cultivation in the region.

Imparting training on mushroom cultivation technology through digital content: Capacity development workshop for master trainers.

The ICAR-Directorate of Mushroom Research located at Solan (HP) in its endeavour to address the capacity building on mushroom production aspects for scientists and Subject matter specialists (SMS) of KVKs and line department organized a three day workshop on "Imparting training on mushroom cultivation technology through digital content" from 22-24 March 2017.

#### Design and teaching methods

Thirteen participants selected from KVKs, Line departments, AICRP (Mushroom) centers and 17 scientists and technical staff from ICAR-DMR, Solan participated in the workshop. The workshop was divided into three modules; 1. Cultivation and crop management of different edible mushrooms 2. Crop protection and 3. Value addition/post-harvest technology in mushrooms. Eight technology documentaries (TD) on oyster mushroom, milky mushroom, paddy straw mushroom, button mushroom, shiitake mushroom, spawn production, seasonal mushroom growing and mushroom recipes prepared at ICAR-DMR were the focal component of the workshop interspersed with hands on skill teaching (HOST), small group presentation (SGP), demonstrations (DEMO), expert talks (ET) and group discussions (GD).


Table 3.3 Design of the workshop and the teaching methods used. तालिका 3.3 कार्यशाला का रूपांकन एवं उपयोग की गयी शिक्षण विधियां

| Workshop        | Topics                                                 | Teaching     |
|-----------------|--------------------------------------------------------|--------------|
| segments        |                                                        | methods used |
| Cultivation and | Spawn production technology                            | TD, HOST,    |
| crop            |                                                        | SGP          |
| management of   | Cultivation technology of tropical mushrooms           | TD, DEMO,    |
| different       | (Pleurotus, Calocybe and Volvariella)                  | SGP          |
| mushrooms       | Cultivation of white button mushroom (Agaricus) in     | TD, DEMO,    |
|                 | natural conditions and environment controlled units    | SGP, ET      |
|                 | Cultivation technology of medicinal mushrooms          | TD, HOST,    |
|                 | (Lentinula)                                            | DEMO, SGP    |
| Crop            | Management of pests, diseases and abiotic disorders in | ET, GD       |
| protection      | edible mushrooms                                       |              |
| Post-harvest    | Post-harvest technology and value addition in          | TD, ET,      |
| management      | mushrooms                                              | DEMO,        |

## कार्यशाला के बारे में कुछ प्रतिभागियों की टिप्पणी

### डॉ. पंकज सूद, कार्यक्रम समन्वयक, केवीके सुंदरनगर (एचपी)

प्रचार में एनएआरएस द्वारा उत्पन्न कई प्रौद्योगिकियों और सूचनाओं के लिए केवीके खिड़िकयों के रूप में कार्य करता है। केवीके अपने प्रशिक्षण कार्यक्रमों के माध्यम से किसानों और उद्यमियों को खुम्ब की खेती पर ज्ञान का प्रसार करने में सबसे आगे हैं। इस कार्यशाला के तीन दिन बाद में प्रधान मंत्री



## डॉ. एच आर चिदानन्द प्रभु, कार्यक्रम समन्वयक, के.वी.के., उत्तरी गोवा

हमारे केवीके में हमे लगातार खुम्ब पर प्रशिक्षण के आवेदन आते रहते है। हम ढींगरी खुम्ब पर प्रशिक्षण भी देते रहते है। परन्तु इस प्रकार की कार्यशाला से में अब विश्वास के साथ बटन खुम्ब, स्पान एवं औषधीय खुम्ब पर प्रशिक्षण दे सकूँगा।



### डॉ. सचिन गुप्ता, प्रभारी एआईसीआरपी (मशरूम), एसकेयूएस्ट, जम्मू

डिजिटल सामग्री के प्रयोग से विषय विशेषज्ञों को प्रशिक्षण देने मे सहायता मिलेगी, इसे पाकर वह एक बेहतर प्रशिक्षक बन सकते हैं।

## Feedback by some participants about the workshop:

### Dr. Pankaj Sood, Programme Coordinator, KVK Sundernagar (HP)

KVKs serves as the windows for many of technologies and information generated by NARS. KVKs are at the forefront in disseminating the knowledge to farmers and entrepreneurs on mushroom cultivation through their training programmes. After three days in this workshop, I feel more confident to handle the 200 hours training programmes on mushroom cultivation under *Pradhan mantri kaushal vikas yojana*.

## Dr. H. R. Chidanand Prabhu, Programme Coordinator, KVK, North Goa

In our KVK we receive frequent requests for training on different mushrooms. We often conducted training on oyster mushrooms. But with the kind of training we received in this workshop, now I can confidently organise training on button mushrooms, spawn production and other medicinal mushrooms.

## Dr. Sachin Gupta, Incharge AICRP (Mushroom), SKUAST, Jammu.

The workshop design with digital content as the main teaching aid will ease the pressure on subject matter experts who can now play the role of facilitator more effectively.

### श्रीमती शशिकला, सहायक बागवानी निदेशक, मैसूर

खुम्ब की खेती के बारे में अपने ज्ञान और कौशल वर्धन करने के अलावा, मैंने फसल प्रबंधन, विपणन, पश्य फसल प्रबंधन और मशरूम में कीटनाशक और रोग प्रबंधन के बारे सीख लिया है जिसका उपयोग में किसानों और उद्यमियों के प्रश्नों का समाधान करने के लिए करुँगी।



### डॉ. संजय कमल खुम्ब विस्तार अधिकारी, बागवानी विभाग, देहरादून, उत्तराखंड

मैंने उत्तराखंड राज्य बागवानी विभाग के साथ मिलकर, खुम्ब की खेती पर कई प्रशिक्षण आयोजित किए। अतीत में मेरे पास प्रशिक्षुओं को दिखाने के लिए कोई भी प्रौद्योगिकी वृत्तचित्रों नहीं था । इस कार्यशाला के उपरांत निश्चित तौर पर भविष्य में मेरे द्वारा आयोजित प्रशिक्षण की गुणवत्ता बढेगी।



## डॉ. आर पी सिंह, एसएमएस (प्लांट प्रोटेक्शन), केवीके कोटवा, आजमगढ (यूपी)

प्रौद्योगिकी प्रसार के लिए आईसीटी टूल एक आदर्श एवं प्रभावी उपकरण है । कार्यशाला के दौरान पेश की गई खुम्ब की खेती के विभिन्न पहलुओं पर प्रौद्योगिकी वृत्तचित्र बेहद जानकारीपूर्ण और स्पष्ट हैं।



## Mrs. Shashikala, Asst. Director of Horticulture, Mysuru.

Apart from refreshing my knowledge and skills on mushroom cultivation, I learnt to handle the farmers and entrepreneurs' queries on crop management, marketing, post-harvest technology and pest and disease management in mushrooms.

### Dr. Sanjay Kamal. Mushroom Extension Officer, Dept. of Horticulture, Dehradun, Uttarakhand.

In my long association with Uttarakhand State Horticulture Department, I conducted several trainings on mushroom cultivation. I never had access to such comprehensive technology documentaries in the past to show to my trainees. This workshop will surely enhance the quality of trainings I organise in the future.

## Dr. R. P. Singh, SMS (Plant protection), KVK Kotwa, Azamgarh (UP)

The workshop presented an ideal example of making effective application of ICT tools for technology dissemination. The technology documentaries on different aspects of mushroom cultivation presented during the workshop are highly informative as well as lucid.

### किसानों / मशरूम उत्पादकों / व्यवसायी / बेरोजगार युवकों को सलाहकार सेवा

खुम्ब की खेती, प्रशिक्षण और विपणन के विभिन्न पहलुओं पर डाक विस्तार पत्र के माध्यम से सलाहकार सेवाएं प्रदान की गईं। खुम्ब की खेती पर प्रश्नों का उत्तर प्रशिक्षण टेलीफोन और ई—मेल के माध्यम से दिया गया। औसतन 6—8 प्रश्न प्रति दिन फोन / मेल / पत्र द्वारा प्राप्त हुए थे जिनका की उत्तर दिया गया। विभिन्न राज्यों के किसानो और विभिन्न महाविद्यालयों के छात्रों, जो संस्थानों का दौरा करने आये थे, उनको प्रदान की जाने वाली निदेशालय की विभिन्न सुविधाओं और सेवाओं के बारे में नियमित रूप से जानकारी दी गई।

## खुम्ब की खेती पर प्रौद्योगिकी वृत्तचित्र का अनावरण

भाकृअनुप —खुम्ब अनुसंधान निदेशालय, सोलन ने विभिन्न खाद्य और औषधीय मशरूम और स्पान के उत्पादन पर प्रौद्योगिकी

## Advisory service to farmers/ mushroom growers/businessman/unemployedyouths

Advisory services through postal extension letters on various aspects of mushroom cultivation, training and marketing were provided. Queries on mushroom cultivation, training were replied through telephone and e-mail. On an average 6-8 queries per day were received either by phone/mail/letters and were replied. The groups of farmers from different states and students of various colleges visiting the institute were briefed regularly about the various facilities and services rendered by DMR, Solan

## **Technology Documentaries on mushroom cultivation released**

The ICAR-Directorate of Mushroom Research, Solan has developed different edible and

वृत्तचित्र विकसित किए हैं। वृत्तचित्रों को भाकृअनुप के कृषि विस्तार डिवीजन द्वारा वित्त पोषित नए मशरूम पैनेरियर्स के बीच मशरूम की खेती प्रौद्योगिकी का डिजिटल सामग्री वितरण की परियोजना के तहत उत्पादित किया गया था ।

महानिदेशक (भाकृअनुप) डॉ. टी मोहापात्रा ने 8 मार्च,2017 को सोलन (एचपी) में शिटाके मशरूम (लेंटिनुला एडोड्स) और धान पुआल मशरूम (वोल्वेरियाला वाल्वेसा) की खेती पर दो वृत्तचित्र जारी किए।

राष्ट्रीय विज्ञान दिवस समारोह के अवसर पर भाकृअनुप —खुम्ब अनुसंधान निदेशालय, सोलन के निदेशक डॉ वी.पी. शर्मा ने ढींगरी मशरूम (प्लीरॉटस एसपी) की खेती प्रौद्योगिकी और स्पान के उत्पादन पर वृत्तचित्र जारी किए।

दस्तावेजों को जारी करने के बाद महानिदेशक ने डिजिटल सामग्री वितरण के माध्यम से संस्थानों में उत्पन्न तकनीक के तेजी से प्रसार की आवश्यकता पर बल दिया। परियोजना दल के प्रयासों की सराहना करते हुए महानिदेशक ने खुम्ब पर प्रौद्योगिकी का एक पूरा पैकेज विकसित करने का सुझाव दिया ताकि इच्छुक किसान अपने कृषि—जलवायु परिस्थितियों के अनुरूप विभिन्न खाद्य खुम्ब की कृषि प्रौद्योगिकी का उपयोग कर सकें।

medicinal mushrooms and spawn production. The documentaries were produced under the extramural project "Digital content delivery of mushroom cultivation technology among new mushroompreneurs" funded by Agricultural Extension division of ICAR.

Dr. T. Mohapatra, Director General (ICAR) released two documentaries on cultivation technology of shiitake mushroom (Lentinula edodes) and the paddy straw mushroom (Volvariella volvacea) on March 8, 2017 at Solan (HP).

The documentaries on oyster mushroom (Pleurotus sp) cultivation technology and spawn production were released by Dr. V. P. Sharma, Director, ICAR-DMR, Solan on the occasion of national science day celebrations at the Directorate.

The Director General after releasing the documentaries emphasized the need for faster dissemination of technology generated at institutes through digital content delivery. The DG appreciated the efforts of the project team and suggested to develop a complete package of technology on mushrooms so that the interested farmers and agri-preneurs can access the technology and adopt the mushroom farming according to their agro-climatic conditions and demand for different edible mushrooms in the market.

61



Fig 3.5 Dr. T. Mohapatra, Secretary (DARE) and Director General (ICAR) releasing the technology documentaries on mushroom cultivation aspects. The project team and other scientists present during the event.

चित्र–3.5 डॉ.टी.महापात्रा सचिव (डीऐआरइ )और महानिदेशक (भाकृअनुप) द्वारा खुम्ब की खेती पर प्रौद्योगिकी वृत्तचित्रों का अनावरण



Fig 3.6 Dr. V. P. Sharma, Director, ICAR-DMR, Solan (In the middle). Dr. Mahantesh Shirur, Principal Investigator (extreme left), Mr. Sudheer Kumar Annepu, Co-PI (second from right), Mr. Bhuwan Awasthi SRF, (second from left) and

Mr. Pushpender Thakur SRF, (extreme right) releasing the technology documentaries on the occasion of Science day- 2017.

चित्र 3.6 डॉ. वी पी शर्मा, निदेशक, भाकृअनुप -डीएमआर, सोलन (मध्य में) डॉ. महंतेश शिरूर,

प्रधान अन्वेषक (चरम बाएं), श्री सुधीर कुमार एनेपु, सह-अन्वेषक (दाएं से दूसरा), श्री भुवन अवस्थी एसआरएफ, (बाएं से दूसरे) और

श्री पुष्पेन्द्र टाकुर एसआरएफ, (चरम दायें) विज्ञान दिवस- 2017 के अवसर पर प्रौद्योगिकी के वृत्तचित्र जारी करते हुए

# एंड्राइड आधारित मोबाइल एप

तीन एंड्रॉइड आधारित मोबाइल एप्लिकेशन विकसित किए गए हैं, जो की डीएमआर—एफएफसीसी, आईसीएआर—मशरूम और आईसीएआर—डीएमआर है उपयोगकर्ता इन मोबाइल ऐप से मशरूम की खेती से संबंधित जानकारी का उपयोग कर सकते हैं। डीएमआर—एफसीसी में1983—2016 से आईसीएआर—डीएमआर में एकत्र मांसल कवक के लिए सूची शामिल है। आईसीएआर—डीएमआर में डीएमआर से संबंधित जानकारी, उपलब्ध सेवाएं, प्रशिक्षण विवरण, मशरूम प्रोफाइल और बटन, ढ़ींगरी, दूधिया, धान के पुआल और शिटाके मशरूम की खेती से संबंधित जानकारी शामिल है। आईसीएआर—मशरूम में स्वास्थ्य लाभ, प्रौद्योगिकी, उत्पाद, लिंक, संसाधन, सूचनाएं, फोटो गैलरी, पृछे जाने वाले प्रश्न

लेंक, संसाधन, सूचनाएं, फोटो गैलरी, पूछे जाने वाले प्रश् और मौसम संबंधी जानकारी शामिल है।

#### Android based mobile apps

Three android based mobile applications were developed *viz.*, DMR-FFCC, ICAR-MUSHROOM and ICAR-DMR. Users can access information related to mushroom cultivation from these mobile apps. DMR-FCC includes the catalogue for fleshy fungi collected at ICAR-DMR from 1983-2016. ICAR-DMR includes information related to DMR, services available, training details, mushroom profile and information related to cultivation of button, oyster, milky, paddy straw and shiitake mushrooms. ICAR-MUSHROOM includes health benefits, technologies, products, links, resources, notifications, photo gallery, FAQs and weather related information.

# **Technology Documentaries**

The Technology Documentaries produced under the ICAR funded extramural project "Digital content delivery of mushroom cultivation technology among new mushroompreneurs" provides detailed technical information on cultivation aspects of different mushrooms and spawn production.



Spown Production Price: ₹ 150

Cultivation Technology of Shiitake Mushroom (Lentinula edodes) Prices ₹150





Cultivation Technology of Paddy Straw Mushroom (Volvariella volvacea) Pates ₹ 100

Cultivation Technology of Milky Mushroom (Calocybe indica) Price 8₹ 100





Oyster Mushroom Cultivation Technology (Pleurotus sp.) Prites ₹ 100

Cultivation Technology of White Button Mushroom (Agaricus bisporus) Prices ₹ 150





White Button Mushroom Production Under Natural Conditions Prices ₹ 150



भाकृअनुप—खुम्ब अनुसंघान निदेशालय (भारतीय कृषि अनुसंघान परिषद) चम्बाघाट, सोलन (हि.प्र.)—173213

ICAR-DIRECTORATE OF MUSHROOM RESEARCH (Indian Council of Agricultural Research) CHAMBAGHAT, SOLAN (HP) – 173213

Website: www.nrcmushroom.org Email: directordmr@gmail.com, totdmrsolan@gmail.com Phone: 01792-230767,230541,230451, Fax: 01792-231207



Fig. 3.7 List of technology documentaries developed by ICAR-DMR चित्र— 3.7 भाकृअनुप— खु अनु नि द्वारा विकसित प्रौद्योगिकी वृत्तचित्रों की सूची

# 4. अखिल भारतीय समन्वित अनुसंधान परियोजना-केंद्र (4.) AICRP Centres

देश के विभिन्न कृषि—जलवायु क्षेत्रों में खुम्ब अनुसंधान निदेशालय, सोलन द्वारा विकसित प्रौद्योगिकी के परीक्षण और खुम्ब को मौजूदा कृषि पद्धति को एकीकृत करने के उद्देश्य से छठी पंचवर्षीय योजना के दौरान 01.04.1983 को खुम्ब अनुसंधान निदेशालय, सोलन ने खुम्ब पे अखिल भारतीय समन्वित अनुसंधान परियोजना की शुरूआत की थी। खुम्ब अनुसंधान निदेशालय के निदेशक, इस परियोजना के परियोजना समन्वयक के रूप में भी कार्य करते है। एआईसीआरपी (मशरूम) का उद्देश्य खुम्ब की बेहतर किरमों संकर, फसल उत्पादन, फसल की सुरक्षा के उपायों और फसल के उत्पादन से संबंधित खेती की प्रक्रियाओं के साथ बहु—स्थान परीक्षणों का समन्वय और निगरानी करना है, जिसका उद्देश्य देश मे सभी खुम्बो में उत्पादन, उत्पादकता और उपयोग में वृद्धि करना है।

शुरुवात में, अखिल भारतीय समन्वय मशरूम सुधार पिरयोजना छह केंद्रों के साथ शुरू हुई थी। बारहवीं पंचवर्षीय योजना के दौरान और 11 समन्वय और 9 सहयोग केंद्र जोड़े गए और फैजाबाद केंद्र को हटा दिया गया। वर्तमान में, 23 समन्वय और 9 सह—ऑपरेटिंग केंद्र एआईसीआरपीएम के तहत काम कर रहे हैं। ये केंद्र इस प्रकार हैं:-

# भा.कृ. अनु.प. समन्वय केन्द्र

- नईएच क्षेत्र के लिए भाकुअनुप अनुसंधान कॉम्प्लेक्स, बारापानी
- एनईएच क्षेत्र, सिक्किम के लिए आईसीएआर रिसर्च कॉम्प्लेक्स
- एनईएच क्षेत्र, अरुणाचल प्रदेश के लिए आईसीएआर अनुसंधान परिसर
- एनईएच क्षेत्र, नागालैंड के लिए आईसीएआर अनुसंधान परिसर
- एनईएच क्षेत्र, मणिपुर के लिए आईसीएआर रिसर्च कॉम्प्लेक्स
- एनईएच क्षेत्र, मिजोरम के लिए आईसीएआर अनुसंधान परिसर
- एनईएच क्षेत्र, त्रिपुरा के लिए आईसीएआर अनुसंधान परिसर
  - पूर्वी क्षेत्र रिसर्च सेंटर, रांची के लिए भाकुअनुप अनुसंधान कॉम्प्लेक्स

With a view to test and disseminate the technologies developed at ICAR- Directorate of Mushroom Research, Solan and its centres in different agro-climatic regions of the country and to popularize mushroom cultivation as secondary agriculture along with the existing farming system, All India Coordinated Research Project on Mushroom (AICRPM) was launched during VI Five-Year Plan on 01.04.1983 with its Headquarters at Directorate of Mushroom Research, Solan (HP). The Director of DMR, Solan (HP) is acting as the Project Co-ordinator of the project. The mandate of AICRP (Mushroom) is to coordinate and monitor multi-location trials with improved mushroom varieties / hybrids, cultivation practices related to crop production, crop protection measures and post harvest technology, all aimed at increasing production, productivity and utilization of mushroom in the country.

Initially, the All India Coordinated Mushroom Improvement Project started with six centres. During the XII five year plan 11 more coordinating and 9 cooperating centres were added and Faizabad centre was dropped. At present, 23 Coordinating and 9 cooperating centres are working under AICRPM. These are:

### ICAR Institute based coordinating centres

- ICAR Research Complex for NEH region, Barapani (Meghalaya)
- ICAR Research Complex for NEH region, Sikkim
- ICAR Research Complex for NEH region, Arunachal Pradesh
- ICAR Research Complex for NEH region, Nagaland
- ICAR Research Complex for NEH region, Manipur
- ICAR Research Complex for NEH region, Mizorum
- ICAR Research Complex for NEH region, Tripura
- ·ICAR-Research Complex for Eastern Region Research Centre, Ranchi (Jharkhand)
- ICAR-Central Island Agri. Res. Institute, Port Blair (Andaman & Nicobar Island)

ICAR-Indian Institute of Horticultural Research, Bengaluru

# कृषि रेस। संस्थान, पोर्ट ब्लेयर

 आईसीएआर—इंडियन इंस्टिट्यूट ऑफ हॉर्टीकल्चरल रिसर्च, बैंगलोर

# राज्य कृषि विश्वविद्यालय समन्वय केन्द्र

- पंजाब कृषि विश्वविद्यालय, लुधियाना
- तमिलनाडु कृषि विश्वविद्यालय, कोयंबटूर
- गोविन्द बल्लभ पंत कृषि और प्रौद्योगिकी विश्वविद्यालय, पंतनगर
- कृषि महाविद्यालय, महात्मा फुले कृषि विश्वविद्यालय, पुणे
- इंदिरा गांधी कृषि विश्व विद्यालय, रायपुर
- महाराणा प्रताप कृषि और प्रौद्योगिकी विश्वविद्यालय, उदयपुर
- कृषि महाविद्यालय, केरल कृषि विश्वविद्यालय, वेलयैनी
- सी सी एस . हरियाणा कृषि विश्वविद्यालय, हिसार
- उड़ीसा कृषि और प्रौद्योगिकी विश्वविद्यालय, भुवनेश्वर
- राजेंद्र कृषि विश्वविद्यालय, समस्तीपुर, पूसा
- बागवानी और वानिकी, केंद्रीय कृषि विश्वविद्यालय, पासीघाट
- सीएसके एचपीकेवी, पालमपुर

#### राज्य सरकार आधारित समन्वय केन्द

• हेक , मुरथल्ल

# सह–ऑपरेटिंग केंद्र

- डॉ वाई एस परमार विश्वविद्यालय, बागवानी और वानिकी, नौनी, सोलन (हि.प्र)
- आईसीएआर–वीपीकेएएस, अल्मोड़ा
- शेर-ए-कासिर कृषि विज्ञान और प्रौद्योगिकी कृषि विश्वविद्यालय, श्रीनगर
- शेर-ए-कासिर कृषि विज्ञान और प्रौद्योगिकी विश्वविद्यालय, जम्मू
- असम कृषि विश्वविद्यालय, जोरहाट
- सरदार बल्लाभ भाई पटेल कृषि एवं प्रौद्योगिकी विश्वविद्यालय , मेरठ
- बिधान चंद्र कृषि विश्वविद्यालय, नाडिया
- सरदरकृष्णनगर— दंतीवाड़ा कृषि विश्वविद्यालय, दांतीवाड़ा
- प्रोफेसर जया शंकर कृषि विश्वविद्यालय, राजेंद्रनगर

# State Agricultural University based coordinating centres

- Punjab Agricultural University, Ludhiana (Punjab)
- Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu)
- G.B. Pant University of Agriculture and Technology, Pantnagar (Uttarakhand)
- CoA, Mahatma Phule Agricultural University, Pune (Maharashtra)
- Indira Gandhi Krishi Vishwa Vidyalaya, Raipur (Chattisgarh)
- Maharana Pratap University of Agriculture and Technology, Udaipur (Rajasthan)
- CoA, Kerala Agricultural University, Vellayani (Kerala)
- C.C.S. Haryana Agricultural University, Hisar (Haryana)
- Odisha University of Agriculture and Technology, Bhubaneswar (Odisha)
- Rajendra Agricultural University, Samastipur, Pusa (Bihar)
- College of Horticulture and Forestry, Central Agricultural University, Pasighat (Arunchal Pradesh)

#### CSK HPKV, Palampur (HP)

#### **State Govt based Coordinating Centre**

• HAIC Murthal (Haryana)

#### **Co-operating Centres**

- Dr.Y.S.Parmar University of Horticulture & Forestry, Nauni, Solan (HP).
- ICAR-VPKAS, Almora (Uttrakhand)
- Sher-e- Kasmir Uni.of Agri. Sci.&Technology, Srinagar (J&K)
- Sher-e- Kasmir Uni.of Agri. Sci.&Technology, Jammu (J&K)
- Assam Agri. University, Jorhat (Assam)
- Sardar Vallabhbhai Patel Uni. Of Agri& Tech., Meerut (UP)
- Bidhan Chandra Krishi Viswavidyalaya, Nadia (WB)
- Sardarkrushinagar-Dantiwada Agri. Uni., Dantiwada (Gujrat)
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar (Hyderabad)

# 5. प्रकाशन सूची (5.) List of Publication

- अहलावत ओपी, कौर हरलीन और कमल श्वेत (2016) एफेक्ट ऑफ कल्चर रेजिंग टेक्नीक्स ऑन मयसएलियाल ग्रोथ कॅरेक्टरिस्टिक्स एंड द फ्रूट बॉडी यील्ड पोटेन्षियल इन स्ट्रेन्स ऑफ वोल्वरिएल्ला वोलवसेआ. मशरूम रिसर्च 25(2): 109–118.
- 2. अहलावत ओपी, मानिकंदन के और सिंह एम (2016) प्रॉक्सिमेट कॉपोजिशन ऑफ डिफरेंट मशरूम वेराइयेटीस एंड एफेक्ट ऑफ अव लाइट एक्सपोज़र ऑन विटामिन डी कॉटेंट इन अगारिकस बिस्पोरस एंड वोल्वरिएल्ला वोलवसेआ. मशरूम रिसर्च 25(1): 1–8.
- 3. अहलावत ओपी, सिन्हा पूजा और सिंह मनजीत (2016)। कल्चर वाइयियबिलिटी, कमर्षियल स्केल कल्टिवेशन एंड शेल्फ लाइफ स्टडीस ऑन द सिल्वर—सिल्क स्ट्रॉ मशरूम, वोल्वरिएल्ला बॉम्बयसीना. जर्नल ऑफ साइंटिफिक एंड इंडस्ट्रियल रिसर्च 75(9) 562—569
- 4. अत्री बीएल, एमआर, कुमार ए, नारायण आर और किशोर ए (2016) फयटो—केमिकल कॅरेक्टर्स ऑफ कीवी फ्रूट (अक्टिनिडिया छीनेनसिस) वार. आलिसन अफेक्टेड बाइ डिफरेंट स्टेजस ऑफ ग्रोथ. एनुवल्स ऑफ हॉर्टिकल्चर 9(1) 53–57.
- 5. बरह ए, सिंह एन, वर्मा एसएस और कुमार एम (2016) हेतेरोसिस एंड कंबाइनिंग अबिलिटी स्टडीस फॉर सेलेक्षन ऑफ पेरेंटल लाइन्स एंड डिराइब्ड टेस्ट क्रॉसस इन मेज. एकॉलजी एन्वाइरन्मेंट एंड कन्सर्वेशन 22: 195–202.
- 7. चंद्र एस, चंद्र डी, बरह ए, पंकज, पांडे आरके और शर्मा आईपी (2017) ब्रयोफयटेस: होर्ड ऑफ रेमेडीस, आन एथनो—मेडिसिनल रिव्यू. जर्नल ऑफ ट्रडीशनल एंड कॉप्लिमेंटरी मेडिसिन 7(1) 94—98 ।
- 8. गौतम वाई (2016) एवॅल्यूयेशन ऑफ ए प्रोटटाइप डेवेलप्ड फॉर इन्फर्मेशन डिसेमिनेशन रिलेटेड टू मशरूम फार्मिंग फॉर डिफरेंट पैरामीटर्स. इंटरनॅशनल जर्नल ऑफ रिसर्च इन इंजिनियरिंग एंड अप्लाइड साइन्सस 6(5): 186—193.
- 9. गौतम वाई (2016) ग्रीन आई टी. इंटरनॅशनल जर्नल ऑफ रिसर्च इन इट एंड मॅनेज्मेंट 6(5): 59—62।
- 10. जोशी एम, सिंह के, पुष्पेंद्र और बरह ए (2016) स्टडीस ऑफ एफ 1 एंड एफ 2 जेनरेशन्स ऑफ साय्बीन फॉर कोरिलेशन एंड पाथ कोवेफीशियेंट इन तराई रीजन ऑफ उत्तराखंड. इंटरनॅशनल जर्नल ऑफ साइंटिफिक इंजिनियरिंग एंड अप्लाइड साइन्स 28: 2395—3470.

- 1. Ahlawat OP, Kaur H and Kamal S (2016). Effect of culture raising techniques on mycelial growth characteristics and the fruit body yield potential in strains of *Volvariella volvacea*. Mushroom Research 25(2): 109-118.
- 2. Ahlawat OP, Manikandan K and Singh M (2016). Proximate composition of different mushroom varieties and effect of UV light exposure on vitamin D content in *Agaricus bisporus* and *Volvariella volvacea*. Mushroom Research 25(1): 1-8
- 3. Ahlawat OP, Sinha P and Singh M (2016). Culture viability, commercial scale cultivation and shelf life studies on the silver-silk straw mushroom, *Volvariella bombycina*. Journal of Scientific and Industrial Research 75(9) 562-569.
- 4. Attri BL, Mer MS, Kumar A, Narayan R and Kishor A (2016). Phyto-chemical characters of kiwi fruit (*Actinidia chinensis*) var. Allison affected by different stages of growth. Annals of Horticulture 9(1): 53-57.
- 5. Barh A, Singh N, Verma SS and Kumar M (2016). Heterosis and combining ability studies for selection of parental lines and derived test crosses in maize. Ecology Environment and Conservation 22: 195–202.
- 6. Bindvi A, Shwet K and Sharma VP (2016). Effect of binding agents on quality characteristics of mushroom based sausage analogue. Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.13134.
- 7. Chandra S, Chandra D, Barh A, Pankaj, Pandey RK and Sharma IP (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine 7(1): 94–98.
- 8. Gautam Y (2016). Evaluation of a prototype developed for information dissemination related to mushroom farming for different parameters. International Journal of Research in Engineering and Applied Sciences 6(5): 186-193.
- 9. Gautam Y (2016). Green IT. International Journal of Research in IT and Management 6(5): 59-62.
- 10. Joshi M, Singh K, Pushpendra and Barh A (2016). Studies on F1 and F2 generations of soybean for correlation and path coefficient in Tarai region of Uttrakhand. International Journal of Scientific Engineering and Applied Science 28: 2395–3470.
- 11. Kishor A, Verma SK, Brijwal M, Kumar A, Attri

- 11. किशोर ए, वर्मा एसके, बृजवाल एम, कुमार ए, अत्री एलएल, नारायण आर और देबिनाथ एस (2017) एवँ ल्यूयेशन ऑफ जेनेटिक डाइवर्सिटी इन वाइल्ड पेयर (पयरस पाशिया) अंडर कुमाओं हिल्स ऑफ उत्तराखंड. एन्वाइरन्मेंट एंड एकॉलजी 35(1ब): 524–529.
- 12. कृष्ण एच और अत्री एलएल (2016) हेल्त बेव्रेजस फ्रॉम बयबेरी एंड येल्लो हिमाल्यन रॅजबेरी. इंटरनॅशनल जर्नल ऑफ माइनर फ्रूट्स, मेडिसिनल एंड अर्रोमेटिक पल्न्ट्स 2(1): 15—18.
- 13. कृष्ण एच, अत्री बीएल, कुमार ए और अहमद एन। 2016 चेंजस इन द फेनालिक कॉटेंट्स एंड आंटीयाक्सिडंट केपॅसिटी ऑफ बयबेरी (माइयरिका एस्कुलेंटा) एंड येल्लो हिमाल्यन रॅजबेरी (रूबस एल्लीपतिकुस) बेस्ड हेल्त बेव्रेजस. इंडियन जर्नल ऑफ ट्रडीशनल नालेज 15(3): 417–424.
- 14. मेर एमएस, अत्री बीएल, कुमार ए और नारायण आर (2016) वरीटल परफारमेंस इन फयसिको—केमिकल प्रॉपर्टीस ऑफ पीच (प्रुनस पेर्सिका) ग्रोन इन उत्तराखंड, इंडिया. अग्रिकल्चर साइन्स डाइजेस्ट 36(1): 75—77.
- 15. सतीश कुमार, शर्मा वीपी और श्वेत कमल (2016) इन्सेक्ट— फंगस इंटरॅक्षन्स— आ रिव्यू मशरूम रिसर्च 24(1): 1—9.
- 16. शिक्तर एम और शर्मा वीपी (2016) डबलिंग फार्मर्स' इनकम थ्रू टेक्नोलॉजिकल इंटरवेन्षन्स इन मशरूम. इंडियन हॉर्टिकल्चर 61(2): 57–60.
- 17. शिरूर एम, मानिकंदन के और वाक्छायर जीसी (2016) एवँ ल्यूयेशन ऑफ नॅशनल ट्रैनिंग प्रोग्राम ऑन मशरूम किल्टवेशन टेक्नालजी फॉर एंटरप्रेन्योर. मशरूम रिसर्च 25(2): 147—152. 427—436.
- 18. शिरूर एम, शिवलिंगगौडा एनएस, चंद्रगौड़ा एमजे और राणा आरके (2016) टेक्नोलॉजिकल अडॉप्बन एंड कन्स्ट्रेंट अनॅलिसिस ऑफ मशरूम एंट्रेपरेणेउर्शिप इन कर्नाटका. एकनामिक अफेर्स 61(3): 427–436.
- 19. सुधीर केए, मीरा पी और पुणिता के (2017) फिजियलॉजिकल रिक्वाइर्मेंट्स फॉर कन्सर्वेशन एंड मेंटेनेन्स ऑफ वाइल्ड मशरूम स्पेसिमन्स (स्वीजोफ्यल्लूम कम्यून एंड लेंटीनुला एडोदेस) कलेक्टेड फ्रॉम नॉर्थ ईस्ट, इंडिया. एन्वाइरन्मेंट एंड एकॉलजी 35(2आ): 982–987.

- BL, Narayan R and Debnath S (2017). Evaluation of genetic diversity in wild pear (*Pyrus pashia*) under Kumaon Hills of Uttarakhand. Environment and Ecology 35(1B): 524-529.
- 12. Krishna H and Attri BL (2016). Health beverages from bayberry and yellow Himalayan raspberry. International Journal of Minor Fruits, Medicinal and Aromatic Plants 2(1): 15-18.
- 13. Krishna H, Attri BL, Kumar A and Ahmed N (2016). Changes in the phenolic contents and antioxidant capacity of bayberry (*Myrica esculenta*) and yellow Himalayan raspberry (*Rubus ellipticus*) based health beverages. Indian Journal of Traditional Knowledge 15(3): 417-424.
- 14. Mer MS, Attri BL, Kumar A and Narayan R (2016). Varietal performance in physico-chemical properties of peach (*Prunus persica*) grown in Uttarakhand, India. Agriculture Science Digest 36(1):75-77.
- 15. Satish Kumar, Sharma VP and Shwet K (2016). Insect- fungus interactions- a review Mushroom Research 24(1): 1-9.
- 16. Shirur M and Sharma VP (2016). Doubling farmers' income through technological interventions in mushroom. Indian Horticulture 61(2): 57-60.
- 17. Shirur M, Manikandan K and Wakchaure GC (2016). Evaluation of national training program on mushroom cultivation technology for entrepreneurs. Mushroom Research 25(2): 147-152.
- 18. Shirur M, Shivalingegowda NS, Chandregowda MJ and Rana RK (2016). Technological adoption and constraint analysis of mushroom entrepreneurship in Karnataka. Economic Affairs 61(3): 427-436.
- 19. Sudheer KA, Meera P and Punita K (2017). Physiological requirements for conservation and maintenance of wild mushroom specimens (*Schizophyllum commune* and *Lentinula edodes*) collected from North East, India. Environment and Ecology 35(2A): 982-987.

### Papers Presented in Conference/Symposiums

- 1. Attri BL, Mer MS, Kishor A, Kumar A and Narayan R (2016). Effect of different concentrations of aloe vera gel and neem oil on the shelf life and quality of apple at ambient conditions. Ibid. XI-03, pp. 446.
- 2. Bindvi A, Shwet K, Rana LR and Sharma V P (2016). Process optimization of ready to cook frozen mushroom tikki. *In:*National Conference on

# कान्फ्रेन्स में प्रस्तुत किए गए पोस्टर एवं शोधपत्र

- 1. अत्री बीएल, मेर एम एस, किशोर ए, कुमार ए और नारायण आर (2016)।एफेक्ट ऑफ डिफरेंट कॉन्सेंट्रेशन्स ऑफ आलो वेरा जेल एंड नीम आयिल ऑन द शेल्फ लाइफ एंड क्वालिटी ऑफ एप्पल एट आंबियेंट कंडीशन्स. आइबिड. क्षी–03, प्प. 446.
- 2. बिंदवी ए, श्वेत के, राणा एल और शर्मा वी पी (2016). प्रोसेस अप्टिमिजेशन ऑफ रेडी तो कुक फ्रोजन मशरूम टिक्की. इनः नॅशनल कान्फरेन्स ऑफ अड्वान्स इन फुड साइन्स एंड टेक्नॉलजी प प.199—205
- 3. वाई गौतम, 2016. "मशरूम कल्टिवेशन एंड आई सी टीइंटरवेन्षन्स एट आईसीएआर—डीएमआर" इन 19 आन्यूयल कान्फरेन्स ऑफ एसएससीए —2017 हेल्ड अट स्कुआस्ट—जम्मू फ्रॉम ६—८ मार्च २०१६.
- 4. किशोर ए, नारायण आर, अत्री बीएल, बृजवाल एम, कुमार ए और देबिनाथ एस (2016). फयसिको—केमिकल कॅरेक्टरिस्टिक्स ऑफ एप्पल कल्टिर्व्स अंडर कुमाओं हिल्स ऑफ उत्तराखंड. इनरू सेवन्थ इंडियन होर्ट. कॉग्रेसरू डबलिंग फार्मर्स इनकम थ्रू हॉर्टिकल्चर 15—18 नोव., 2016 अट न. देल्ही. ई—16,. प—14—15.
- 5. किशोर ए, नारायण आर, अत्री बीएल, बृजवाल एम, कुमार ए और देबिनाथ एस (2016). एफेक्ट ऑफ डिफरेंट लेवेल्ज ऑफ फ्रूट थिनिंग ऑन फयसिको—केमिकल कॅरेक्टरिस्टिक्स ऑफ किवि फ्रूट क्ल्स. आलिसन आंड हेवर्ड. आइबिडईव—14, प्प. 178.
- 6. ममता गुप्ता एंड चलाम वी.सी. 2016. आर टी पी सी आर मेथड फॉर डिटेक्षन ऑफ पीनिट स्टंट वाइरस इन साय्बीन जर्मप्लाजम इन: फस्ट इंटरनॅशनल अग्रोबिोदिवेर्सिटी कॉग्रेस, न्यू देल्ही, इंडिया, प <sup>L</sup>264.
- 7. मंजीत सिंह, श्वेत कमल एंड ममता गुप्ता (2016) डेवेलपमेंट एंड यील्ड एवॅल्यूयेशन ऑफ नोन—ब्राउनिंग हाइब्रिड्स इन बटन मशरूम (अगारिकूस बिस्पोरस). मशरूम साइन्स एक्स आई एक्स: 309—312.
- 8. शर्मा वीपी, शर्मा, एस, कुमार, एस और कमल, एस 2016, टेक्नालजी फॉर अर्ली फ्रूटिंग इन लेंटीनुला एडोदेस कल्टिवेशन. इनः साइन्स आंड कल्टिवेशन ऑफ एडिबल फंजाइ (बार्स आंड सोन्नेनबेर्ग एड्स) रू 180–184.
- 9. शर्मा वीपी, शर्मा एस, कुमार एस, गुप्ता एम, और कमल, एस २०१६ कॉब वेब एंड ड्राई बबल डिसीजस इन लेंटीनुला एडोदेस कल्टिवेशन— न्यू रिपोर्ट. इन: साइन्स आंड कल्टिवेशन ऑफ एडिबल फंजाइ (बार्स आंड सोन्नेनबेर्ग एड्स): 130—134
- 10. शर्मा, वीपी, कुमार, एस और कमल, एस 2016. कल्चरल प्रॅक्टिरसस एंड डिसीज मॅनेज्मेंट इन मशरूम फॉर इंप्रूविंग प्रॉफिटबिलिटी. इन: डबलिंग फार्मर्स इनकम थु हॉर्टिकल्चर: 283–288.

- Advances in Food Science and Technology pp.199-205.
- 3. Gautam Y (2016). Mushroom cultivation and ICT interventions at ICAR-DMR. *In:* 19<sup>th</sup> Annual Conference of SSCApp.
- 4. Kishor A, Narayan R, Attri BL, Brijwal M, Kumar A and Debnath S (2016). Physico-chemical characteristics of apple cultivars under Kumaon Hills of Uttarakhand. *In:* 7th Indian Horticulture Congress: Doubling farmers' income through Horticulture pp. 14-15.
- 5. Kishor A, Narayan R, Attri BL, Brijwal M, Kumar A and Debnath S (2016). Effect of different levels of fruit thinning on physico-chemical characteristics of kiwifruit cvs. Allison and Hayward. Ibid. IV-14, pp. 178.
- 6. Mamta G and Chalam VC. 2016. RT-PCR Method for Detection of Peanut Stunt Virus in Soybean Germplasm. *In:* 1<sup>st</sup> International Agrobiodiversity Congress, New Delhi, India, pp 264.
- 7. Manjit Singh, Shwet Kamal and Mamta Gupta (2016) Development and yield evaluation of non-browning hybrids in button mushroom (*Agaricus bisporus*). Mushroom Science XIX: 309-312.
- 8. Sharma VP, Shweta S, Satish K and Shwet K (2016). A technology for early fruiting in *Lentinula edodes* cultivation (shiitake mushroom). Mushroom Science XIX: 180-184.
- 9. Sharma VP, Shweta S, Satish K, Mamta G and Shwet K (2016). Cob web and dry bubble diseases in *Lentinula edodes* cultivation —A new report. Mushroom Science XIX: 130-134.
- 10. Sharma, VP, Kumar, S and Kamal, S (2016). Cultural practices and disease management in mushroom for improving profitability. *In*: Doubling farmers' income through horticulture pp. 283-288.
- 11. Singh M and Shirur M (2016). Mushroom production: A viable and profitable avocation for educated youth. *In:* Doubling the farmers income through horticulture pp. 847-852
- 12. Shirur M, Annepu SK, Awasthi B and Pushpender T (2017). E-readiness of farmers participating in the training programme on mushroom cultivation technology at ICAR-DMR, Solan. *In*: National symposium on advances in agriculture through sustainable technologies and holistic approaches (AASTHA) pp. 186
- 13. Shwet K, Mamta G, Manjit S, Ahlawat OP, Upadhyay RC and Sharma VP (2016). Molecular characterization of browning resistant hybrids of button mushroom using retro-element based

- 11. सिंह एम और शिक्तर एम (2016). मशक्तम प्रोडक्षन: ए वाइयबल आंड प्रॉफिटबल एवोकेशन फॉर एजुकेटेड यूत. इन डबलिंग द फार्मर्स' इनकम थ्रु हॉर्टिकल्चर. संपादक: केएल, सिंह एसके, कल्या पी, ढिलन डब्ल्यूएस, बेहरा टीके और प्रकाश जे। पब्लिश्ड बाइ दया पब्लिशिंग हाउस, न्यू देल्ही—02. PP 847—852.
- 12. शिरूर एम, एनंपू एसके, अवस्थी बी और पुष्पंडर टी (2017). इ—रेडिनेस ऑफ फार्मर्स पार्टिसिपेटिंग इन द ट्रैनिंग प्रोग्राम आन मशरूम किल्टवेशन टेक्नालजी एट आई सी ए आर— डी एम आर, सोलन. इन: नॅशनल सिंपोजियम ओं अड्वान्सस इन अग्रिकल्चर थ्रु सस्टेनबल टेक्नॉलजीस एंड होलिसटिक अप्रोचस (आस्था) एट गोआ 15—17 फेब. 2017
- 13. कमल एस, गुप्ता एम, सिंह एम, अहलावत ओपी, उपाध्याय आरसी और शर्मा वीपी (2016). मॉलेक्युलर कॅरेक्टरिजेशन ऑफ ब्राउनिंग रेजिस्टेंट हाइब्रिड्स ऑफ बटन मशरूम यूजिंग रेटरो—एलिमेंट्स बेस्ड मार्कर्स. इन प्रोसीडिंग्स ऑफ थे 19 कान्फरेन्स ऑफ इजम्स (साइन्स आंड कल्टिवेशन ऑफ एडिबल फंजाइ, बार्स आंड सोन्नेनबेर्ग, एड्स.) प्प. 332—335, आम्सटरडॅम, थे नेदरलॅंडस

### तकनीकी बुलेटिन

- अरोड़ा बी, कमल एस, राणा एलआर, शर्मा वीपी और अत्री एलएल (2017). हेल्त बेनिफिट्स एंड वॅल्यू अडिशन ऑफ मशरूम आईसीएआर—डीएमआर, सोलन, प.प. 48.
- 2. शर्मा वीपी, कुमार एस और एनेपु एसके (2017). टेक्नॉलजीस डेवेलप्ड बाइ आईसीएआर—डीएमआर, सोलन फॉर कमर्षियल यूज .प.प. 56.

# पुस्तकें एवं पुस्तक अध्याय

- जोशी वीके और अत्री बीएल (2017). पोम फ्रूट वाइन्सरू प्रोडक्षन टेक्नालजी. इन: साइन्स आंड टेक्नालजी ऑफ फ्रूट वाइन प्रोडक्षन. एल्सेवियर इंक. यूके. प प 295–347
- अहलावत ओपी और अरोड़ा बिंदवी (2016). पॅडी स्ट्रॉ मशक्तम (वोल्विरिएल्ला वोलवसेआ) कल्टिवेशन. शर्मा एस, सिंह एम, प्रसाद एस और राठौड़ एच। (एडीएस।) मशक्तम इन इंडिया डाइविर्सिटी (इंप्रूक्मेंट, किल्टिवेशन, मेडिसिनल यूजस एंड वॅल्यू अडिशन फॉर क्ररल डेवेलपमेंट), प.प. 103–119, क्डंट, इंडियन इन्स्टिट्यूट ऑफ टेक्नालजी. देल्ही.
- अहलावत ओपी और सागर एम पी (2016). प्रारंभिक मशरूम उत्पादन (आ बुक इन हिन्दी फॉर बिगिनर) आईसीएआर—डीएमआर. सोलन . इंडिया पप 132 ।
- 4. नीरज एस, विवेक के, मनोज के, बिंगगण एल, अजीत वी,एंड श्वेत के (2017). पोलयफिसक अप्रोचस टू कॅरक्टराइज मशरूम स्पीशीस. इन "मॉडर्न टूल्स एंड टेक्नीक्स टू अंडरस्टॅड मिकरोब्स" (ए. वर्मा, ए.के. शर्मा एड्स.).पप

markers. Mushroom Science XIX: 332-336.

#### **Technical bulletins**

- 1. Arora B, Kamal S, Rana LR, Sharma VP and Attri BL (2017). Health benefits and value addition of mushrooms. ICAR-DMR, Solan, Pp 48.
- 2. Sharma VP, Kumar S and Annepu SK (2017). Technologies developed by ICAR-DMR, Solan for commercial use, Pp 56.

#### **Books and Book chapters**

- 1. Joshi VK and Attri BL (2017). Pome Fruit Wines: Production Technology. *In*: Science and Technology of Fruit Wine Production. Elsevier Inc. UK. pp 295-347.
- 2. Ahlawat OP and Arora B (2016). Paddy Straw Mushroom (*Volvariella volvacea*) Cultivation. *In:* Sharma S, Singh M, Prasad S and Rathore H (eds.) Mushrooms in India Diversity (Improvement, Cultivation, Medicinal Uses and Value Addition for Rural Development), pp. 103-119, CRDT, Indian Institute of Technology, Delhi.
- 3. Ahlawat OP and Sagar MP (2016). Prarambhik Mushroom Utpadan (a book in Hindi for beginner), ICAR-Directorate of Mushroom Research, Solan, India, pp. 132.
- 4. Neeraj S, Vivek K, Manoj K, Binggan L, Ajit V, and Shwet K (2017). Polyphasic Approaches to Characterize Mushroom Species. In "Modern Tools and Techniques to Understand Microbes" (A. Varma, A.K. Sharma eds.). pp 103-114. DOI 10.1007/978-3-319-49197-4\_6.

#### **Success stories**

1. Blending innovations, hard work and skill in mushroom cultivation: Success story of Ms. Divya Rawat- Mushroom lady of Uttarakhand. (Compilation: Dr. Mahantesh Shirur and Dr. O.P. Ahlawat) submitted for KVK online portal, ICAR, New Delhi.

103-114. डोई 10.1007 / 978-3-319-49197-4\_6

### कृषकों की सफल खेती पर लेख

1. ब्लेनडिंग इनोवेशन्स, हार्ड वर्क आंड स्किल इन मशरूम कल्टिवेशनरू सक्सेस स्टोरी ऑफ दिव्या रावत— मशरूम लेडी ऑफ उत्तराखंड. (संकलन: डॉ महंतेश शिरूर और डॉ ओ.पी. अहलावत) केवीके ऑनलाइन पोर्टल, आईसीएआर, नई दिल्ली के लिए प्रस्तुत)

#### लोकप्रिय लेख

- शर्मा डी, गौतम वाई और शिरूर एम (2016). मशरूम के प्रसार में खुम्ब अनुसंधान निदेषालय, सोलन की वेबसाईट wwwnrcmushroom का योगदान इन छत्रक 2016 पब्लिश्ड बाइ आईसीएआर—डीएमआर, सोलन
- शिरूर एम (2016). सक्सीडिंग इन मशरूम किल्टिवेशन ए केस स्टडी फ्रॉम नॉन —ट्रडीशनल एरिया (सक्सेस स्टोरी) आईसीएआर—रिपोर्टर जुलाइ—सेप्टेंबर 2016. पेज 17—18
- बृज लाल अत्री एवं अनिल कुमार (2015) हिमालय में तेजी से पनपता फल—अखरोट विज्ञान क्षितिज, 2 (1—2): 30—33
- षोश्न देबनाथ, बृज लाल अत्री, अनिल कुमार, राज नारायण और अरुण किशोर (2016) षीतोष्ण फलों में सूक्ष्म पोषक तत्वों का प्रबन्ध । फल फूल, 37(1)रू 22–24
- बृज लाल अत्री । 2016 । मषरूम के बिस्कुट करेंगे बी पी पर काबू । अमर उजाला, 17 सितम्बर, 2016 पृष्ठ 01
- बृज लाल अत्री । 2016 । खुम्ब दिवस पर उत्पादको को दो विभिन्न किस्मो के उत्पादन की जानकारी । दैनिक भास्कर, 24 सितम्बर, 2016 पृष्ठ 03
- बृज लाल अत्री । 2017 । फायदे का सौदा साबित हो सकती है मषरूम की खेती । अमर उजाला, नैनीताल 25 फरबरी, 2017 पृष्ठ 08 ।
- सतीश कुमार 2016 खुम्ब की खेती शुरू करने से पहले आवश्यक सब्धनिया। शूलिनी समाचार 8—14 सितम्बर 2016 : 14
- सतीश कुमार 2016 खुम्ब के कीड़ो मकोडो और सुर्त्किमियों का प्रबंदन छत्रक :30—35
- मशरुम के कुछ असामान्य और दिलचस्प तथ्य, शूलिनी समाचार, 2016.
- आई सी टी (ICT) द्वारा खुम्ब प्रसार, शूलिनी समाचार, 2016.
- मशरुम के प्रसार में खुम्ब अनुसन्धान निदेशालय और निदेशालय की वेबसाइट का योगदान, छत्रक, 2016, 55–58
- खुम्ब उद्योग में कंप्यूटर एवं आधुनिक मशीनों का महत्व, छत्रक, 2016, 53—54.
- अहलावत ओपी और अरोड़ा बिंदवी (2016) बटन—मशरूम—स्पेंट—सबस्ट्रेट यूरूड फॉर कॉपोस्ट प्रेपरेशन. आईसीएआर न्यूज (एप्रिल—जून, 2016) 22(2)10—12 अंडर नॅचुरल रिसोर्सस मॅनेज्मेंट.

# 6. अनुमोदित चालू अनुसंधान परियोजना (6.) Approved On-going Research Projects

| Institute<br>Code | Title                                                                                                                       | Researchers                                                                                                                                                    | Tentative Cost of<br>the Project (Rs. in<br>lakhs) as provided<br>by the concerned<br>Scientists | Period/<br>Remarks                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|
| DMR-              | Genetic Improvement of mushrooms                                                                                            | Dr.R.C. Upadhyay,<br>Project Leader                                                                                                                            | Rs.165.00 lakhs                                                                                  | April, 2015<br>to March,<br>2018          |
| 2015-1.           | i) Button Mushroom                                                                                                          | Dr.Shwet Kamal, PI<br>Ms.Mamta Gupta, Co-PI<br>Dr. Satish Kumar, Co-PI                                                                                         |                                                                                                  | 2010                                      |
|                   | ii) Oyster Mushroom                                                                                                         | Dr. R.C. Upadhyay, PI<br>Dr. Anupam Barah, Co-PI                                                                                                               |                                                                                                  |                                           |
|                   | iii) Paddy Straw Mushroom                                                                                                   | Dr.O.P. Ahlawat, PI<br>Dr. Shwet Kamal, Co-PI                                                                                                                  |                                                                                                  |                                           |
|                   | iv) Shiitake Mushroom                                                                                                       | Dr.V.P. Sharma, PI<br>Ms.Mamta Gupta, Co-PI                                                                                                                    |                                                                                                  |                                           |
|                   | v) Linkage Mapping                                                                                                          | Ms.Mamta Gupta, PI<br>Dr. Shwet Kamal, Co-PI<br>Dr. Yogesh Gautam, Co-PI                                                                                       |                                                                                                  |                                           |
| DMR-<br>2015-2    | Substrate formulation for different mushrooms                                                                               | Dr. V.P. Sharma, Project<br>Leader                                                                                                                             | Rs.106.46 lakhs                                                                                  | April, 2015<br>to March,<br>2018          |
| 2 (a)             | i) Substrate formulation for<br>mushroom cultivation<br>and utilization of spent<br>mushroom substrate<br>(Button Mushroom) | Dr. O.P. Ahlawat, PI<br>Mr. Sudheer Kumar A, Co-PI<br>Dr. Satish Kumar, Co-PI                                                                                  | Rs. 70.50 lakhs                                                                                  | 2010                                      |
| 2 (b)             | ii) Development of commercial scale production technology for shiitake mushroom.                                            | Mr. Sudheer Kumar A, PI<br>Dr. Satish Kumar, Co-PI                                                                                                             | Rs.35.96 lakhs                                                                                   |                                           |
| DMR-<br>2015-3    | Development of eco-friendly integrated technology for management of mushroom insect-pests and diseases                      | Dr. Satish Kumar, PI<br>Dr. V.P. Sharma, Co-PI<br>Ms. Mamta Gupta, Co-PI<br>Dr. Yogesh Gautam, Co-PI                                                           | Rs.55.96 lakhs                                                                                   | April, 2015<br>to March,<br>2018          |
| DMR-<br>2015-4    | On farm trials of standardized technologies and new varieties of ICAR-DMR                                                   | Dr. Mahantesh Shirur, PI<br>Dr. V.P. Sharma, Co-PI<br>Dr. R.C. Upadhyay, Co-PI<br>Dr. O.P. Ahlawat, Co-PI<br>Dr. Satish Kumar, Co-PI<br>Dr. Shwet Kamal, Co-PI | Rs.16.05 lakhs                                                                                   | December,<br>2015 to<br>November,<br>2017 |

| DMR-<br>2015-4 | On farm trials of<br>sta ndardized<br>technologies and new<br>varieties of ICAR-<br>DMR                              | Dr. Mahantesh Shirur, PI Dr. V.P. Sharma, Co -PI Dr. R.C. Upadhyay, Co -PI Dr. O.P. Ahlawat, Co -PI Dr. Satish Kumar, Co -PI Dr. Shwet Kamal, Co-PI | Rs.16.05 lakhs | December,<br>2015 to<br>November,<br>2017 |
|----------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|
| DMR-<br>2015-5 | Information documentation and development of web based modules for different mushrooms and their economic viability. | Dr. Yogesh Gautam, PI<br>Dr. Mahantesh Shirur, Co-<br>PI                                                                                            | Rs.42.45 lakhs | April, 2015<br>to March,<br>2018          |
| DMR-<br>2016-6 | Effect of pre-<br>treatments on the<br>shelf life and quality<br>of mushrooms during<br>storage                      | Dr. B.L. Attri, PI<br>Sh. Sudheer Kumar<br>Annepu, Co-PI                                                                                            | Rs.12.00 lakhs | September,<br>2016 to<br>August,<br>2018  |

# **Externally Funded Projects**

| Title of the Project                                                                                                                                                   | PI of the Project                                                    | Tentative<br>Cost of the<br>Project (Rs.)   | Period/<br>Remarks             | Funding<br>Agency             | Present<br>Status of<br>the<br>Project |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|--------------------------------|-------------------------------|----------------------------------------|
| Studies on identification,<br>antimicrobial, antioxidant and<br>nutritional index as well as<br>standardization of cultivation<br>of some wild mushrooms of<br>Tripura | Dr. R.C. Upadhyay                                                    | Rs. 28.35 lakhs                             | 01.04.2014<br>to<br>31.12.2016 | DBT                           | On-<br>going                           |
| Assessment and genetic manipulation of <i>Volvariella volvacea</i> (paddy straw mushroom) for shelf life and yield                                                     | Dr. O.P. Ahlawat                                                     | Rs. 23.96 lakhs                             | 01.09.2013<br>to<br>31.08.2016 | SERB,<br>DST,<br>New<br>Delhi | On-<br>going                           |
| National Post Doctoral Fellowship (NPDF) Scheme                                                                                                                        | Dr. Sanjeev Kumar<br>Sanyal, Applicant<br>Dr. Shwet Kamal,<br>Mentor | Rs.19.20 lakhs<br>(including<br>Fellowship) | 02.05.2016<br>to<br>01.05.2018 | SERB,<br>DST,<br>New<br>Delhi | On-<br>going                           |

# 7. भाकृअनुप-स्नुम्ब अनुसंधान निदेशालय द्वारा प्रदान की गई परामर्श और सलाहकार सेवाएं

# 7. Consultancy and Advisory Services Provided by ICAR-DMR

- वर्ष 2016–17 के दौरान परामर्श सेवा निम्नलिखित खुम्ब उत्पादकों / व्यक्तियों / फर्मों को तकनीकी आर्थिक साध्यता रिपोर्ट व परामर्श प्रदान किया गया।
- श्री कृष्ण चंद तांता, गांव हल्तवारी, डा. नेतवार, तहसील मोरी, जिला उत्तरकाशी (उत्तराखंड)।
- 2. श्री हिरा नंद, सपुत्र श्री सरन दास, गांव गेहा, डा. साधुपुल, तहसील व जिला शिमला (हि0प्र0)।
- 3. श्री नरेश कुमार सपुत्र श्री संत राम, गांव कोटला, डा. हनुमान बडोग, तहसील अर्की, जिला सोलन (हि0प्र0)।
- 4. श्री सुरेन्द्र सिंह, गांव लहोग, डा. धरोट, तहसील व जिला सोलन (हि0प्र0)।
- 5. श्री शैलेन्द्र सिंह, सपुत्र श्री दरोगा सिंह, गांव जुपाटी, तहसील व जिला सारन छपरा, पटना (बिहार)।
- 6. श्री बलदेव, सपुत्र श्री साधु राम, गांव व डा. मांजू, तहसील अर्की, जिला सोलन (हि0प्र0)।
- श्री मृदुल शर्मा सपुत्र श्री कुलभूषण शर्मा, अङ्डा सरूर, तहसील व जिला साम्बा, जम्मू – 181133 (जम्मू व कश्मीर)।
- श्रीमती पूजा के. पटेल, रो मकान सी–3, वेंकटेस फलोर, पीएच–1, डेकन पेपर मिल सड़क, मुंडवा, पूणे – 411036 (महाराष्ट्र)।
- श्रीमती फाल्गुनी विपिन कबूतरवाला, एकता–4, त्रिनिधि अर्पाटमेंट के सामने, गौड डोड सड़क, सूरत – 393007 (गुजरात) (परियोजना का स्थानः सचिन, गुजरात)।
- श्रीमती दिव्या बजाज, डी—317, राष्ट्रपति भवन सोसायटी, सैक्टर 10, प्लॉट न.3, दिल्ली — 110 075 (परियोजना का स्थानः पल्वल, हरियाणा)।
- 11. श्रीमती सुनीता चौधरी, एफ / ए—11, फ्रेंडस एनक्लेब, डिफेंस कॉलोनी सड़क, देहरादून (उत्तराखंड)।
- 12. श्री सतीश कुमार सपुत्र स्व० श्री देवी चंद शर्मा, गांव डमरास, डा. पारन्, तहसील अर्की, जिला सोलन (हि०प्र०)।
- 13. श्री मनीश काल्टा, सपुत्र श्री जीवन काल्टा, गांव व डा. कुईनल, तहसील कोटखाई, जिला शिमला (हि0प्र0)।
- 14. श्री बलदेव राज शर्मा, गांव वारा बुईन, डा. भुंतर, तहसील व जिला कुल्लू (हि0प्र0)।

Consultancy was provided to the following Mushroom Units in the form of preparation of Techno-Economic Feasibility Reports (TEFRs) and advice on mushroom cultivation during the year 2016-2017.

- 1. Mr. Krishan Chand Tanta, Village Haltwari, PO Netwar, Tehsil Mori, Distt. Uttarakhashi (UK)
- 2. Mr. Hira Nand S/o Sh. Saran Dass, Tehsil & Distt. Shimla (HP).
- 3. Mr. Naresh Kumar S/o Sh. Sant Ram, Village Kotla, PO Hanuman Badog, Tehsil Arki, Distt. Solan (HP).
- 4. Mr. Surinder Singh, Village Lahog, PO Dharot, Tehsil & Distt. Solan (HP).
- 5. Mr. Shailendra Singh S/o Sh. Daroga Singh, Village Jhupatti, Tehsil & Distt. Saran Chapra (Bihar).
- 6. Mr. Baldev S/o Sh. Sadhu Ram, VPO Manjoo, Tehsil Arki, Distt. Solan (HP) 173208.
- 7. Mr. Mridul Sharma S/o Sh. Kulbhushan Sharma, Adda Sarur, Tehsil & Distt. Samba (J&K) 181133.
- 8. Mrs. Pooja K. Patel, Row House C-3 Venkatesh Flora Ph-1, Deccan Paper Mill Road Mundhwa, Pune 411036. {Project Site: Gate No.10 Bhandravli Village, Taluka Bhor (MS)}
- 9. Ms. Falguni Bipin Kabutarwala, Ekta-4, Opp. Trindhi Apt. Ghod, Dod Road, Surat 395007 (Gujarat). {Project Site: Sachin, Gujarat}
- 10. Ms. Divya Bajaj, D-317, Rashtrapati Bhawan Society, Sector-10, Plot No.3, Delhi 110 075. {Project Site: Palwal (Haryana)}.
- 11. Mrs. Sunita Chaudhary, F/A-11, Friends Colony Road, Dehradun (UK). {Project site: Village Khera Jatt, PO Khera Jat, Distt. Haridwar (UK) 247670}.
- 12. Mr. Satish Kumar S/o Late Sh.Devi Chand Sharma, Village Damras, PO Parnoo, Tehsil Arki, Distt. Solan (HP).
- 13. Mr. Manish Kalta S/o Sh. Jeevan Kalta, V&PO Kuinal, Tehsil Kotkhai, Distt. Shimla (HP).
- 14. Mr. Baldev Raj Sharma, Village Bara Bhain, PO

- 15. श्री मनोज कुमार सपुत्र श्री सोम राज, गांव व डा. चलवारा, तहसील जवाली, जिला कांगड़ा (हि0प्र0)।
- 16. श्री राकेश कुमार सपुत्र श्री तीरथ राम, गांव व डा. टका, तहसील व जिला ऊना (हि०प्र०)।
- 17. श्री सुखबीर सिंह, मैसर्ज गोलू मशरूम फॉर्म, गांव सिरसगढ़ (दरसखा), डा. दीन, तहसील मलाणा, जिला अम्बाला (हरियाणा)।
- 18. श्री कर्म चंद, मैसर्ज के.के. मशरूम फॉर्म, गांव व डा. डुगी लाज, तहसील व जिला कुल्लू (हि0प्र0) — 175102
- 19. श्री प्रदीप शर्मा, सपुत्र श्री मुन्शी राम, गांव व डा. मशली, तहसील चिढ़गांव, जिला शिमला (हि0प्र0) 171208
- 20. श्री राज किशोर बहुगुणा, सपुत्र श्री प्यारे लाल बहुगुणा, गांव कुडीयाल, डा. थानों, जिला देहरादून (उत्तराखंड) — 248143
- 21. श्री आदेश पंवार, आत्मजः श्री अजीत सिंह, नई मंडी, झबरेड़ा, हरिद्वार — 247665 (उत्तराखंड)।
- 22. श्री सतीश सपुत्र श्री रामपाह, गांव व डा. डुमारखा कलन, तहसील नरवाना, जिला जिन्द — 126116 (हरियाणा )।
- 23. श्री मुकुद लाल अत्री, गांव भजोग, डा. सरोग, तहसील ठियोग, जिला शिमला (हि0प्र0)।
- 24. श्री प्रताप चंद शर्मा, राजकीय वरिष्ठ माध्यमिक पाठशाला के समीप, टावर कॉलोनी, गांव हट, डा. बजौरा, तहसील व जिला कुल्लू (हि0प्र0) — 175125
- 25. श्री संजय पुण्डीर, गांव नागौर, रानीपीखरी ग्रान्ट, डा. रानीपीखरी, जिला देहरादून (उत्तराखंड)।
- 26. श्री अखिलेश पंत सपुत्र श्री कमलेश पंत, गली महोल्ला खाण्डलक्षेश्वर / उजेलीगोफिया, डा. उत्तरकाशी, तहसील भटवाड़ी, जिला उत्तरकाशी 249193 (उत्तराखंड)।
- 27. श्री पंचराम सिंह, सपुत्र श्री भाग सिंह, 55 माजकोट, छाती धनारी, उत्तरकाशी, डुंडा, — 249151 (उत्तराखंड)।
- 28. श्री विकास राणा, सपुत्र श्री खुशहाल सिंह राणा, नेताला, उत्तरकाशी — 249193 (उत्तराखंड)।
- 29. श्री हितेश व्यास, सपुत्र श्री जगदीश चन्द्र व्यास, जोषियों का निचला व्यास, ब्लार्क मंदिर के पास, पंथ मार्ग बाड़मेर (राजस्थान) — 344001
- 30. श्रीमती अरूणा देवी, धर्मपत्नी श्री बलबीर सिंह, गांव व डा. राजगढ़, तहसील राजगढ़, जिला सिरमौर (हि0प्र0)।
- 31. श्रीमती बबीता कंवर, धर्मपत्नी श्री प्रीतम सिंह, गांव व डा. राजगढ़, तहसील राजगढ़, जिला सिरमौर (हि0प्र0)।
  - 32. श्री विकांत ठाकुर, सपुत्र श्री होसन

- Bhuntar, Distt. Kullu (HP).
- 15. Sh. Manoj Kumar S/o Sh. Som Raj, M/s. Shan Mushroom Farm, Village & PO Chalwara, Tehsil Jwali, Tehsil Kangra (HP).
- 16. Mr. Rakesh Kumar S/o Sh. Tirath Ram, Village & PO Taka, Distt. Una (HP).
- 17. Mr. Sukhvir Singh, M/s. Golu Mushroom Farm, Village Sirashgarh (Darshaka), PO Dhan, Tehsil Malana, Distt. Ambala (Haryana).
- 18. Mr. Karam Chand, Village & PO Dughi Laj, Tehsil & Distt. Kullu (HP) 175102.
- Mr. Pradeep Sharma S/o Sh. Munishi Ram, VPO Masli, Tehsil Chirgaon, Distt. Shimla (HP) -171208.
- 20. Mr. Raj Kishore Bhaguna S/o Sh. Pyare Lal Bhaguna, Village Kudiyal, PO Thano, Distt. Dehradun-248143 (UK).
- 21. Mr. Adesh Panwar S/o Sh. Ajit Singh, New Mandi, Jhabrera, Distt. Haridwar (UK).
- 22. Mr. Satish S/o Sh. Ramphah, VPO Dumarkha Kalan, Tehsil Narwana, Distt. Jind (Haryana).
- 23. Mr. Mukund Lal Attri, Village Bhajog, PO Sarog, Tehsil Theog, Distt. Shimla (HP).
- 24. Mr. Pratap Chand Sharma, Village Ropa Palat Nala Distt. Bajora, Tehsil & Distt. Kullu (HP).
- 25. Mr. Sanjay Pundir, Village Nagahor, Ranipikhri Grant, PO Ranipikhri, Distt. Dehradun (UK).
- 26. Mr. Akhilesh Pant S/o Sh. Kamlesh Pant Gali Mohala Khandlkeshwar/Ujaligophya, Distt. Uttarakhashi, Tehsil Bhatwadi, Distt. Uttarakhashi-249193 (UK).
- 27. Mr. Panchram Singh S/o Sh. Bhag Singh, 55, Majkot Chati Chanari, Uttarakshi, Huda, Uttarakhand 249151.
- 28. Mr. Vikas Rana S/o Sh. Khushal Singh Rana, Netala, Uttarakshi, Uttarakhand 249193.
- 29. Mr. Hitesh Vyas S/o Sh. Jagdish Chandra Vyas, Jyoshyo Ka Nichla Vyas, Blarak Mark Barmar (Rajasthan) 344001.
- 30. Mrs. Aruna Devi W/o Sh. Balbir Singh Village & PO & Tehsil Rajgarh, Distt. Sirmour (HP).
- 31. Mrs. Babita Kanwar W/o Sh. Pritam Singh, V&PO Rajgarh, Tehsil Rajgarh, Distt. Sirmour (HP).
- 32. Mr. Vikrant Thakur S/o Sh. Hossan Singh, Village Jangla Bhood, PO Barma Papri, Tehsil Nahan, Distt. Sirmour (HP) 173030.
- 33. Mrs. Neeru Thakur W/o Sh. Ashok Thakur, Ward

- सिंह, गांव जंगला भड्ड, डा. वर्मा पापरी, तहसील नाहन, जिला सिरमौर (हि0प्र0)।
- 33. श्रीमती नीरू ठाकुर, धर्मपत्नी श्री अशोक ठाकुर, वार्ड न. 10, मुहल्ला बहेली, रामपुर रोड़, ऊना (हि0प्र0)।
- 34. श्रीमती नेहा ठाकुर, धर्मपत्नी श्री राजेन्द्र सिंह, समीप बीडीओ कार्यालय राजगढ़ जिला सिरमौर (हि0प्र0)।
- 35. श्री हरिन्द्र सिंह, सपुत्र श्री हमीर सिंह, गांव भनोटा, डा. आंजी ब्राहमणा, तहसील कंडाघाट, जिला सोलन (हि0प्र0)।
- 36. श्री धीरज कुमार सपुत्र श्री दीना नाथ, गांव सुप्पा, डा. घरेड़, तहसील भरमौर, जिला चम्बा (हि0प्र0) — 176315
- 37. श्री दिनेश चंद गौतम, सपुत्र स्व. श्री कृष्ण चंद, गांव चल्याऊण, डा. दाड़लाघाट, तहसील अर्की, जिला सोलन (हि0प्र0) — 171102
- 38. पूर्व सूबेदार श्री ईश्वर दास, सपुत्र श्री देवी राम, गांव नालसर, डा. राजगढ़ (बागी), तहसील बल्ह, जिला मण्डी (हि0प्र0) — 175027
- 39. श्रीमती पदमा तोमर, गांव टोक्यो, डा. सेनवाला, तहसील पाँबटा साहिब, जिला सिरमौर (हि०प्र०)।
- 40. श्री अमरीश कुमार, 408, प्रेम कुटीर, द्वारा श्री प्रेम लाल रॉय, न्यू एरिया सिकंदरपुर, शाखा कार्यालय रत्ना जारडा फैक्ट्री, मुजफ्रपुर — 842001
- 41. श्री सुरेन्द्र सिंह सपुत्र श्री छत्र सिंह, गांव धारों की धार, डा. कोटला, जिला सोलन (हि०प्र०)।
- 42. श्री दलीप सिंह ठाकुर सपुत्र श्री माही राम ठाकुर, गावं डुंगी, डा. व तहसील संग्राह, जिला सिरमीर (हि0प्र0) — 173023
- 43. श्रीमती पदमा तोमर, गांव टोक्यो, डा. सेनवाला, तहसील पाँबटा साहिब, जिला सिरमौर (हि०प्र०)।
- 44. श्री सूर्या कांत सपुत्र श्री राधे श्याम, गांव बरदोही, डा. सेहगांव, तहसील व पु.स्टे. डोंडीलोहारा, जिला बलोद (छतीसगढ़)।
- 45. श्री राकेश कुमार सपुत्र श्री चेत राम, गांव कुफटू, डा. शेर टांडला, तहसील नौराधार, जिला सिरमौर (हि०प्र०) — 173104
- 46. श्री प्रदीप सिंह कंवर सपुत्र श्री लक्ष्मी सिंह, गांव थाना धार, डा. बेहरा, तहसील राजगढ़, जिला सिरमौर (हि०प्र०) — 173201
- 47. श्री विक्रम सिंह सपुत्र श्री हरि चंद शांडिल, गांव धांसी, डा. सलोगड़ा–ब्रुरी, तहसील व जिला सोलन (हि०प्र०) – 173214

- No.10, Mohalla Behali, Rampur Road, Una (HP).
- 34. Mrs. Neha W/o Sh. Rajendra Singh, Thakur Niwas, Near BDO Office Rajgarh, Tehsil Rajgarh, Distt. Sirmour (HP).
- 35. Mr. Harinder Singh S/o Sh. Hamir Singh, Village Bhanota, PO Anji Brahmna, Tehsil Kandaghat, Distt. Solan (HP).
- 36. Mr. Dheeraj Kumar S/o Sh. Dinanath, Village Suppa, PO Gharer, Distt. Chamba (HP) 176315.
- 37. Mr. Dinesh Chand Gautam S/o Late Sh. Krishan Chand, Village Chalyoun, PO Darlaghat, Tehsil Arki, Distt. Solan (HP) 171102.
- 38. Mr. Ishwar Dass, Ex-Subadar, S/o Sh. Devi Ram, Village Nalsar, PO Rajgarh (Baggi), Tehsil Balh, Distt. Mandi (HP).
- 39. Mrs. Padma Tomar, Village Tokyo, PO Sainwala, Tehsil Poanta Sahib, Distt. Sirmour (HP).
- 40. Mr. Amaresh Kumar, 408, Prem Kutir C/o Mr. Prem Lal Roy, New Area Sikanderpur B/o Ratna Zarda Factory, Muzaffarpur 842001.
- 41. Mr. Surinder Singh S/o Sh. Chattar Singh, Village Dharo Ki Dhar, PO Kotla, Distt. Solan (HP).
- 42. Mr. Dalip Singh Thakur S/o Sh. Mohi Ram Thakur, Village Dungi, PO & Tehsil Sangrah, Distt. Sirmour (HP)-173023.
- 43. Smt. Padma Tomar, Village Tokyo, PO Sainwala, Tehsil Poanta Sahib, Distt. Sirmour (HP).
- 44. Sh. Surya Kant S/o Sh. Radhe Shyam, Village Bodihi, PO Sehgaon, Tehsil & PS Dondilohara, Distt. Balod (CG).
- 45. Sh. Rakesh Kumar S/o Sh. Chet Ram, Village Kuftoo, PO Sher Tandala, Tehsil Nohradhar, Distt. Sirmour (HP) 173104.
- 46. Sh. Pardeep Singh Kanwar S/o Sh. Laxmi Singh, Village Thana Dhar, PO Bhaira, Tehsil Rajgarh, Distt. Sirmour (HP) 173201.
- 47. Sh. Vikram Singh S/o Sh. Hari Chand Shandil, Village Dhansi, PO Salogra Brewery, Tehsil & Distt. Solan (HP) 173214.
- 48. Sh. Tapender Singh Chauhan S/o Late Sh. Y.S. Chauhan, V&PO Sangrah, Tehsil Sangrah, Distt. Sirmour (HP) 173023.
- 49. Sh. Mittar Singh Tomar, V&PO Kotidhaman, Tehsil Dadahu (Renukaji), Distt. Sirmour (HP)-173022.

- 48. श्री तपेन्द्र सिंह चौहान सपुत्र स्व. श्री वाई.एस. चौहान, गांव व डा. संग्राह, तहसील संग्राह, जिला सिरमौर (हि०प्र०) — 173023
- 49. श्री मितर सिंह तोमर, गांव व डा. कोटीधमना, तहसील ददाहू (रेणुकाजी), जिला सिरमौर (हि०प्र०) — 173022
- 50. श्री अमरीश कुमार, मकान न.एमडब्ल्यू / 001 / 0114, प्रेम कुटीर, न्यू एरिया सिंकदरपुर, शाखा कार्यालय रत्ना जरडा फैक्ट्री, डा. सरयागंज, जिला मुजफ्फरपुर (बिहार) — 842001
- 51. श्री प्रवीन कुमार सपुत्र स्व. श्री रसीला राम, गांव व डा. धलूँ, तहसील नगरोटा बगवां, जिला कांगड़ा (हि0प्र0) — 176056
- 52. श्री नीरज बिष्ट, हमीरपुर कलीन गली न.6, बिरला फॉर्मा वाया रायवाला, तहसील देहरादून (उत्तराखंड) — 249205
- 53. श्रमती अंजू धर्मपत्नी श्री सुमन कुमार, गांव कुआंवाला, डा. हर्रावाला, जिला देहरादून (उत्तराखंड) — 248160
- 54. श्री भगत सिंह द्वारा श्री कासा आपा राव, कुंनकाला गुंटा (डा.), निकरीकालू (मंडल), गुंटूर (जिला), आंध्र प्रदेश 522615
- 55. श्री एम. महाकाली राव, कुनकालागुंटा (डा.), निकरीकालू (मंडल), गुंटूर (जिला), आंध्र प्रदेश 522615
- 56. श्री जी. डी. शर्मा, सहभागी, मैसर्ज क्वालिटी मशरूमज प्लांटेशन एलएलपी कालीवारी, कथवा (जम्मू व कश्मीर) — 184101
- 57. श्री यशपाल सिंह, गांव व डा. कोटी अथुरवाला, दोईवाला, देहरादून (उत्तराखंड)।
- 58. श्री अमित कुमार, गांव सुशनाल, डा. बरोटा, उप तहसील भराड़ी, जिला बिलासपुर (हि0प्र0) — 174027
- 59. श्रीमती नीलम शर्मा धर्मपत्नी श्री ओम प्रकाश शर्मा, गांव नगाहन, डा. ठाकुरद्वारा, तहसील पच्छाद, जिला सिरमौर (हि0प्र0)।
- 60. श्री चमेल सिंह सपुत्र श्री हीरा सिंह, गांव देवाल टीकरी, डा. कुंजी, तहसील नांरग, जिला सिरमौर (हि0प्र0)।
- 61. श्री कुशाग्र समकारिया, गांव समलेच, डा. बड़ोग, तहसील व जिला सोलन (हि0प्र0)।
- 62. श्री भूपेन्द्र सिंह, सपुत्र श्री केवल राम, गांव सिलारा कलॉ (957), डा. मसूलखाना, तहसील कसौली, जिला सोलन (हि0प्र0)।
  - 63. श्री इंदराज जाखड़, सपुत्र श्री पुसा राम जाखड़, एमडी 3 मान सरोवर कॉलोनी, समीप श्री गंगानगर बाईपास, तहसील व

- 50. Sh. Amaresh Kumar, H.No.MW/001/0114, Prem Kutir, At New Area Sikandarpur, B/o Ratna Zarda Factory, PO Saraya Ganj, Distt. Muzaffarpur (Bihar) 842001.
- 51. Sh. Praveen Kumar S/o Late Sh. Rasheela Ram, Village & PO Dhaloon, Tehsil Nagrota Wagwan, Distt. Kangra (HP) 176056.
- 52. Sh. Neeraj Bist, Hamirpur Kalan Street No.6, Birla Pharma Via Raiwala, Tehsil Dehradun (UK)-249205.
- 53. Smt. Anju W/o Sh. Suman Kumar, Village Kuanwala, PO Harhawala, Distt. Dehradun (UK)-248160
- 54. Sh. Bhagat Singh C/o Sh. Kasa Appa Rao, Kunkala Gunta (PO), Nekari Kallu (Mdl), Guntur (Dist.), Andhra Pradesh 522615.
- 55. Sh. M. Mahankali Rao, Kunkalagunta (PO), Nekari Kallu (Mdl), Gunur (Distt.), Andhra Pradesh 522 615.
- 56. Sh. G.D. Sharma, Partner, Quality Mushrooms Plantation LLP Kalibari, Kathua (J&K) 184101.
- 57. Sh. Yeshpal Singh, Village & PO Koti Athurwala, Doiwala, Dehradun (UK).
- 58. Sh. Amit Kumar, Village Sushnal, PO Barota, Sub Tehsil Brari, Dist. Bilaspur (HP) 174027.
- 59. Smt. Neelam Sharma W/o Sh. Om Prakash Sharma, Village Naghan, PO Thakur Dwara, Tehsil Pachadd, Distt. Sirmour (HP).
- 60. Sh. Chamel Singh S/o Sh. Heera Singh, Village Deval Tikri, PO Kunji, Tehsil Narang, Distt. Sirmour (HP).
- 61. Sh. Kushagra Samkaria, Village Samlech, Tehsil Barog, Tehsil & Distt. Solan (HP).
- 62. Sh. Bhupender Singh S/o Sh. Kewal Ram, Village Shilara Kala (957), PO Masulkhana, Tehsil Kausali, Distt. Solan (HP).
- 63. Sh. Indraj Jhakar S/o Sh. Pusa Ram Jhakar, MD 3 Mansarovar Colony, Near Sri Ganganagar Bye Pass, Tehsil & Distt. Sri Ganganagar (Raj.) – 335001.
- 64. Sh. Vijay Kumar Verma S/o Sh. Bal Krishan, Village Dungi Vaishaki, PO Bhojnagar, Tehsil & Distt. Solan (HP).
- 65. Sh. Ramesh Kumar S/o Sh. Kheta Ram, Chakra 44 NDR, PO Mandi Pilibanga, Tehsil Pilibanga, Distt. Hanumangarh (Rajasthan).
- 66. Sh. Tikam Singh S/o Sh. Om Chand, Village

- जिला श्री गंगानगर (राजस्थान) 335001
- 64. श्री विजय कुमार वर्मा सपुत्र श्री बाल कृष्ण, गांव डुंगी विसकी, डा. भोगनगर, तहसील व जिला सोलन (हि0प्र0)।
- 65. श्री रमेश कुमार सपुत्र श्री खेता राम, गांव व डा. पंडितवाली, तहसील पिलीबंगा, जिला हनुमानगढ़ (राजस्थान) – 335803
- 66. श्री टिकम सिंह सपुत्र श्री ओम चंद, गाँव भत्या, डा. देवधार, तहसील चच्योट, जिला मण्डी (हि0प्र0) — 175029
- 67. मैसर्ज डायरू एग्रो फॉर्म, श्रीमती अनिता राठौर, धर्मपत्नी श्री विरेन्द्र राठौर, गांव रिहाल, डा. धुन्दन, तहसील अर्की, जिला सोलन (हि0प्र0) — 173235
- 68. श्री संतोष कुमार सपुत्र श्री रण सिंह, गांव बहरीन, डा. रोपा, तहसील व जिला हमीरपुर (हि0प्र0)।
- 69. श्री शशी कुमार सपुत्र श्री सरवन कुमार, गांव भटेड, डा. मौही, तहसील व जिला हमीरपुर (हि0प्र0) — 177030
- 70. श्री नरेन्द्र सिंह, गांव बागर, डा. बड़ोग रेलवे स्टेशन, तहसील व जिला सोलन (हि0प्र0) — 173211
- 71. श्री सुरेन्द्र वर्मा, गांव शामलु, तहसील राजगढ़, जिला सिरमीर (हि0प्र0)।
- 72. श्री प्रवीण कुमार, गांव शाल, डा. चनोग, तहसील व जिला शिमला (हि0प्र0)।
- 73. श्री विक्रम सिंह सपुत्र श्री इंदर सिंह, मैसर्ज नवजोत मशरूम फॉर्म, गांव रत्ता टिब्बी, डा. रायपुर रानी, तहसील व जिला पंचकुला (हरियाणा) — 134204
- 74. श्री रविन्द्र आनन्द, 125, राजेश्वर नगर फेस–1, सस्त्र धारा मार्ग, देहरादून (उत्तराखंड)।
- 75. श्री नरेन्द्र सिंह सपुत्र श्री गीता राम, गांव पलोग, डा. दगशेच, तहसील सदर, जिला बिलासपुर (हि०प्र०) — 174032
- 76. श्रीमती अर्चना गुलेरिया, मैसर्ज काँगड़ा मशरूम फाॅर्म, पक्का ताला कंडवाल, डा. जसूर, नूरपुर (हि०प्र०)।
- 77. श्री राम कृष्ण सपुत्र श्री माधो राम, गांव बलोला, डा. तुंदल, तहसील कंडाघाट, जिला सोलन (हि0प्र0) — 173215
- 78. श्री विक्रम सिंह व श्रीमती हरवीन कौर, प्लॉट न.74, रोशनाबाद, हरिद्वार (उत्तराखंड)।
- 79. मों. दनिश खान व श्री नितिन रत्ती, ऑरगानेचर एग्रो फूडस प्राईवेट लिमिटिड, 4 ऐ, रेश कोर्स, देहरादून (उत्तराखंड)।
- 80. श्री विवेकशील सपूत्र श्री आत्मा राम, गावं व डा. जौणाजी,

- Bhatha, PO Devdhar, PO Chachyat, Distt. Mandi (HP) 175029.
- 67. Smt. Anita Rathor W/o Sh. Virender Rathore, Village Rihal, PO Dhundan, Tehsil Arki, Distt. Solan (HP) 173235.
- 68. Sh. Santosh Kumar S/o Sh. Ran Singh, Village Bharin, PO Ropa, Tehsil Hamirpur (HP) 177001.
- 69. Sh. Shashi Kumar S/o Sh. Sarvan Kumar Village Bhatar, PO Mohin, Tehsil & Distt. Palampur (HP) 177030.
- 70. Sh. Narender Singh, Village Bagar, PO Badog Railway Station, Tehsil & Distt. Solan (HP) 173211.
- 71. Sh. Surinder Verma, Village Shalamu, Tehsil Rajgarh, Distt. Sirmour (HP).
- 72. Sh. Praveen Kumar S/o Sh. Shal, PO Chanog, Tehsil & Distt. Shimla (HP).
- 73. Sh. Vikram Singh S/o Sh. Inder Singh, Navjot Mushroom Farm, Village Ratta Tibbi, PO Raipur Rani, Tehsil & Distt. Panchkula (Haryana) 134204.
- 74. Sh. Ravinder Anand, 125, Rajeshwar Nagar Phase-I, Shastra Dhara Road, Dehradun (UK).
- 75. Sh. Narender Singh S/o Sh. Geeta Ram, Village Palog, PO Dagsech, Tehsil Sadar, Distt. Bilaspur (HP) 174032.
- 76. Smt. Archna Guleria, Kangra Mushroom Farm, Pacca Talla Kandwal, Nurpur, PO Jassur (HP).
- 77. Sh. Ram Krishan S/o Sh. Madho Ram, Village Balola, PO Tundal, Tehsil Kandaghat, Distt. Solan (HP) 173215.
- 78. Sh. Vikram Singh, Mrs. Harveen Kaur, Plot No.74, Roshnabad, Haridwar (U.K.).
- 79. Mohd. Danish Khan and Mr. Nitin Ratti, Organature Agro Foods Pvt. Limited, 4A, Race Course, Dehradun (UK).
- 80. Sh. Vivek Sheel S/o Sh. Atma Ram, Village & PO Jaunaji, Distt. Solan (HP) 173212.
- 81. Sh. Nityanand Sharma S/o Sh. Shyam Chand, Village Bhanog, PO Dimber, Tehsil Rajgarh, Distt. Sirmour (HP) 173101.
- 82. Sh. Gita Ram Bhardwaj, Village & PO Singhla, Tehsil Rampur, Distt. Shimla (HP).
- 83. Sh. Tarun Kumar Soe, M/s. Vivadh Products, Beside Asan River, Dehradun (UK).

77

84. Sh. Rahul Singhal, Village Aduwala, PO Herbertpur, Distt. Dehradun

- जिला सोलन (हि0प्र0) 173212
- 81. श्री नित्यानंद शर्मा सपुत्र श्री श्याम चंद, गांव भनोग, डा. डिम्बर, तहसील राजगढ़, जिला सिरमौर (हि०प्र०) — 173101
- 82. श्री गीता राम भारद्वाज, गांव व डा. सिंगला, तहसील रामपुर, जिला शिमला (हि0प्र0)।
- 83. श्री तरूण कुमार सोई, मैसर्ज विविध प्रोडक्टस, अंजुमन, मकान न.220 ऐ, बार्ड न.4, दुर्गा कॉलोनी, पाँबटा सहिब, जिला सिरमौर (हि0प्र0) — 173025
- 84. श्री राहुल सिंघल, सपुत्र श्री संजय सिंघल, आदर्श बिहार, हरबर्टपुर, देहरादून (उत्तराखंड)।
- 85. श्री विजय कुमार वर्मा, सपुत्र श्री बाल कृष्ण, गांव डुंगी बिसहकी, डा. भोजनगर, तहसील व जिला सोलन (हि0प्र0)।
- 86. श्री कमल किशोर पॉल, गांव जुब्बड़, डा. दुर्गापुर, तहसील सुन्नी शिमला (हि0प्र0)।
- 87. श्री अंकित कुमार, सपुत्र श्री रणधीर सिंह, गांव बीसतीपुर, डा. जबरेड़ा, हरिद्वार (उत्तराखंड) — 247665
- 88. श्री सिद्वार्थ सहगल, गांव रेखउली, ब्लॉक सहासपुर, जिला देहरादून (उत्तराखंड)।
- 89. श्री रविन्द्र कुमार, सपुत्र श्री तुलसी राम, गांव सहेली, डा. करसाई, तहसील बड़सर, जिला हमीरपुर (हि०प्र०) — 174312
- 90. श्री अमरजीत वर्मा, सपुत्र स्व0 श्री परजा राम, गांव व डा. कश्मीर, तहसील नादौन, जिला हमीरपुर (हि0प्र0) — 177006
- 91. श्री ओम प्रकाश, सपुत्र श्री निकू राम, गांव डुंगानाला, डा. मितियां, तहसील नालागढ़, जिला सोलन (हि०प्र०)।
- 92. श्री सुनील दत्त, सपुत्र श्री प्रेम सिंह, गांव कलेडा, डा. सुरड़, तहसील रामपुर बुशहर, जिला शिमला (हि०प्र०)।
- 93. श्री गुरमेल सिंह सपुत्र श्री चनन सिंह, गांव पंजेटन, डा. पथरेड़ी, जिला अम्बाला (हरियाणा) — 134202
- 94. श्रीमती मंजीत कौर धर्म पत्नी श्री गुरमेल सिंह, गांव पंजेटन, डा. पथरेड़ी, जिला अम्बाला (हरियाणा) — 134202
- 95. श्रीमती रीना रानी धर्मपत्नी श्री सुभाष कुमार, गांव व डा. बड़ोग, तहसील नारायणगढ़, जिला अम्बाला (हरियाणा) — 134201
  - 96. श्री सुभाष कुमार, सपुत्र श्री जनरेल सिंह, गांव व डा. बड़ोग, तहसील नारायणगढ़, जिला अम्बाला (हरियाणा) — 134201

- (UK).
- 85. Sh. Vijay Kumar S/o Sh. Bal Krishan, Village Dungiviski, PO Bhojnagar, Distt. Solan (HP).
- 86. Sh. Kamal Kishore Pal, Village Jubber, PO Durgapur, Tehsil Sunni Shimla, Distt. Shimla (HP)-171007.
- 87. Sh. Ankit Kumar S/o Sh. Randheer Singh, Village Vistipur, PO Jabrera, Haridwar (UK) 247665.
- 88. Sh. Sidharth Sehgal, Village Rekhauli, Block Shashpur, Distt. Dehradun (UK).
- 89. Sh. Ravinder Kumar S/o Sh. Tulsi Ram, Village Saheli, PO Karsai, Tehsil Barsar, Distt. Hamirpur (HP) 174312.
- 90. Sh. Amarjit Verma S/o Late Sh. Parja Ram, M/s. Verma Mushroom Farm, Village & PO Kashmir, Tehsil Naudan, Distt. Hamirpur (HP) 177006.
- 91. Sh. Om Parkash S/o Sh. Niku Ram, Village Dunganala, PO Mitiya, Tehsil Nalagarh, Distt. Solan (HP).
- 92. Sh. Sunil Dutt S/o Sh. Prem Singh, Village Kaleda, PO Surad, Tehsil Rampur Bushar, Distt. Shimla (HP).
- 93. Sh. Gurmail Singh S/o Sh. Chanan Singh, Village Panjaton, PO Pathareri, Distt. Ambala (Haryana) 134202.
- 94. Smt. Manjit Kaur W/o Sh. Gurmail Singh, Village Panjaton, PO Pathareri, Distt. Ambala (Haryana) 134202.
- 95. Smt. Reena Rani W/o Sh. Subhash Kumar, Village & PO Barog, Tehsil Narayangarh, Distt. Ambala (Haryana) 134201.
- 96. Sh. Subhash Kumar S/o Sh. Gernail Singh, Village & PO Barog, Tehsil Narayangarh, Distt. Ambala (Haryana) 134201.
- 97. Sh. Gopal Dass, Village Kunhi (Dabur), PO Ghanagughat, Tehsil Arki, Distt. Solan (HP).
- 98. Sh. Lehar Singh W/o Sh. Mehar Singh, Village &PO Rey, Tehsil Fatehpur, Distt. Kangra (HP) 176058.
- 99. Sh. Vikas Thakur S/o Sh. Amar Singh Thakur, Village Samrod (Paji), PO Auchgaht, Tehsil & Distt. Solan (HP) 173223.
- 100. Dr. Jahnevi Sekhar, Village Rodi, PO Thakurdwara, Tehsil Palampur, Distt. Kangra (HP).
- 101. Sh. Ashwani Sharma, Village Badras, PO Duttnagar, Tehsil Rampur (Bushar), Distt.

78

- 97. श्री गोपाल दास, गांव कुन्ही (डाबर), डा. घनागूघाट, तहसील अर्की, जिला सोलन (हि0प्र0)।
- 98. श्री लेहर सिंह धर्मपत्नी श्री मेहर सिंह, गांव व डा. रे, तहसील फतेहपुर, जिला काँगड़ा (हि0प्र0) 176058
- 99. श्री विकास ठाकुर, सपुत्र श्री अमर सिंह ठाकुर, गांव समरोड़ (पाजी), डा. ओच्छघाट, तहसील व जिला सोलन (हि0प्र0) — 173223
- 100. डा. जाहन्वी शेखर, गांव रॉड़ी, डा. ठाकुरद्वारा, तहसील पालमपुर, जिला काँगड़ा (हि0प्र0)।
- 101. श्री आश्वनी शर्मा, गांव बदरास, डा. दत्त नगर, तहसील रामपुर (बुशैहर), जिला शिमला (हि0प्र0) — 172001
- 102. श्री सुनील, सपुत्र श्री शिव चंद, गांव थारमन, डा. नियोली, तहसील कुल्लू (हि0प्र0) — 175138
- 103. मैसर्ज आदी एग्रो प्रोडक्टस, प्लॉट न.72 / 73, कॉपरेटिव इंडस्ट्रीयल इस्टेट, सिगनल कैंप, लातूर (महाराष्ट्र) — 413531
- 104. श्री भगवत जुयाल, ब्लॉक गरसेन, जिला चम्मोली, देहरादून (उत्तराखंड)।
- 105. श्री हरेन्द्र सिंह, सपुत्र श्री हमीर सिंह, गांव भनोटा, डा. आंजी ब्राहमणा, तहसील कंडाघाट, जिला सोलन (हि0प्र0)।
- 106. श्री युसूफ खान, सपुत्र मोहम्मद शफी, गांव व डा. नंगल सलांगडी, तहसील व जिला ऊना (हि०प्र०) — 174033
- 107. श्री अकाश जोशी, गांव चंदपुर, तहसील हरोली, जिला ऊना (हि0प्र0)।
- 108. श्री मुरारी लाल सपुत्र श्री भूखन, गांव वासा, डा. गोहर, तहसील चच्योट, मंडी (हि0प्र0)।
- 109. श्री मुनीश शर्मा, सपुत्र श्री कुलदीप चंद शर्मा, गांव व डा. नंगल सलांगडी, तहसील व जिला जिला ऊना (हि0प्र0)।
- 110. मो. युनस अंसारी सपुत्र मो. रमजान अंसारी, गांव कोटाहा, तहसील व जिला पंचकुला (हरियाणा) — 134204
- 111. श्री भरत भूषण गुप्ता, मैसर्ज श्याम मशरूम फॉर्म, समीप हिन्दुस्तान लीवर लिमिटिड चौक, फरनी मार्ग, अलीपुर, दिल्ली।
- 112. श्री सुनील कुमार, गांव डकोलड, डा. सिंगला, तैहसील रामपुर, जिला शिमला (हि0प्र०) — 172001
- 113. श्रीमती रेणुका रानी, मैसर्ज पठानिया मशरूम फॉर्म, गांव व डा. कोटला कलन, तहसील व जिला ऊना (हि०प्र०) — 174303
- 114. श्री रंणजीत कुमार सपुत्र श्री ओंकार चंद, गांव लाहड़, डा. ऊपर लाम्बा गांव, तहसील जयसिहंपुर, जिला काँगड़ा

- Shimla (HP) 172001.
- 102. Sh. Sunil S/o Sh. Shiv Chand, Village Tharman Seri, PO Neoly, Tehsil Kullu (HP) 175138.
- 103. M/s. AADI Agro Products, Plot No.72/73, Cooperative Industrial Estate, Signal Camp, Latur-413531 (Maharashtra).
- 104. Sh. Bhagwat Juyal, Block Gairsain, Distt. Chamoli, Dehradun (UK).
- 105. Sh. Harinder Singh S/o Sh. Hamir Singh, Village Bhanota, PO Anji Bharmana, Tehsil Kandaghat, Distt. Solan (HP).
- 106. Sh. Yusuf Khan S/o Mohd. Safi, Village & PO Nangal, Salangri, Tehsil & Distt. Una (HP) 174303.
- 107. Sh. Akash Joshi, Village Chandpur, Tehsil Haroli, Distt. Una (HP).
- 108. Sh. Murari Lal S/o Sh. Bhukhan, Village Basa, PO Gohar, Tehsil Chachyot Mandi (HP).
- 109. Sh. Munish Sharma S/o Sh. Kuldeep Chand Sharma, Village & PO Nangal-Salangri, Tehsil & Distt. Una (HP).
- 110. Mohd. Yunis Ansari S/o Mohd. Ramjan Ansari, Village Garhi Kotaha, Block Raipur Rani, Tehsil & Distt. Panchkula (Haryana) 134204.
- 111. Sh. Bharat Bhushan Gupta, M/s. Shyam Mushroom Farm, Near Hindustan Lever Chowk, Farni Marg, Alipur, Delhi.
- 112. Sh. Sunil Kumar, Village Dakolad, PO Singla, Tehsil Rampur, Distt. Shimla (HP) 172001.
- 113. Smt. Reenuka Rani, M/s. Pathania Mushroom Farm, Village & PO Kotla Kalan, Tehsil & Distt. Una (HP) 174303.
- 114. Sh. Ranjit Kumar S/o Sh. Onkar Chand, Village Lahar, PO Uper Lamba Gaon, Tehsil Jaisinghpur, Distt. Kangra (HP) 176096.
- 115. Ms. Anita Patwal, Navodya Vidhyalya Sehaspur, Distt. Dehradun (UK) 248001.
- Sh. Pawan Kumar S/o Late Sh. Sita Ram, Village Dharo, PO Bohli, Tehsil & Distt. Solan (HP) – 173229.
- 117. Sh. Ashok Nithani, H.No.334, Gandhinagar (Sekhpuri), Roorkee, Distt. Haridwar (UK).
- 118. Sh. Kartik Charan C/o Sh. Prashant Detha, Flat No.1503, Sector-15, Balaji Residency, Demart Marg, Above Neelkanth Sweeta, Kharghar, Mumbai-410210.
- 119. Sh. Gareeb Das Meshram, Tikrapara Ward No.3, Karwari Road Dongargarh, Distt.

79

(हि0प्र0) - 176096

- 115. श्रीमती अनिता पटवाल, नवोदया विद्यालय सहेसपुर, जिला देहरादून (उत्तराखंड) — 248001
- 116. श्री पवन कुमार, सपुत्र स्व0 श्री सीता राम, गांव धारों, डा. बोहली, तहसील व जिला सोलन (हि0प्र0) — 173229
- 117. श्री अशोक निथानी, मकान न.334, गांधीनगर (शेखपुरी), रूड़की, जिला हरिद्वार (उत्तराखंड)।
- 118. श्री कार्तिक चरण द्वारा श्री प्रशांत देता, फ्लेट न.1503, सैक्टर 15, बालाजी रेजीडेंसी, डीमार्ट मार्ग, नीलकंठ स्वीटस के ऊपर, खारधर, मुम्बई — 410210 (महाराष्ट्र)।
- 119. श्री गरीब दास मश्राम, टिकरापारा वार्ड न.3, कारवारी मार्ग, डोंगरगढ़, जिला राजनंदगांव, छतीसगढ़ — 491445
- 120. श्री अभिनव चौधरी व श्री सुमीत चौधरी, गांव नरशान, तहसील रूड़की, जिला हरिद्वार (उत्तराखंड) — 247670
- 121. श्री मदन लाल, सपुत्र श्री संत राम, गावं व डा. धलूँ, तहसील नगरोटा बगवां, जिला काँगड़ा (हि0प्र0)।
- 122. श्रीमती सुरेष्टा देवी, धर्मपत्नी श्री प्रीतम चंद, गांव घरबस्ती, डा. मलकोड, तहसील पालमपुर, जिला काँगड़ा (हि0प्र0)।
- 123. श्री संजीव कुमार शर्मा, सहभागी, शहीदवाला ग्रांट, तहसील भगवानपुर, जिला हरिद्वार (उत्तराखंड)।
- 124. श्री एच.एल. चिरवी, 61, धार मार्ग कॉलर, उद्यमपुर (जम्मू व कश्मीर) — 182101
- 125. श्री संजीव कालिया, गांव व डा. अगोजर, तहसील पालमपुर, जिला काँगड़ा (हि0प्र०) — 176103

- Rajandgoan, Chattisgarh 491445.
- 120. Mr. Abhinav Choudhary & Mr. Sumit Choudhary, Village Narshan, Tehsil Roorkee, Distt. Haridwar 247670 (UK).
- 121. Sh. Madan Lal S/o Sh. Sant Ram, VPO Dhaloon, Tehsil Nagrota Wagwan, Distt. Kangra (HP).
- 122. Smt. Sureshta Devi W/o Sh. Preetam Chand, Village Gharbasti, PO Malkod, Tehsil Palampur, Distt. Kangra (HP).
- 123. Sh. Sanjeev Kumar Sharma, Partner, Shahidwala Grant, Tehsil Bhagwanpur, Distt. Haridwar (Uttarakhand).
- 124. Sh. H.L. Chirvi, 61, Dhar Marg, Kolar, Udhampur, Jammu & Kashmir 182101.
- 125. Sh. Sanjeev Kalia, Village & PO Agojar, Tehsil Palampur, Distt. Kangra (HP) 176103.

# ८. महत्वपूर्ण समितियाँ

# 8. Important Committees

# **8.1 Institute Management Committee**

| 1  | Dr.V.P. Sharma, Director, ICAR-DMR, Solan.                                                            | Chairman         |
|----|-------------------------------------------------------------------------------------------------------|------------------|
| 2  | Assistant Director General (Hort.II), ICAR, KAB-II, Pusa, New Delhi-110012.                           | Member           |
| 3  | Director of Research, Himachal Pradesh Krishi Vishwavidyalaya,<br>Palampur, HP                        | Member           |
| 4  | Director, Department of Horticulture, Govt. of Punjab, Chandigarh.                                    | Member           |
| 5  | Director of Research, Dr.Y.S. Parmar Univ. of Hort. & Forestry, Nauni, Solan.                         | Member           |
| 6  | Dr. Rajesh Rana, Principal Scientist, ICAR-Central Potato Research Institute, Shimla.                 | Member           |
| 7  | Dr. Meera Pande, Principal Scientist, ICAR-Indian Institute of Horticultural Research, Bangalore.     | Member           |
| 8  | Dr. K.K. Mishra, Senior Scientist, ICAR-Vivekanand Parvatiya Krishi Anusandhan Sansthan, Almora.      | Member           |
| 9  | Dr.Shwet Kamal, Senior Scientist, ICAR-DMR, Solan.                                                    | Member           |
| 10 | Finance & Accounts Officer, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi-110001. | Member           |
| 11 | Sh. Vinod Thakur, Thakur Mushroom Farm, Chambaghat, Solan.                                            | Member           |
| 12 | Sh. Rajesh Thakur, Village Ber-ki-Ser, Chambaghat, Solan.                                             | Member           |
| 13 | Administrative Officer, ICAR-DMR, Solan.                                                              | Member Secretary |

# **8.2 Research Advisory Committee**

| Sr.No. | Name & Address                                                                                                            | Designation |
|--------|---------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.     | Dr. R.P. Tewari,<br>Ex-Director, ICAR-DMR, Solan<br>No.56, S S-208, Yelahanka New Town,<br>Bangalore – 560064 (Karnataka) | Chairman    |
| 2.     | Dr. T.K. Behera, Principal Scientist, Vegetable Science, ICAR-IARI, Pusa, New Delhi – 110 012                             | Member      |

| 3.  | Dr. A.K. Patra, Retd., Prof., OUAT, Plot No.MB-47, Badagad BRIT Colony, Bhubaneswar – 751018                                          | Member           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 4.  | Dr. B.K. Pandey, Principal Scientist (Plant Pathology), Horticulture Science Division, KAB-II, Pusa, New Delhi – 110 012.             | Member           |
| 5.  | Dr. V.P. Sharma Director, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (HP) – 1732113                                     | Member           |
| 6.  | Dr. T. Jankiram, Asstt. Director General (Hort.Sci1), Indian Council of Agricultural Research, KAB-II, Pusa, New Delhi – 110 012.     | Member           |
| 7.  | Dr. Ram Das Shinde,<br>Tirupati Balaji Agro Products Pvt. Ltd.,<br>Someshwa Nagar (Nimbut),<br>Tal: Baramati, Distt. Pune-412306 (MS) | Member           |
| 8.  | Sh. Vinod Thakur,<br>Thakur Mushroom Farm,<br>V&PO Chambaghat,<br>Tehsil & Distt. Solan (HP) – 173213.                                | Member           |
| 9.  | Sh. Rajesh Thakur,<br>Village Ber-Ki-Ser,<br>PO Chambaghat,<br>Tehsil & Distt. Solan (HP) – 173213.                                   | Member           |
| 10. | Dr. O.P. Ahlawat, Principal Scientist, ICAR-Directorate of Mushroom Research, Chambaghat, Solan (H.P.) – 173213.                      | Member Secretary |

# **8.3 Institute Research Committee**

| Sr. No. | Name                                   | Designation      |
|---------|----------------------------------------|------------------|
| 1.      | Dr. V.P. Sharma, Director              | Chairman (IRC)   |
| 2.      | Dr. R.C. Upadhyay, Principal Scientist | Member           |
| 3.      | Dr. O.P. Ahlawat, Principal Scientist  | Member Secretary |

| 4.  | Dr. B.L. Attri, Principal Scientist   | Member |
|-----|---------------------------------------|--------|
| 5.  | Dr. Satish Kumar, Principal Scientist | Member |
| 6.  | Dr. Shwet Kamal, Senior Scientist     | Member |
| 7.  | Dr. Yogesh Gautam, Senior Scientist   | Member |
| 8.  | Dr. Mahantesh Shirur, Scientist       | Member |
| 9.  | Ms. Mamta Gupta, Scientist            | Member |
| 10. | Mr. Sudheer Kumar Annepu, Scientist   | Member |

# **8.4 Members of Project Monitoring and Evaluation committee**

| Sr.No. | Name of employee                      | Designation      |
|--------|---------------------------------------|------------------|
| 1.     | Dr. O.P. Ahlawat, Principal Scientist | Chairman         |
| 2.     | Dr. B.L. Attri, Principal Scientist   | Member           |
| 3.     | Dr. Satish Kumar, Principal Scientist | Co-Chairman      |
| 4.     | Dr. Yogesh Gautam, Scientist          | Member           |
| 5.     | Mr. Sudheer Kumar Annepu, Scientist   | Member Secretary |
| 6.     | Mr. Deep Kumar Thakur, Steno          | D.A. (PME Cell)  |

#### **8.5 Memmers of RFD Committee**

| Sr.No. | Name of employee         | Designation                           |
|--------|--------------------------|---------------------------------------|
| 1.     | Dr. V.P. Sharma          | Director/ Chairman                    |
| 2.     | Dr. O.P. Ahlawat         | Principal Scientist/ Nodal Officer    |
| 3.     | Dr. Satish Kumar         | Principal Scientist/ Co-Nodal Officer |
| 4.     | Dr. Yogesh Gautam        | Scientist/Member                      |
| 5.     | Mr. Sudheer Kumar Annepu | Scientist/Member                      |
| 6.     | Mr. H.N. Sharma          | Admn. Officer/Member                  |
| 7.     | Mr. J.R. Mangale         | AF& AO/Member                         |

# **8.6 Members of Publication Committee meetings**

| Sr.No. | Name of employee     | Designation                |
|--------|----------------------|----------------------------|
| 1.     | Dr. O.P. Ahlawat     | Principal Scientist/Member |
| 2.     | Dr. Satish Kumar     | Principal Scientist/Member |
| 3.     | Dr. Shwet Kamal      | Senior Scientist/Member    |
| 4.     | Dr. Mahantesh Shirur | Scientist/Member           |

# **8.7 Members of Grievance Cell**

### **Elected Members of Grievance Committee**

| Sr. No | Name & designation                  | Category                 | Capacity |
|--------|-------------------------------------|--------------------------|----------|
| 1      | Dr. Yogesh Gautam, Senior Scientist | Scientific               | Member   |
| 2      | Smt.Shashi Poonam, LDC              | Administrative           | Member   |
| 3      | Sh.Ram Swaroop, Sr.Tech.Asstt.      | Technical                | Member   |
| 4      | Sh.Tej Ram, SSS                     | Skilled Support<br>Staff | Member   |

#### **Nominated Office Side Members of Grievance Committee**

| SN | Name & designation           | Category       | Capacity             |
|----|------------------------------|----------------|----------------------|
| 1  | Dr.V.P. Sharma               | Director       | Chairman             |
| 2  | Dr.Shwet Kamal, Sr.Scientist | Scientific     | Member (Office side) |
| 3  | Administrative Officer       | Administrative | Member (Office side) |
| 4  | Asstt.Finance & A/Cs Officer | Audit          | Member (Office side) |
| 5  | Asstt.Admn.Officer           | Administrative | Member Secretary     |

#### **8.8 Institute Joint Staff Council**

| Sr. No. | Staff Side Members of IJSC                                    | Designation |
|---------|---------------------------------------------------------------|-------------|
| 1.      | Sh.Roshan Lal Negi, LDC (Member CJSC)                         | Member      |
| 2.      | Sh.Dharam Dass, UDC                                           | Member      |
| 3.      | Sh.Guler Singh Rana, Sr. Technical Assistant (Secretary IJSC) | Member      |
| 4.      | Sh.Deepak Sharma, Sr. Technical Assistant                     | Member      |
| 5.      | Sh.Ajeet Kumar, SSS                                           | Member      |
| 6.      | Sh.Vinay Sharma, SSS                                          | Member      |

# **Office Side Members of IJSC**

| Sr. No. | Name                                  | Designation |
|---------|---------------------------------------|-------------|
| 1.      | Dr.R.C. Upadhyay, Principal Scientist | Member      |
| 2.      | Dr.Shwet Kamal, Sr. Scientist         | Member      |
| 3.      | Dr. Yogesh Gautam, Sr. Scientist      | Member      |
| 4.      | Administrative Officer                | Member      |
| 5.      | AF&AO                                 | Member      |

# ९. राजभाषा कार्यान्वयन

# 9. Implementation of Official Language

### राजभाषा कार्यान्वयन समिति द्वारा वर्ष 2016–17 के दौरान किये गए कार्यों का संक्षिप्त विवरण

भारत सरकार की राजभाषा नीति के कार्यान्वयन को सुनिश्चित करने तथा निदेशालय द्वारा संपादित किये जाने वाले कामकाज में हिन्दी का प्रयोग सुनिश्चित करने के उद्देश्य से निदेशालय में राजभाषा कार्यान्वयन समिति का गठन किया गया है। राजभाषा कार्यान्वयन के लिए निदेशालय में अलग से कोई अधिकारी व कर्मचारी न होने के बावजूद राजभाषा कार्यान्वयन समिति द्वारा किए गये प्रयासों के फलस्वरूप निदेशालय में हिन्दी के कामकाज व प्रचार—प्रसार में अपेक्षित सफलता प्राप्त हुई है। निदेशालय द्वारा वर्ष 2016—17 के दौरान किये गये कार्यों का संक्षिप्त विवरण निम्नानुसार है:—

#### राजभाषा वार्षिक कार्यक्रम पर कार्यान्वयन

राजभाषा विभाग, गृह मंत्रालय, भारत सरकार द्वारा जारी राजभाषा वार्षिक कार्यक्रम पर निदेशालय की राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों में चर्चा हुई तथा दिए गए दिशा—निर्देशों के अनुरूप लिए गए निर्णयों के अनुसार कार्रवाई की गई तथा निदेशालय के सभी अधिकारियों व कर्मचारियों को वार्षिक कार्यक्रम के अनुसार निर्धारित लक्ष्य प्राप्त करने हेतु पत्राचार किया गया।

राजभाषा विभाग, नई दिल्ली एवं भारतीय कृषि अनुसंधान परिषद्, नई दिल्ली से प्राप्त पत्रों / परिपत्रों पर कार्रवाई

इस अवधि में राजभाषा कार्यान्वयन सम्बन्धी नवीनतम निर्देशों/नियमों से सम्बन्धित विभिन्न प्रकार के पत्र/परिपत्र आदि राजभाषा विभाग, भारतीय कृषि अनुसंधान परिषद से प्राप्त हुए जिन पर कार्रवाई वांछित थी, उन पर कार्रवाई की गई तथा उन्हें सभी संबंधित अधिकारियों व कर्मचारियों को उनकी जानकारी व आवश्यक कार्रवाई हेतु परिचालित किया गया।

### तिमाही हिन्दी प्रगति रिपोर्ट का संकलन तथा समीक्षा

निदेशालय में राजभाषा कार्यान्वयन सम्बन्धी प्रगति के आँकड़े प्राप्त कर त्रैमासिक रिपोर्ट प्रोफार्मा में सभी आँकड़ों को संकलित कर निदेशालय की समेकित हिन्दी प्रगति रिपोर्ट तैयार की गई। इस समेकित रिपोर्ट को भारतीय कृषि अनुसंधान परिषद, नई दिल्ली, नगर राजभाषा कार्यान्वयन समिति, सोलन तथा उप—निदेशक (कार्यान्वयन), राजभाषा विभाग, उत्तरी क्षेत्रीय कार्यान्वयन कार्यालय—1, दिल्ली ए—सरोजनी नगर, नई दिल्ली को भी भेजा। इस रिपोर्ट की समीक्षा की गई तथा पाई गई कमियों को इंगित कर दूर करने के लिए सभी अधिकारियों व कर्मचारियों को प्रेषित किया

Official Language Implementation Committee has been constituted in the Directorate with the objective of ensuring the implementation of the Official Language Policy of the Government of India and also to ensure the use of Hindi in work being done at Directorate.

# **Members of the Official Language Implementation Committee**

Dr. V.P. Sharma, Director - President

Mr. H.N. Sharma, Administrative Officer - Member

Dr. Yogesh Gautam, Senior Scientist - Member

Mrs. Sunila Thakur, PS, Member

Mr. Deep Kumar Thakur, Steno, Member Secretary

Despite the absence of any official employee for the implementation of the official language policy in the Directorate the committee achieved the desired success in the functioning and propaganda of Hindi. The following is the brief descriptions of the works done during the year 2016-17 by the Directorate:

#### Implementation on Official Language Program

The meetings were conducted at every quarterly interval by the institute Official Language Implementation Committee to review the guidelines issued by the Official Language Department, Home Ministry, and Government of India. The issues discussed in the meeting along with the action points are being shared with the scientific, technical and administrative staff of the directorate.

### Action taken on letters/circulars received from Official Language Department, New Delhi and Indian Council of Agricultural Research, New Delhi

During this period, various types of letters / circulars related to the implementation of the official language were received from the Department of Official Language and Indian Council of Agricultural Research, on which action was desired and action was taken. The information was circulated to all the concerned officers and employees for proper implementation.

# Compilation and review of quarterly Hindi progress report

After obtaining statistics regarding implementation of Hindi language in the Directorate, the integrated Hindi progress report of the Directorate

#### हिन्दी प्रोत्साहन योजना का कार्यान्वयन

राजभाषा विभाग द्वारा जारी निर्देशों के अनुरूप निदेशालय में सरकारी कामकाज मूल रूप में हिन्दी में करने के लिए प्रोत्साहन योजना सभी अधिकारियों व कर्मचारियों के लिए लागू की है। पूरे वर्ष में किए गए कार्यों को मध्य नजर रखते हुए एक मूल्यांकन समिति का गठन किया जाता है जो फाईलों व अन्य कार्यों का अवलोकन कर प्रथम, द्वितीय व तृतीय पुरस्कारों का निर्णय करती है।

#### त्रैमासिक बैठकों का आयोजन

राजभाषा कार्यान्वयन समिति की त्रैमासिक बैठकों का नियमित आयोजन किया गया। बैठकों में राजभाषा वार्षिक कार्यक्रम में निर्धारित किए गए लक्ष्यों को प्राप्त करने, समय—समय पर राजभाषा विभाग एवं भारतीय कृषि अनुसंधान परिषद् से प्राप्त निर्देशों / आदेशों के अनुपालन पर चर्चा की गई तथा इन बैठकों में लिए गए निर्णयों को लागू करने के लिए कार्रवाई की गई।

#### त्रैमासिक राजभाषा कार्यशालाओं का आयोजन

निदेशालय में त्रैमासिक राजभाषा कार्यशालाओं का नियमित आयोजन किया गया। इन कार्यशालाओं में हिन्दी में कार्य करने में आ रही बाधाओं पर चर्चा की गई तथा उनका निराकरण करने के लिए उपाय सुझाए गए।

निदेशालय के सभी अधिकारियों व कर्मचारियों के लिए सभी प्रकार के प्रपत्र द्विभाषी रूप में तैयार किए गए व सभी के कंप्यूटरों पर डाउनलोड किए गए ताकि वे दिन—प्रतिदिन कार्यालय प्रयोग में इन प्रपत्रों को प्रयोग में लाएं।

### हिन्दी सप्ताह का आयोजन

भाकृअनप—खुम्ब अनुसंधान निदेशालय में हिन्दी सप्ताह का आयोजन दिनांक 05—14 सितम्बर, 2016 तक हिन्दी सप्ताह मनाया गया, जिसका विवरण निन्नलिखित है:—

1.श्रुतलेखन प्रतियोगिता:— इस प्रतियोगिता में कुल 16 प्रतिभागियों ने भाग लिया। यह प्रतियोगिता सभी वर्गों के लिए थी।

प्रथम – श्रीमती सुनीला ठाकुर, निजी साहयक द्वितीय – डा. श्वेत कमल, वरिष्ठ वैज्ञानिक

तृतीय – श्रीमती शशी पूनम, कनिष्ठ लिपिक

2. सुलेख प्रतियोगिता (सुन्दर लिखाई):— यह प्रतियोगिता सभी वर्ग के अधिकारियों व कर्मचारियों के लिए अनिवार्य थी। इस प्रतियोगिता में कुल 25 प्रतिभागियों ने भाग लिया।

प्रथम – डा. बृज लाल अत्री, प्रधान वैज्ञानिक

द्वितीय — श्रीमती सुनीला ठाकुर, निजी साहयक तृतीय — डा. श्वेत कमल, वरिष्ठ वैज्ञानिक इस प्रतियोगिता की मुख्य उपलब्धि डा. महन्तेश कुमार जो कि कर्नाटक राज्य के रहने वाले हैं तथा श्री सुधीर कुमार अन्नेपु जो कि आन्ध्र प्रदेश उन्होंने ने भी इस प्रतियोगिता में भाग लिया।

# 3. अनुवाद हिन्दी से अंग्रेजी

इस प्रतियोगिता में कुल 11 प्रतिभागियों ने भाग लिया। यह

was compiled and referred to Indian Council of Agricultural Research, New Delhi, Municipal Official Language Implementation Committee, Solan and Sub Inspector (Implementation), Department of Official Language, Northern Regional Implementation Office-1, Delhi-A-Sarojini Nagar, New Delhi. This report was reviewed and sent to all the officials and employees for indicating the shortcomings detected.

#### Implementation of Hindi Incentive Scheme

In accordance with the instructions issued by the Department of Official Language, the incentive scheme was implemented for all officers and employees in Hindi, in the form of official work in the Directorate. An evaluation committee was set up for keeping an eye on the work done throughout the year. First, second and third prizes were awarded after evaluating the file maintenance and day to day functions.

#### **Organizing Quarterly Meetings**

Quarterly meetings of the Official Language Implementation Committee were organized regularly. In the meetings discussion were held to meet the goals as previously taken and action taken to implement the decisions as received from in the Official Language Program. The compliance with the instructions / directions received from the Department of Official Language and the Indian Council of Agricultural Research taken in these meetings.

# Organizing Quarterly Official Language Workshops

Quarterly official language workshops were organized regularly in the Directorate. In these workshops, the barriers against working in Hindi were discussed and alternate measures were suggested to solve them. All types of forms were prepared in bilingual and distributed to the staff members of the Directorate for day-to-day office use.

#### Celebration of Hindi Week

The Hindi Week was organized at ICAR-Directorate of Mushroom Research, Solan from 05-14 September 2016. The details are as follows:

#### 1. Caption competition:

A total of 16 participants participated in this competition from all the divisions of Directorate and the prizes were won by

Smt. Sunila thakur, PS – first prize

Dr. Shwet Kamal, Senior Scientist – second prize Smt. Shashi Poonam, Junior clerk – third prize

# 2. Calligraphy competition:

This competition was compulsory for the officers and

प्रतियोगिता सभी वर्गों के लिए थी।

प्रथम – डा. श्वेत कमल. वरिष्ठ वैज्ञानिक

द्वितीय – श्री संजीव शर्मा, कनिष्ठ लिपिक

तृतीय - श्री दीप कुमार ठाकुर, आशुलिपिक

**4.निबंध प्रतियोगिता:**— जिसका विषय था खुम्ब एक स्वास्थ्यवर्धक आहार।

इस प्रतियोगिता में कुल 12 प्रतिभागियों ने भाग लिया। यह प्रतियोगिता सभी वर्गों के लिए थी।

प्रथम – डा. बृज लाल अत्री, प्रधान वैज्ञानिक

द्वितीय – श्रीमती रीता भाटिया, स.मु.त.अधि.

तृतीय – कुमारी ममता गुप्ता, वैज्ञानिक

### 5. अनुवाद अंग्रेजी से हिन्दी

इस प्रतियोगिता में कुल 14 प्रतिभागियों ने भाग लिया। यह प्रतियोगिता सभी वर्गों के लिए थी।

प्रथम – डा. सतीश कुमार, प्रधान वैज्ञानिक

द्वितीय – श्री दीप कुमार ठाकुर, आशुलिपिक

तृतीय – डा. श्वेत कमल, वरिष्ठ वैज्ञानिक

#### 6. टिप्पणी प्रतियोगिता:-

इस प्रतियोगिता में कुल 07 प्रतिभागियों ने भाग लिया। यह प्रतियोगिता सभी वर्गों के लिए थी।

प्रथम – डा. बृज लाल अत्री, प्रधान वैज्ञानिक

द्वितीय – श्रीमती शशी पूनम, कनिष्ठ लिपिक

तृतीय – श्री संजीव शर्मा, कनिष्ठ लिपिक

7. सामान्य व तकनीकी ज्ञान प्रतियोगिता:— यह प्रतियोगिता केवल तकनीकी सहायकों के लिए थी जिसमें कुल 5 प्रतिभागियों ने भाग लिया।

प्रथम – श्री गुलेर सिंह राणा, वरिष्ठ तकनीकी सहायक

द्वितीय – श्री दीपक शर्मा, वरिष्ठ तकनीकी सहायक तृतीय – श्री राज कुमार, तकनीकी सहायक

8. पत्र लेखन प्रतियोगिता:— यह प्रतियोगिता एसएसएस कर्मचारियों के लिए थी जिसमें कुल 4 प्रतिभागियों ने भाग लिया।

प्रथम – श्री विनय शर्मा, एस.एस.एस.

द्वितीय - श्रीमती मीरा देवी, एस.एस.एस.

9. वैज्ञानिक उपलिख्यां लिखना:— यह प्रतियोगिता वैज्ञानिक वर्ग के लिए अनिवार्य थी। इसमें निदेशालय की पिछले एक वर्ष की वैज्ञानिक उपलिख्यां लिखनी थी। इस प्रतियोगिता में जिसमें कुल 9 प्रतिभागियों ने भाग लिया।

प्रथम – कुमारी ममता गुप्ता, वैज्ञानिक

द्वितीय – डा. बृज लाल अत्री, प्रधान वैज्ञानिक

तृतीय – डा. सतीश कुमार, प्रधान वैज्ञानिक इस प्रतियोगिता employees of all classes. A total of 25 participants participated in this competition.

Dr Brij Lal Attri, Principal Scientist–first prize Smt. Sunila thakur, PS–second prize

Dr. Shwet Kamal, Senior Scientist—third prize Two participants, Dr. Mahantesh Shirur, Scientist and Mr. Sudheer Kumar Annepu, Scientist were effectively participated in the competitions which

are from non Hindi speaking states.

#### 3. Translation from Hindi to English

A total of 11 participants participated in this competition. This competition was for all classes. Dr. Shwet Kamal, Senior Scientist – first prize Shri Sanjeev Sharma, Junior clerk – second prize

Shri Deep Kumar, Steno-third prize

# 4. Essay competition on "Mushroom- A health food"

Dr Brij Lal Attri, Principal Scientist–first prize Smt.Reeta Bhatia, ACTO (Library) – second prize Ms. Mamta Gupta, Scientist–third prize

#### 5. Translation from English to Hindi

A total of 14 participants participated in this competition. This competition was for all classes. Dr. Satish Kumar, Principal Scientist–first prize Shri Deep Kumar, Steno–second prize Dr. Shwet Kamal, Senior Scientist–third prize

#### 6. Comment competition

A total of 7 participants participated in this competition. This competition was for all classes. Dr Brij Lal Attri, Principal Scientist– first prize Smt. Shashi Poonam, Junior clerk– second prize Shri Sanjeev Sharma, Junior clerk– third prize

# 7. General and technical knowledge competition

This competition was for technical assistants only, in which 5 participants were participated.

Shri Guler Rana, Senior Technical Assistant– first prize

Shri Deepak Sharma, Senior Technical Assistant–second prize

Shri Raj Kumar, Technical Assistant-third prize

### 8. Letter writing competition

This competition was for SSS employees, in which a total of 4 participants attended.
First-Shri Vinay Sharma, SSS
Second – Smt Meera Devi, SSS

#### 9. Writing scientific achievements

This competition was compulsory for the scientific class. All the nine scientists were actively participated in the competition and presented their की मुख्य उपलब्धि डा. महन्तेश कुमार जो कि कर्नाटक राज्य के रहने वाले हैं तथा श्री सुधीर कुमार अन्नेपु जो आन्ध्र प्रदेश राज्य के रहने वाले हैं, उन्होंने ने भी इस प्रतियोगिता में भाग लिया।

10. वाद-विवाद प्रतियोगिता:- यह प्रतियोगिता सभी वर्ग के लिए थी।

प्रथम – डा. अनुपम बड़, वैज्ञानिक

द्वितीय – डा. सतीश कुमार, प्रधान वैज्ञानिक

तृतीय – डा योगेश गौतम, वैज्ञानिक (एसजी)

11.क्वूज प्रतियोगिता:— यह प्रतियोगिता सभी वर्ग के अधिकारियों व कर्मचारियों के लिए थी

प्रथम — टीम 'डी' जिसके (डा. महन्तेश शिरूर इस टीम के लीडर थे)

द्वितीय – टीम 'ई' जिसके (श्री सुधीर कुमार अन्नेपु इस टीम के लीडर थे)

12. वर्ष के दौरान हिन्दी में सर्वाधिक कार्य करने के लिए पुरस्कार के संदर्भ में।

भारत सरकार, गृह मंत्रालय, राजभाषा विभाग, एनडीसीसी—प्रभवन, जयसिंह रोड़, नई दिल्ली के कार्यालय ज्ञापन सं0 प्/12013/01/2011—रा0भा0(नीति/के0अनु0ब्यूरो) दिनांक 30 अक्टूबर, 2012 के अनुसार सरकारी कामकाज मूल रूप से हिन्दी में करने के लिए प्रोत्साहन योजना के तहत पुरस्कार दिए जाने का भी प्रावधान है जिसे हिन्दी सप्ताह पर ही दिया जाता रहा है।

पूरे वर्ष हिन्दी में सर्वाधित कार्य करने के लिए निम्नलिखित अधिकारियों व कर्मचारियों को पुरस्कार दिए गए।

# 1. प्रथम पुरस्कार

- 1) श्री दीप कुमार ठाकुर, आशुलिपिक
- 2) श्री एन.पी. नेगी, सहायक

# 2.द्वितीय पुरस्कार

- 1) श्री संजीव शर्मा, कनिष्ठ लिपिक
- 2) श्रीमती शशी पूनम, कनिष्ठ लिपिक
- 3) श्री तुलसी दास शर्मा, सहायक

# 3. तृतीय पुरस्कार

- 1) श्री रोशन लाल नेगी, कनिष्ठ लिपिक
- 2) श्री धर्म दास, वरिष्ठ लिपिक
- 3) श्री राजेन्द्र शर्मा, सहायक प्रशासनिक अधिकारी
- 4) श्री दीपक शर्मा, वरिष्ठ तकनीकी सहायक
- 5) श्री लेख राज राणा, तकनीकी सहायक

इन सबके फलस्वरूप निदेशालय के वैज्ञानिकों/अधिकारियों/कर्मचारियों में हिन्दी में कार्य करने की प्रवृत्ति बढ़ी है और वर्तमान में काफी प्रशासनिक कामकाज हिन्दी में संपादित हो रहा है। इसमें निदेशालय के वैज्ञानिकों, अधिकारियों व कर्मचारियों का सतत् सहयोग प्राप्त हुआ है

scientific achievements for the year 2015-16 in witting.

First-Ms. Mamta Gupta, Scientist Second- Dr Brij Lal Attri, Principal Scientist Third- Dr. Satish Kumar, Principal Scientist

#### 10. Debate Competition

This contest was for all classes. First-Dr. Anupam Barh, Scientist Second- Dr. Satish Kumar, Principal Scientist Third- Dr. Yogesh Gautam, Senior Scientist

#### 11. Quiz Contest

The competition was for the officers and employees of all categories

First - Team 'D' (Dr. Mahantesh Shirur was the leader of this team)

Second - Team 'E' (Mr. Sudheer Kumar was the leader of the team)

**12.** In the context of the award for doing most of the work in Hindi during the year.

According to the Government of India, Ministry of Home Affairs, Department of Official Language, NDCC -II Bhavan, Jaysingh Road, New Delhi No. II/12013/01/2011-R.B. (Policy / K.B. Bureau) dated October 30, 2012, the official functioning in Hindi will promoted and there is also provision for award under the incentive scheme, which has been given only on Hindi week.

Prizes were awarded to the following officers and employees for doing all round work in Hindi throughout the year.

- 1. First Prize
- a. Shri Deep Kumar Thakur, Steno
- b. Shri N. P Negi, Assistant
- 2. Second Prize
- a. Shri Sanjeev Sharma, Junior clerk
- b. Smt. Shashi Poonam, Junior clerk
- c. Shri. T.D Sharma, Assistant
- 3. Third Prize
- a. Shri. Roshan Lal Negi
- b. Shri. Dharm Dass
- c. Shri. Rajendra Sharma
- d. Shri Deep Sharma
- e. Shri Lek Raj Rana

As a result of this, the tendency of working in Hindi amongst scientists / officials / employees of Directorate have increased and presently many administrative activities are being edited in Hindi. In this regard, sustained cooperation has been received from the scientists, officers and employees of the Directorate. As a

जिसके परिणामस्वरूप हम लक्ष्य को प्राप्त करने की ओर अग्रसर हो रहे हैं। इसके लिए हमें निदेशक महोदय का उचित मार्गदर्शन तथा सहयोग हमेशा ही प्राप्त हुआ है।

निदेशालय की वार्षिक हिन्दी प्रगति संबंधी मुख्य गतिविधियाँ एवं उपलब्धियाँ

राजभाषा कार्यान्वयन समिति की प्रमुख-प्रमुख गतिविधियों और उपलिख्यों का सार-गर्भित संक्षिप्त-विवरण वार्षिक हिन्दी प्रगति रिपोर्ट के रूप में प्रस्तुत किया जाता है।

- 1. निदेशालय के 80 प्रतिशत से अधिक कार्मिक हिन्दी में प्रवीणता / कार्यसाधक ज्ञान प्राप्त है इसलिए यह निदेशालय राजभाषा नियम 10(4) के अंतर्गत भारत सरकार के गजट में हिन्दी कार्यालय के रूप में अधिसूचित किया जा चूका है।
- 2. दिनांक 02.05.2016, 18.07.2016, 17.10.2016 व 03.02. 2017 को राजभाषा कार्यान्वयन समिति की बैठकें संपन्न हुई। सभी बैठकों की कार्यसूची वार्षिक कार्यान्वयन की अपेक्षाओं के अनुसार एवं अध्यक्ष महोदय, राजभाषा कार्यान्वयन समिति के अनुमोदन के बाद ही तय की गई।
- 3. दिनांक 24.05.2016, 14.09.2016, 09.12.2016 व 04.03. 2017 को राजभाषा कार्याशालाओं को आयोजन किया गया जिसमें निदेशालय के सभी अधिकारियों व कर्मचारियों ने स्वेच्छा से भाग लेकर कार्यशालाओं के लक्ष्यों को सफलतापूर्वक प्राप्त किया।
- 4. हिन्दी में प्राप्त या हिन्दी में हस्ताक्षरित सभी पत्रों में से जिन पत्रों का उत्तर देना अपेक्षित समझा गया, उन पत्रों का उत्तर केवल हिन्दी में ही दिया गया।
- 5. निदेशालय की अधिकतर बैठकों को कार्यवृत्त हिन्दी में तैयार किए गए।
- 6. राजभाषा अधिनियम, 1963 की धारा 3(3) तथा अन्य नियमों की अनुपालना के संदर्भ में निदेशालय के प्रत्येक अधिकारी व कर्मचारी को समय—समय पर कार्यालय आदेश जारी किए गए व इनकी शत—प्रतिशत अनुपालन सुनिश्चित करवाने के प्रयास किए जा रहे है।
- 7. हिन्दी पत्राचार के निर्धारित लक्ष्यों को प्राप्त करने की दिशा में सतत्—प्रयास जारी है।
- 8. सभी 52 मानक फॉर्मों को द्विभाषी रूप में तैयार कर लिया गया है तथा सतत् कोशिशें की जा रही है की सभी कार्मिक इन्हें हिन्दी में ही भरें।
- 9. निदेशालय के सभी 30 कम्पयूटरों में हिन्दी सॉफटवेयर को डाउनलोड किया गया है। इससे कम्पयूटर पर काम करने वाले प्रत्येक अधिकारी व कर्मचारी को अपनी इच्छानुसार हिन्दी में अथवा हिन्दी और अंग्रेजी दोनों में किसी भी भाषा में एक साथ काम कर सकते है।
  - निदेशालय के सभी अधिकारियों का हिन्दी की जानकारी संबंधी रोस्टर तैयार किया गया

result, we are heading towards achieving the goal of implementing the official language policy in full scale. **Key Activities and Achievements of Annual Hindi Progress** 

- The summary-abridged brief description of majorkey activities and achievements of the Official Language Implementation Committee is presented as annual Hindi progress report.
- More than 80 percent of the staff of Directorate is proficient in working in Hindi language and it has been notified as Hindi Office in the Gazette of the Government of India under the Official Language Rule 10(4).
- Meetings of the Official Language Implementation Committee were held on 02.05.2016, 18.07.2016, 17.10.2016 and 03.02.2017. The agenda of all meetings was fixed only after the approval of the Official Language Implementation Committee according to the requirements of the annual implementation and the Chairman.
- Official language workshops were organized on 24.05.2016, 14.09.2016, 09.12.2016 and 04.03.2017 in which all officers and employees of the board of directors participated voluntarily and successfully achieved the goals of the workshops.
- The letters which were deemed to be expected to be answered in Hindi or received letters signed in Hindi were answered only in Hindi.
- Most of the meetings minutes of the Directorate were prepared in Hindi.
- In the context of the compliance of section 3 (3) of the Official Language Act, 1963 and other rules, every officer and employee of the board of directors has been issued office surveillance timely and efforts are being made to ensure follow them.
- Continuous efforts are continuing in the direction of achieving the goals of Hindi correspondence.
- All 52 standard formats have been prepared in bilingual form and continuous efforts is being done that all personnel fill them in Hindi only.
- The Hindi software has been downloaded in all the 30 computers system of the Directorate. With this, every officer and employee working on the computer can work together in Hindi or Hindi in both languages as well as in any language.
- All officers of the board have been prepared on the information related to the Hindi roster and also posted on the website of the Directorate.
- All sign boards, information boards, name plates and other similar types of boards have been

- है तथा निदेशालय की बेबसाईट ूप्दतबउनीतववउप्वतह पर भी डाला गया है।
- 11. निदेशालय के सभी साईन बोर्ड, सूचना बोर्ड, नाम पट्ट व अन्य इसी प्रकार के बोर्ड द्विभाषी रूप में तैयार करवाए गए हैं।
- 12. निदेशालय के प्रशिक्षण कार्यक्रमों के लिए प्रशिक्षण सार—संग्रह(ट्रेनिंग कम्पेडियम) हिन्दी व अंग्रेजी दोनों भाषाओं में उपलब्ध है।
- 13. कोड मैनुअलों और अन्य कार्यविधि साहित्य हिन्दी में उपलब्ध है।
- 14. निदेशालय के अधिकारियों तथा कर्मचारियों के हिन्दी शब्द ज्ञान को बढ़ाने के उद्देश्य से श्यामपट्ट (ब्लैक बोर्ड) पर 'आज का विचार' शीर्षक के अन्तर्गत प्रतिदिन हिन्दी के वाक्य लिखे जाते हैं ताकि अधिकारियों व कर्मचारियों के शब्द ज्ञान में वृद्धि हो सके।
- 15. निदेशालय में प्रत्येक वर्ष की भांति इस वर्ष भी मशरूम मेले का आयोजन 10 सितम्बर, 2016 को आयोजित किया गया। इस अवसर पर मुख्य पंडाल के सभी चित्रों के शीर्षक, ग्राफ, हिस्टोग्राफ आदि हिन्दी में प्रदर्शित किए गए। मल्टीमीडिया के माध्यम से मशरूम संबंधी जानकारी आकर्षक ढंग से प्रस्तुत की गई तथा किसानों, छात्रों व अन्य अंगतुकों को मशरूम साहित्य हिन्दी में उपलब्ध कराया गया।
- 16. हिन्दी पुस्तकों की खरीद के लिए एक समिति बनाई गई है जो हिन्दी पुस्तकालय के लिए पुस्तकें खरीदने की सिफारिश करती है। पुस्तकालय में प्रत्येक वर्ष राजभाषा विभाग द्वारा निर्धारित लक्ष्य के अनुसार पुस्तकें खरीदने का प्रयास किया जा रहा है। निदेशालय की पुस्तकालय में हिन्दी में उपलब्ध सभी प्रकाशनों की सूची में निदेशालय की वेबसाइट पर उपलब्ध कराई गई है।
- 17. दूरदर्शन तथा आकाशवाणी पर भी निदेशालय के वैज्ञानिकों व तकनीकी अधिकारियों की मशरूम विषय पर हिन्दी में वार्ताएं प्रसारित होती रहती है जिनसे मशरूम उत्पादकों की समस्याओं का समाधान होता है।
- 18. निदेशालय द्वारा हिन्दी में वार्षिक पत्रिका 'छत्रक' का प्रकाशन किया गया जिसमें खुम्ब की जानकारी संबंधी लेखों को प्रमुखता से छापा गया ताकि खुम्ब उत्पादक सरल भाषा हिन्दी में इन्हें पढ सके तथा लाभान्वित हो सके।
- 19. इसके अतिरिक्त डा. वी.पी. शर्मा, निदेशक एवं अध्यक्ष, राजभाषा कार्यान्वयन समिति के सतत् निजी—सहयोग और मार्गदर्शन के तहत हिन्दी की तिमाही बैठकों व कार्याशालाओं का समय पर आयोजन व निदेशालय में कार्यरत सभी अधिकारियों व कर्मचारियों के आपसी सहयोग और मेलमिलाप के साथ राजभाषा कार्यान्वयन संबंधी गतिविधियां निरंतर प्रगति की ओर अग्रसर हो रही है।

- prepared in bilingual form.
- Training essay collection for training programs of Directorate is available in both Hindi and English languages.
- Code manuals and other procedures are available in Hindi.
- With the objective of enhancing Hindi knowledge of the officers and employees of the Directorate, the sentences of Hindi are written every day under the head 'Today's Thoughts' on the 'Black Board' so that the knowledge of officers and employees increases.
- Each year in the Directorate, the mushroom fair was organized. This year it was organized on September 10, 2016, as this year. On this occasion, the headlines, graphs, histographs, etc. of all the pictures of the main Pandal were displayed in Hindi. Mushroom related information was presented in a fascinating way through multimedia and farmers, students and other animals were made available in Hindi language.
- A committee has been formed for purchase of Hindi books which recommends buying Hindi books for the library. Efforts are being made to buy books according to the target set by the Official Language Department every year in the library. In the list of all the available publications available in the library of Directorate, the directory has been made available on the website of the Directorate.
- Talks on Mushroom in Hindi by scientist and technical officers of the Directorate are also being broadcasted on television and Akashwani, which will solve the problems of Mushroom Producers.
- The Hindi magazine 'Chhatrak' was published by Directorate in Hindi, in which articles related to mushroom were printed. So that mushroom farmers can read it in simple Hindi.
- In addition, Under the constant guidance of Dr. V.P.
  Sharma Director and Chairman, Official Language
  Implementation Committee, timely arrangements
  of the seminars and functionaries in Hindi and
  continuous progress of the work related to
  implementation of the official language by all
  officials and employees working in the Directorate
  are continuing to progress.

# १०. संस्थागत गतिविधियाँ

# 10. Institutional Activities

# 10.1 खुम्ब पर एआईसीआरपी की xvIII वार्षिक कार्यशाला

9 से 10 जून 2016 को भाकृअनुप— खुम्ब अनुसंधान निदेशालय, सोलन द्वारा मशरूम पर अखिल भारतीय समन्वित अनुसंधान परियोजना के XVIII वार्षिक कार्यशाला का आयोजन किया गया था।

बैठक में 60 से अधिक मशरूम अनुसंधान श्रमिकों ने भाग लिया था। मशरूम उद्योग, केवीके और राज्य कृषि विभागों के प्रतिनिधियों के साथ कुछ प्रगतिशील मशरूम उत्पादकों ने भी विचार—विमर्श में भाग लिया।

उद्घाटन सत्र की अध्यक्षता डॉ एन के कृष्ण कुमार, डीडीजी (एचएस), आईसीएआर, नई दिल्ली द्वारा हुई। डॉ वी पी शर्मा ने एआईसीआरपी मशरूम की प्रगति पर प्रकाश डाला। पांच तकनीकी सत्र आयोजित किए गए जिसके अध्यक्ष और सह—अध्यक्ष प्रसिद्ध विशेषज्ञों थे। विभिन्न नेटवर्क बहु स्थान परीक्षणों की विस्तृत रिपोर्ट संबंधित अन्वेशक द्वारा प्रस्तुत की गई थी। प्रत्येक प्रस्तुति के बाद तकनीकी कार्यक्रम की चर्चा हुई। डॉ टी जानकी राम, एडीजी (एचएस), भाकृअनुप, नई दिल्ली, ने पूर्ण सत्र की अध्यक्षता की और विभिन्न सिफारिशों और एक्शन पॉइंटों पर गहराई से विचार—विमर्श किया।

# 10.1 XVIII Annual Workshop of AICRP on mushrooms

The XVIII Annual Workshop of All India Coordinated Research Project on Mushroom was organized by ICAR-DMR, Solan from 9-10<sup>th</sup> June, 2016. The meeting was attended by more than 60 mushroom research workers. Representatives from mushroom industry, KVKs and state agriculture departments. The progressive mushroom growers and farmers also participated in the deliberation.

The inaugural session was chaired by Dr. N K Krishna Kumar, DDG (HS), ICAR, New Delhi. Dr. V P Sharma, Director presented the progress made in AICRP on mushrooms. Five technical sessions were held which were chaired and co-chaired by renowned experts. Detailed reports on various network multi location trials were presented by the concerned principal investigators. Each presentation was followed by discussions which led to significant improvement in the technical programme. Dr. T Janaki Ram, ADG (HS), ICAR, New Delhi chaired the plenary session and had in depth deliberations on various recommendations and action points.



Fig 10.1 XVIII Annual workshop of AICRP on mushrooms चित्र 10.1 खुम्ब पर एआईसीआरपी की XVIII वार्षिक कार्यशाला

#### 10.2 अनुसंधान सलाहकार समिति की बैठक

रिपोर्टिंग अविध में, भाकृअनुप—खुअनुनि, सोलन में 20 —21 जुलाई 2016, आरएसी बैठक बुलाई गई। बैठक की अध्यक्षता भाकृअनुप—खुअनुनि, सोलन के पूर्व निदेशक डॉ आर पी तिवारी ने की और सम्मानित सदस्य डॉ वी.पी. शर्मा, डॉ टी जानकीराम, डॉ टी.के. बहरा, डॉ ए.के. पात्रा, डॉ बी. के. पाण्डेय और डॉ ओ.पी. अहालावत भी बैठक में शामिल हुए। बैठक में प्रगतिशील खुम्ब उत्पादक, डॉ रामदास शिंदे, श्री विनोद ठाकुर और राजेश ठाकुर भी शामिल हुए थे। प्रमुख जांचकर्ताओं द्वारा एक संक्षिप्त प्रस्तुति के बाद, आरएसी समिति ने चल रही परियोजनाओं की प्रगति और उपलब्धियों की जांच की। समिति ने नए परियोजना प्रस्तावों पर महत्वपूर्ण टिप्पणियां भी दीं और खुम्ब अनुसंधान और चुनौतियों का समाधान करने के लिए निदेशालय द्वारा किए गए सामूहिक प्रयासों की सराहना की। 10.3 संस्थान अनुसंधान समिति की बैठक

निदेशालय मे 1 से 5 अगस्त 2016 को आईआरसी की बैठक हुई जिसकी अध्यक्षता निदेशक वी पी शर्मा ने की। बैठक मे निदेशालय मे चल रही अनुसंधान परियोजनाओ एवं नई परियोजनाओ का अवलोकन किया गया। सभी अनुसंधान परियोजनाओ पर गहन विचार हुआ और और भविष्य के अनुसंधान के लिए भी तकनीकी कार्यक्रम पर भी चर्चा हुई। साथ ही साथ प्ररियोजनाओं को शीघ्र पूर्ण करने हेतु हर माह के शुक्रवार को मासिक समीक्षा बैठक का प्रस्ताव रखा गया।

निदेशालय में 14 अक्टूबर 2016 को संस्थान प्रबंधन समिति के बैठक हुई जिसकी अध्यक्षता निदेशक वी पी शर्मा ने की। सम्मानित सदस्यों डॉ टी जनिकरम, डॉ एस एस कन्वर, डॉ राजेश राणा, डॉ श्वेत कमल, डॉ के के मिश्रए श्री टी एस भाटी, श्री जे आर मांगले, श्री विनोद ठाकुर, राजेश ठाकुर और डॉ बी एल अत्री भी बैठक में शामिल हुए। संस्थान से जुड़े प्रबंधन एवं खरीद के मामलों का अवलोकन किया गया एवं उन्हें पारित किया गया।

#### 10.2 Research Advisory Committee meeting

In the reporting period, one RAC meeting was convened at ICAR-DMR, Solan during 20-21st July 2016. The meetings were chaired by Dr. R.P.Tewari, Former Director, ICAR-DMR, Solan and attended by the esteemed members Dr. V.P. Sharma, Dr. T. Janakiram, Dr. T.K.Behra, Dr. A.K.Patra, Dr. B.K.Pandey and Dr. O.P.Ahlawat. Progressive mushroom growers, Dr. Ram Das Shinde, Tirupathi Balaji Agro Products Pvt. Ltd., Sh. Vinod Thakur and Rajesh Thakur, Thakur Mushroom Farm, Solan were also participated in the meeting. After a brief presentation by the principal investigators, the RAC critically examined the progress and achievements of ongoing and completed projects. The committee also gave important comments on new project proposals and appreciated the collective efforts made by the Directorate to address research gaps and challenges in mushroom science.

#### 10.3 Institute Research Committee meeting

The IRC meeting of the Directorate was held on 1<sup>st</sup> and 5<sup>th</sup> August 2016 under the chairmanship of Dr. V.P.Sharma, Director. Progress of the ongoing institute funded research projects and proposals for new projects were presented by concerned scientists. This was followed by thorough discussion, appraisal and future orientation of the technical programme. Further, to fast track project activities, a monthly review meetings were proposed to conduct at every first Friday of the minth.

#### 10.4 Institute Management Committee meeting

The IMC meeting was convened on 14<sup>th</sup> October 2016 under the chairmanship of Dr. V.P.Sharma Director. Other respected members present during the meeting



Fig 10.2 RAC and IMC meetings held at ICAR-DMR, Solan चित्र 10.2 भा.कृ.अनु.प.—खु.अनु.नि. सोलन में आरएसी एवं आईएमसी की बैठकें

#### 10.5. स्वच्छ भारत अभियान

स्वच्छ भारत के मिशन को पूरा करने के लिए महीने के हर तीसरे शनिवार को भाकृअनुप— खुम्ब अनुसंधान निदेशालय कैंपस में स्वछता अभियान कार्यान्वित किया जाता है। सभी कर्मचारियों ने मिशन में स्वेच्छा से भाग लिया और डीएमआर को स्वच्छ एवं हरा भरा रखने के प्रयास किए जा रहे हैं।

16—31 अक्टूबर, 2016 स्वच्छता पकवाडा के दौरान पास के गांवों में एक विशेष स्वच्छता अभियान चलाया गया। इस पखवाड़ा के दौरान एक चित्रकला प्रतियोगिता भी आयोजित की गई थी जिसमें कक्षा आठवीं से दसवी के 20 छात्रों को विभिन्न स्कूलों से भाग लिया गया था और उन्होंने दिन—प्रतिदिन जीवन में स्वच्छता के महत्व को चित्रकला के द्वारा दर्शाया।

#### अन्य गतिविधियां :-

- योग और ध्यान से स्वास्थ्य लाभ के बारे में जागरूकता पैदा करना ।
- मशरूम विहार में सभी कर्मचारियों और उनके परिवार के सदस्यों को प्लास्टिक के कम उपयोग के बारे प्रोत्साहित करना और स्वच्छता अभियान के बारे में संवेदनशील बनाना।
- स्पेंट मशरूम पोषाधार के प्रबंधन के लिए कार्यालय परिसर में एक व्यवस्थित खाद गड्ढे बनाना ।
- पास के स्कूलों, पार्कों और ईएसआई अस्पताल चम्बाघाट में, स्वच्छता अभियान ।
- स्वच्छ भारत अभियान के लिए आयोजित सभी प्रशिक्षण कार्यक्रमों में उद्यमियों, किसानों और युवाओं में जागरूकता पैदा करना।
- पुराने अभिलेखों, पुरानी और अप्रचलित फर्नीचर, जंक सामग्री और अनुपयुक्त वस्तुओं का नियमित आधार पर प्रबंधन ।

were Dr. T.Janakiram, ADG (Hort. II), Dr. S.S. Kanwar DR, HPKV; Palampur, Dr. Rajesh Rana, Dr. Shwet Kamal, Dr. K.K.Mishra, Sh. T.S. Bhatti, Shri J.R.Mangle, Shri Vinod Thakur, Shri Rajesh Thakur and Dr. B.L.Attri (Member Secretary). Issues related to institute management and procurement proposals were discussed and approved.

#### 10.5 Swachh Bharat Abhiyan

Clean India Drive is being implemented in the ICAR- DMR campus on every third Saturday of the month to fulfil the vision and mission of clean India a Day. All staff members participated voluntarily in the mission and efforts are being made to keep the DMR as "Clean and Green DMR". A special cleanliness drive was conducted in the nearby villages during the Swachhata Pakhwara celebrated from 16-31<sup>st</sup> October, 2016. A painting competition was also conducted during this pakhwara in which 20 students from class VIII to X were participated from different schools and made thought provoking paintings on the importance of cleanliness in day-to-day life.

#### Other activities

- Awareness generation about health benefits of yoga and meditation
- Cleanliness drive in Mushroom Vihar involving all staff members and their family members and sensitizing the residents about lesser use of plastics
- Making a systematic compost pit in office premises for disposal of spent mushroom substrate
- Cleanliness drive in nearby schools, parks and at ESI hospital, Chamabghat
- Awareness for Swachh Bharat Abhiyan was passed on to entrepreneurs, farmers and youth in all the training programmes organized by ICAR-DMR.
- Weeding of old records, disposing of old and obsolete furniture, junk material and unserviceable items has been done on regular basis





Fig 10. 2 Celebration of Swacchata Pakhwara at ICAR-DMR, Solan चित्र 10.2 भाकृअनुप-खुअनुनि में स्वच्छता पखवाड़ा

#### 10.6 सतर्कता जागरूकता सप्ताह

"स्शासन अच्छे निर्णय लेने और उनके प्रभावी कार्यान्वयन के लिए प्रक्रियाओं के बारे में है"। निवारक सतर्कता आवश्यकताओं को सुशासन के एक उपकरण के रूप में लाग् करने के लिए आईसीएआर-डीएमआर ने 31 अक्टूबर से 5 नवंबर 2016 तक सतर्कता जागरूकता सप्ताह मनाया जिसका विषय "ईमानदारी को बढावा देने और भ्रष्टाचार को खत्म करने में सार्वजनिक भागीदारी" था। इस मौके पर डॉ महंतेश शिरूर, सतर्कता अधिकारी ने आईसीएआर-डीएमआर के सभी कर्मचारियों को शपथ दिलाई और जनता में जागरूकता पैदा करने के लिए, संस्थान के मुख्य द्वार पर बैनर और पोस्टर प्रदर्शित किए गए। इस अवसर पर स्टेट बैंक ऑफ पटियाला, चम्बाघाट शाखा के साथ "सुशासन" पर स्लोगन लेखन प्रतियोगिता का आयोजन किया गया जिसका विषय "सरकारी कार्यालयों में भ्रष्टाचार को खत्म करने में सार्वजनिक भागीदारी को बढावा देने के तरीके" था। डॉ महंतेश शिरूर, वैज्ञानिक, डॉ अनुपम बड , वैज्ञानिकय डॉ बीएल अत्री, प्रधान वैज्ञानिक, श्री दीपक शर्मा, सीनियर तकनीकी सहायक, श्री सुनील वर्मा, एक्टो और श्री एच.एन.शर्मा, एओ ने उपरोक्त प्रतियोगिताओं में कई पुरस्कार जीते।

# 10.6 Vigilance Awareness Week

"Good governance is about the processes for making good decisions and their effective implementation". To implement the preventive vigilance needs as a tool of good governance, ICAR-DMR observed the vigilance awareness week from 31st October to 5<sup>th</sup> November, 2016 with a theme "Public participation in promoting integrity and eradicating corruption". On this occasion Dr. Mahantesh Shirur, Vigilance Officer administered pledge to all staff of ICAR-DMR. To create the awareness in the public, banners and posters were displayed at the main gate of On this occasion, competitions were organized in support with the State Bank of Patiala, Chambaghat branch for slogan writing competition on "good governance" and essay writing competition on "ways to promote public participation in eradicating corruption in government offices". Dr. Mahantesh Shirur, Scientist; Dr. Anupam Barah, Scientist; Dr. BL Attri, Principal Scientist; Mr. Deepak Sharma, Sr. Technical Assistant; Mr. Sunil Verma, ACTO and Mr. H.N.Sharma, AO won several prizes in the above competitions.





Fig 10.3 Oath taking on closing ceremony of vigilance awareness week चित्र 10.3 सतर्कता जागरूकता सप्ताह के दौरान शपथ ग्रहण समारोह

# 10.7 राष्ट्रीय एकता दिवस

भारत के लोंह पुरुष "सरदार वल्लभभाई पटेल" की जयंती मनाने के लिए, भा.कृ.अनू.प.—खु.अनू.नि. ने 31 अक्टूबर, 2016 को राष्ट्रीय एकता दिवस मनाया। देश की एकता और अखंडता बनाए रखने की प्रतिज्ञा आईसीएआर-डीएमआर के सभी कर्मचारियों द्वारा ली गई है।

#### 10.8 . सांप्रदायिक सद्भावना सप्ताह

सांप्रदायिक सद्भावना (एनएफएफसीएच), नई दिल्ली से प्राप्त दिशानिर्देशों के अनुसार , 19 से 25 नवंबर, 2016 के दौरान सांप्रदायिक सौहार्द सप्ताह मनाया आईसीएआर-डीएमआर के सभी कर्मचारियों ने फ्लैग दिवस

### 10.7 National Unity Day

To commemorate the birth anniversary of the Iron Man of India, "Sardar Vallabhbhai Patel" who was instrumental in keeping India united, ICAR- DMR observed the Rashtriya Ekta Diwas (National Unity Day) on 31<sup>st</sup> October, 2016. A pledge to maintain the unity and integrity of the country was taken by all the staff of ICAR-DMR.

#### 10.8 Communal Harmony Week

As per the guidelines received from National Foundation for Communal Harmony (NFFCH), New Delhi,

95

(25 नवंबर, 2016) पर सांप्रदायिक सद्भावना निधि के लिए राष्ट्रीय फाउंडेशन के लिए योगदान दिया और यह सचिव एनएफएफसी को सौंप दिया गया।

#### 10.9 . राष्ट्रीय विज्ञान दिवस समारोह

आईसीएआर—डीएमआर में राष्ट्रीय विज्ञान दिवस 28 फरवरी, 2017 को मनाया गया (विषय : विज्ञान और प्रौद्योगिकी दियांग व्यक्तियों के लिए) और साथ ही साथ वर्ष 1928 सर चंद्रशेखर वेंकट रमन द्वारा रमन प्रभाव के आविष्कार को मनाने के लिए भी किया गया । 9 स्थानीय विद्यालयों के 350 से अधिक छात्रों ने आईसीएआर—डीएमआर का दौरा किया और वे खुम्ब की खेती के विभिन्न पहलुओं से अवगत हुए।

छात्र समुदाय के बीच विज्ञान और प्रौद्योगिकी को लोकप्रिय बनाने के लिए आईसीएआर—डीएमआर द्वारा विज्ञान प्रदर्शनी, जीवित प्रदर्शनों, बहस, प्रश्नोत्तरी प्रतियोगिताओं, वैज्ञानिक और प्रेरक व्याख्यान जैसे विविध गतिविधियों का आयोजन किया गया। Communal Harmony week was observed during 19<sup>th</sup> to 25<sup>th</sup> November, 2016. All staff of ICAR-DMR contributed for the National Foundation for Communal Harmony fund on the Flag Day (25<sup>th</sup> November, 2016) and it was submitted to Secretary, NFFCH.

#### 10.9 National Science Day Celebrations

National Science Day was celebrated in ICAR-DMR (Theme: Science and Technology for Specially Abled Persons) on 28th February, 2017 with great enthusiasm in order to commemorate the invention of the Raman Effect in India by the Indian physicist, Sir Chandrasekhara Venkata Raman on the same day in the year 1928. More than 350 students from 9 local schools visited ICAR-DMR and they were exposed to various facets of mushroom cultivation. Variety of activities such as science exhibition, live demonstrations, debates, quiz competitions, scientific and motivational lectures were organized by the ICAR-DMR to popularize the science and technology among the student community.







Fig 10.4 National Science Day celebrations at ICAR-DMR, Solan चित्र 10.4 भाकृअनुप—खुअनुनि में राष्ट्रीय विज्ञान दिवस समारोह

# 11. मानव संसाधन विकास

# 11. Human Resource Development

### प्रशिक्षण

### डॉ. बी. एल. अत्री

- 1. 21.10.2016 को नास कॉम्प्लेक्स में डेअर आईसीएआर के तहत आरटीआई—एमआईएस पर होने वाले सार्वजनिक प्राधिकरण संस्थानों के नोडल अधिकारी की एक दिवसीय प्रशिक्षण कार्यक्रम में भाग लिया।
- 2. 24—25 अक्टूबर, 2016 को भाकृअनुप— सीआईएई, भोपाल में आयोजित "बागवानी फसलों के उत्पादन और प्रसंस्करण के लिए इंजीनियरिंग के उपयोग "पर हुई दो दिवसीय संपर्क बैठक में भाग लिया ।
- 3. 20—22 फरवरी, 2017 भाकृअनुप—नार्म, हैदराबाद में मानव संसाधन विकास नोडल अधिकारियों के प्रशिक्षण कार्यों के प्रभावी कार्यान्वयन के लिए आयोजित "दक्षता वृद्धि कार्यक्रम" पर 3 दिन की प्रशिक्षण में भाग लिया।

#### डॉ. योगेश गौतम

- 1. 24 से 25 जनवरी 2017 के दौरान नास कॉम्प्लेक्स, नई दिल्ली में आयोजित "ज्ञान प्रबंधन पहल के लिए आईसीएआर रिसर्च डेटा रिपॉजिटरी ऑफ ऑफिसर इनचार्ज डाटा मैनेजमेंट" की दूसरी कार्यशाला में भाग लिया।
- 2. भाकुअनुप —केन्द्रीय कृषि विज्ञान संस्थान, भोपाल में 10—19 जनवरी 2017 के दौरान आयोजित "इंजीनियरिंग उपकरण और परिशुद्धता कृषि के लिए तकनीक" में लघु पाठ्यक्रम में भाग लिया।

# डॉ. महंतेश शिरूर

1. भाकुअनुप— —नेशनल एकेडमी ऑफ एग्रिकल्वरल रिसर्च मैनेजमैंट, हैदराबाद में 29 नवम्बर से 2 दिसंबर 2016 तक आयोजित "गुड पर्कि्टसस इन एक्सटेंशन रेसेअर्च"की कार्यशाला में हिस्सा लिया ।

# श्री सुधीर कुमार एन्निपू

 भाकुअनुप—डीएमएपीआर, आनंद द्वारा 1—21 दिसम्बर 2016 तक आयोजित "औषधीय पौधों से बायो—सक्रिय यौगिकरू एक समृद्ध नवीन एवं अवसरों का खजाना" शीतकालीन प्रशिक्षण मे भाग लिया।

# डॉ. अनुपम बड

- 1. 10 अप्रैल से 9 मई, 2016 तक भाकुअनुप—डीएमआर, सोलन में एक महीने के उन्मुखीकरण प्रशिक्षण कार्यक्रम में भाग लिया।
- 2. भाकुअनुप—डीएमआर, सोलन में उद्यमियों के लिए मशरूम उत्पादन तकनीक पर 10 दिवसीय के प्रशिक्षण कार्यक्रम में भाग लिया।
- 3. 10 मई से 9 अगस्त, 2016 तक

### **Trainings**

#### Dr. B L Attri

- 1. Attended one day training programme for the nodal officers of the public authorities/institutes under DARE-ICAR on RTI-MIS held at NASC Complex, New Delhi on 21 October, 2016
- 2. Attended two days brain storming session cum interaction meet on "Engineering interventions for production and processing of Horticultural Crops" held at ICAR-CIAE, Bhopal from 24-25 October, 2016.
- 3. Attended three days training on "Competency enhancement programme for effective implementation of training functions of HRD Nodal Officers of ICAR" held at ICAR-NAARM, Hyderabad from 20-22 Febrauary, 2017.

#### Dr. Yogesh Gautam

- 1. Attended the second workshop of officer incharge data management of ICAR Research Data Repository for Knowledge Management initiative organized at NASC Complex, New Delhi from 24-25 January, 2017.
- 2. Attended the short course on "Advances in Engineering Tools and Techniques for Precision Agriculture" scheduled during 10-19 January 2017 at ICAR-Central Institute of Agricultural Engineering, Bhopal.

#### Dr. Mahantesh Shirur

1. Attended the workshop on the "Good Practices in Extension Research" from 29<sup>th</sup> November to 2<sup>nd</sup> December, 2016 at ICAR-National Academy of Agricultural Research Management, Hyderabad.

# Mr. Sudheer Kumar Annepu

 Attended 21 days ICAR sponsored winter school on "Bio-active compounds from medicinal plants: A wealth of novelties and opportunities" conducted by ICAR-DMAPR, Anand from 1-21<sup>st</sup> December 2016.

### Dr. Anupam Barh

- 1. Attended one month orientation training programme at ICAR-DMR, Solan from 10<sup>th</sup> April to 9<sup>th</sup> May, 2016.
- 2. Attended 10 days training programme on mushroom production technology for entrepreneurs at ICAR-DMR,

- आईसीएआर-एनबीपीजीआर, नई दिल्ली में तीन महीने के पेशेवर अटैचमेंट ट्रेनिंग में भाग लिया।
- 4. आईसीएआर—आईएएसआरआई, नई दिल्ली में आयोजित सांख्यिकी आनुवंशिकी और जीनोमिक्स में वर्तमान विश्लेषणात्मक तकनीकों पर 21 दिवसीय प्रशिक्षण में भाग लिया

### तकनीकी कार्मिक

- श्री दीपक शर्मा, वरिष्ठ तकनीकी सहायक ने 22 अगस्त, 2016 को आईआईएसईआर, मोहाली में एक दिवसीय कार्यशाला में भाग लिया जिसका विषय "जागरूकता एवं ज्ञान साझाकरण— एनकेएन" था ।
- श्री ज्ञान चंद, तकनीकी अधिकारी (फार्म) ने नार्म, हैदराबाद मे 10 दिनों (30 नवंबर से 9 दिसंबर, 2016) की योग्यता वृद्धि कार्यक्रम में भाग लिया इस कार्यक्रम का विषय "आईसीएआर के तकनीकी अधिकारियों के लिए प्रेरणा और सकारात्मक सोच" था ।
- श्रीमती शैलजा वर्मा, सहायक मुख्य तकनीकी अधिकारी (टोट ६ एक्सटेंशन) ने आईसीएआर—सीआईएचएचईटी, लुधियाना में 14 से 21 नवंबर 2016 को प्रशिक्षण पाठ्यक्रम मे भाग लिया जिसका विषय "कृषि व्यवसाय मे मूल्य संवर्धन एवं उद्यमशीलता विकास के लिए आदर्श प्रशिक्षण पाठ्यक्रम" था।

### प्रशासन कार्मिक

- श्री टी.डी.शर्मा, सहायक, ने 13–16 दिसंबर, 2016 को भाकुअनुप अनुसंधान परिसर पटना (पूर्वी क्षेत्र) द्वारा आयोजित "सामान्य प्रशासन और प्रबंधन पर क्षमता निर्माण कार्यक्रम" में भाग लिया ।
- श्री सुरजीत सिंह, निजी—सचिव, ने 13—16 दिसंबर, 2016 को भाकुअनुप अनुसंधान परिसर पटना (पूर्वी क्षेत्र) द्वारा आयोजित "सामान्य प्रशासन और प्रबंधन पर क्षमता निर्माण कार्यक्रम". में भाग लिया ।
- श्री सुरजीत सिंह, निजी सचिव, ने 4—10 जनवरी, 2017 को भाकुअनुप— नार्म हैदराबाद द्वारा "सामान्य दक्षता और व्यवहार कौशल के विकास" पर आयोजित प्रशिक्षण कार्यक्रम में भाग लिया।
- श्रीमती सुनीला ठाकुर, निजी सहायक, ने 4—10 जनवरी, 2017 को भाकुअनुप— नार्म हैदराबाद द्वारा "सामान्य दक्षता और व्यवहार कौशल के विकास" पर आयोजित प्रशिक्षण कार्यक्रम में भाग लिया ।

### ब. संगोष्टियों / सम्मेलनों / कार्यशालाओं में भागीदारी डॉ वी पी शर्मा

- 1. 29 से मई 2 जून को मशरुम विज्ञान की अंतर्राष्ट्रीय संस्था (आईएसएमएस) द्वारा एम्स्टर्डम (नीदरलैंड्स) मे आयोजित 19 वे कांग्रेस में भाग लिया ।
  - 2. 4—5 मई 2016 को यूएफएफ, नौनी में पादप सुरक्षा में तकनीकी उन्नयन की कार्यशाला में व्याख्यान दिया।

- Solan.
- 3. Attended three months professional attachment training at ICAR-NBPGR, New Delhi from 10<sup>th</sup> May to 9<sup>th</sup> August, 2016.
- 4. Attended 21 days ICAR sponsored CAFT training on "Recent Analytical Techniques in Statistical Genetics and Genomics" at ICAR-IASRI, New Delhi from

#### **Technical Personnel**

- Mr. Deepak Sharma, Senior Technical Assistant was attended one day workshop on "Awarness and knowledge sharing-NKN" at IISER, Mohali on 22<sup>nd</sup> August, 2016.
- 2. Mr. Gian Chand, Technical Officer (Farm) was attended 10 days competence enhancement programme on "Motivation and positive thinking for Technical Officers of ICAR" at ICAR-NAARM, Hyderabad from 30<sup>th</sup> November to 9<sup>th</sup> December, 2016.
- 3. Mrs. Shailja Verma, Assistant Chief Technical Officer (TOT/Extention) was attended "Model training course on processing value addition and enterprenuership development in food agri business conducted at ICAR-CIPHET, Ludhiana from 14-21st November, 2016.

### **Administration Personnel**

- 1. Mr. T.D.Sharma, Assistant was attended capacity building programme on general administration and management conducted by ICAR-Research Complex for Eastern Region, Patna from 13-16 December, 2016.
- 2. Mr. Surjit Singh, Personnel Secretary was atteneded capacity building programme on general administration and management conducted by ICAR-Research Complex for Eastern Region, Patna from 13-16 December, 2016.
- 3. Mr. Surjit Singh, Personnel Secretary was atteneded training programme on "Enhancing efficiency and behavioural skills" conducted by ICAR-NAARM, Hyderabad from 4-10<sup>th</sup> January, 2017.
- 4. Mrs. Sunila Thakur, Personnel Assistant was atteneded training programme on "Enhancing efficiency and behavioural skills" conducted by ICAR-NAARM, Hyderabad from 4-10<sup>th</sup> January, 2017.

### **B.** Participation in Symposia / Conferences / Workshops / Events

3. 15—17 नवंबर 2016 को नई दिल्ली मे 7 वीं भारतीय बागवानी कांग्रेस में शामिल हुए और एक प्रमुख शोध पत्र प्रस्तुत किया ।

### डॉआर सी उपाध्याय

1. 6 से 9 नवम्बर, 2016 को नई दिल्ली में हुई एग्रोवाइडेविसाइड सम्मेलन में भाग लिया।

### डॉ बी एल अत्री

- एमएसएमई, चम्बाघाट, सोलन में 07.09.2016 को खाद्य प्रसंस्करण (एसएमएफपी) के लिए एक दिवसीय कार्यशाला संगोष्ठी में भाग लिया और फलों, सब्जियों और मशरूम के प्रसंस्करण की प्रस्तुति दी।
- 2. 15—19 नवंबर, 2016 को आईसीएआर—आईएआरआई, नई दिल्ली में आयोजित 7 वें भारतीय बागवानी कांग्रेस—2016 में शामिल हुए और "शैवाल जीवन और परिवेश की स्थिति में सेब की गुणवत्ता पर एलो वेरा जेल और नीम तेल के विभिन्न सांद्रता के प्रभाव" पर एक पोस्टर प्रस्तुत किया।
- 3. भाकुअनुप —डीएमआर, सोलन में 04.03.2017 को हिंदी कार्यशाला में भाग लिया, जिसमें डॉ जोग राज, अध्यक्ष, नार्कस, सोलन और उप निदेशक, उर्दू शिक्षण और अनुसंधान केंद्र (यूटीआरसी), सोलन ने इतिहास और देश में वर्तमान हिंदी के परिदृश्य पर चर्चा की।

### डॉ. महंतेश शिरूर

- 1. 15—18 नवंबर 2016 के दौरान भाकुअनुप —आईएआरआई, नई दिल्ली मे आयोजित 7 वें भारतीय बागवानी कांग्रेस में शामिल हुए / बागवानी के माध्यम से किसान की आय को दुगुना करने पर शोध पत्र भी प्रस्तुत किया जिसका शीर्षक था खुम्ब उत्पादनरू शिक्षित युवाओं के लिए एक व्यवहार्य और लाभदायक अवसर ।
- 2. गोवा में 15 से 17 फरवरी, 2017 को सोसाइटी फॉर एडवांसमेंट ऑफ ह्यूमन एंड नेचर (एसडीएएनए) द्वारा आयोजित आयोजित "अडवांस इन एग्रीकल्चर थुरू सस्सस्टेनेबल टेकनोलोजीस एंड होलिस्टिक अप्प्रोचेस" पर राष्ट्रीय संगोष्ठी में भाग लिया।

### श्रीमती ममता गुप्ता

1. 6 से 9 नवम्बर, 2016 को नई दिल्ली में हुई एग्रोवाइडेविसाइड सम्मेलन में भाग लिया।

### श्री सुधीर कुमार अनेपु

 गोवा में 15 से 17 फरवरी, 2017 को सोसाइटी फॉर एडवांसमेंट ऑफ ह्यूमन एंड नेचर (एसडीएएनए) द्वारा आयोजित आयोजित "अडवांस इन एग्रीकल्चर थुरू सस्सस्टेनेबल टेकनोलोजीस एंड होलिस्टिक अप्प्रोचेस" पर राष्ट्रीय संगोष्ठी में भाग लिया।

### Dr. V P Sharma

- 1. Attended 19<sup>th</sup> International Society for Mushroom Science (ISMS) Congress from 29<sup>th</sup> May to 2<sup>nd</sup> June 2016 at Amsterdam, The Netherlands.
- 2. Delivered lead lecture in a workshop on Technological Advances in Plant Pathology at UHF, Nauni from 4-5 May 2016.
- 3. Attended 7<sup>th</sup> Indian Horticulture Congress at New Delhi from 15-17 November 2016 and presented a lead paper.

### Dr. R C Upadhyay

1. Participated in 1<sup>st</sup> Agrobiodiversity conference held at New Delhi from 6-9<sup>th</sup> November, 2016.

### Dr. B L Attri

- Attended one day workshop/seminar under State Mission for Food Processing (SMFP) at MSME, Chambaghat, Solan and made presentation of processing of Fruits, Vegetables and Mushroom on 07.09.2016.
- 2. Attended 7<sup>th</sup> Indian Horticulture Congress-2016 from 15-17 November 2016 at ICAR-IARI, New Delhi Delhi
- 3. Attended Hindi workshop on 04.03.2017 at ICAR-DMR, Solan in which Dr Jog Raj, Chairman, NARAKAS, Solan and Deputy Director, Urdu Teaching and Research Centre (UTRC), Solan delivered a talk on the history and present scenario of Hindi in the country.

#### Dr. Mahantesh Shirur

- 1. Attended 7<sup>th</sup> Indian Horticulture Congress on 'Doubling the farmers' income through horticulture' held during 15-18<sup>th</sup> November 2016 at ICAR-IARI, New Delhi.
- 2. Participated in National Symposium on "Advances in Agriculture through Sustainable Technologies and Holistic Approaches" conducted by Society for Advancement of Human & Nature (SADHNA) held at Goa from 15-17<sup>th</sup> February, 2017.

### Ms. Mamta Gupta

1. Participated in 1<sup>st</sup> Agrobiodiversity conference held at New Delhi from 6-9<sup>th</sup> November, 2016.

### Mr. Sudheer Kumar Annepu

1. Participated in National Symposium on "Advances in Agriculture through Sustainable Technologies and Holistic Approaches" conducted by Society for Advancement of Human & Nature (SADHNA) held at Goa from 15-17<sup>th</sup> February, 2017.

### 12. विशिष्ट आगंतुक

### 12. Distinguished Visitors

In total 20 visitors visited ICAR-DMR, Solan during this period. Few important visitors are as follows:

| Sl. No. | Name & Address                                       | Date of visit to DMR, Solan |
|---------|------------------------------------------------------|-----------------------------|
| 1       | Dr. A K Vasisht<br>ADG (PIM/ESM)                     | 18.04.2016                  |
| 2       | Mrs. Rashmi R Rao<br>DDF, ICAR-HQ                    | 18.04.2016                  |
| 3       | Mr. P K Garg<br>ADG, CPWD, New Delhi                 | 23.05.2016                  |
| 4       | Mr. R. S. Malhotra Ambassador of India to Niger      | 03.06.2016                  |
| 5       | Mr. Man Mohan Bhanot<br>Ambassador of India to Syria | 03.06.2016                  |
| 6       | Dr. N K Krishna Kumar<br>DDG (HS) ICAR, New Delhi    | 06.06.2016                  |
| 7       | Dr. T Janaki Ram<br>ADG (HS) ICAR, New Delhi         | 10.06.2016                  |
| 8       | Dr. T Mohapatra Secretary DARE & DG, ICAR, New Delhi | 19.08.2016                  |

Approximately a total no. of 2800 farmers, entrepreneurs, students, private and govt. officials have visited the Directorate during this period to know about the different facets of the mushroom cultivation and advances in cultivation technology of different mushrooms.





Fig 12.1 Dr. Trilochan Mohapatra, Secretary (DARE) & Director General (ICAR), Dr. A.K.Singh, Deputy Director General (Agricultural Extension) and Dr. T. Jankiram, ADG (Hort. Sci.) on their visit to ICAR-DMR, Solan

चित्र 12.1 डॉ. त्रिलोचन महापात्रा, सचिव (डी.ए.आ.ई.) एवं महानिदेशक (भा.कृ.अनु.प.), डॉ. ए.के. सिंह (डी.डी.जी–कृषि विस्तार) और डॉ टी. जानकीराम (ए. डी. जी.) का भा. कृ. अनु. प.–खु.अनु.नि. में आगमन

# अनुबंध Annexures

### Annexure -I

### 1. भा.कृ.अनु.प.-ख्रु.अनु.नि. के कार्मिक

### I. Personnel of ICAR-DMR

Cadre strength of scientists at ICAR-Directorate of Mushroom Research, Solan as on 31.03.2017

| Name of the discipline                  | Pay band and grade pay                                           | S | Scientist |    | Sr. Scientist |   | tist | Principal<br>Scientist |   |   | Total |   |    |
|-----------------------------------------|------------------------------------------------------------------|---|-----------|----|---------------|---|------|------------------------|---|---|-------|---|----|
|                                         |                                                                  | A | В         | C  | A             | В | C    | A                      | В | C | A     | В | C  |
| Agril. Engg.<br>(ASPE)                  | 15600-39100<br>+ GP 6000/-                                       | - | 1         | 1  | -             | - | -    | -                      | - | - | -     | 1 | 1  |
| Agril.<br>Biotechnology                 | 15600-39100 +<br>GP 6000 & 8000 /-                               | 1 | -         | 1  | 1             | - | 1    | -                      | - | - | 2     | - | 2  |
| Agril<br>Entomology                     | 15600-39100 +<br>GP 6000/-                                       | 1 | -         | 1  | -             | - | -    | -                      | - | - | 1     | - | 1  |
| Agril Extension                         | 15600-39100<br>+ GP 6000/-                                       | 1 | 1         | 1  | -             | - | -    | -                      | - | - | 1     | - | 1  |
| Flexi discipline (Computer application) | 15600-39100 +<br>GP 6000/-                                       | 1 | -         | 1  | -             | - | -    | -                      | - | - | 1     | - | 1  |
| Food<br>Technology                      | 15600-39100 +<br>GP 6000/-                                       | - | 1         | 1  | 1             | - | -    | -                      | - | - | -     | 1 | 1  |
| Genetics & Pl breeding                  | 15600-39100 +<br>GP 6000/-                                       | 1 | 1         | 2  | -             | - | -    | -                      | - | - | 1     | 1 | 2  |
| Plant pathology                         | 15600-39100 +<br>GP 6000/- & 8000/-<br>37400-67000 +<br>GP 10000 | 1 | -         | 1  | 1             | 1 | 2    | -                      | 1 | 1 | 2     | 2 | 4  |
| Soil Science                            | 15600-39100 +<br>GP 6000/-                                       | - | 1         | 1  | -             | - | -    | -                      | - | - | -     | 1 | 1  |
| Vegetable<br>Science                    | 15600-39100 +<br>GP 6000/-                                       | 1 | -         | 1  | 1             | - | 1    | -                      | - | - | 2     | - | 2  |
| Grand Total                             |                                                                  | 7 | 4         | 11 | 3             | 1 | 4    | -                      | 1 | 1 | 10    | 6 | 16 |

A - In position; B - Vacant: C - Total

| S. No | Designation                           | Pay band &<br>Grade pay      | Sanctioned posts | In position posts | Vacant<br>posts | Total |
|-------|---------------------------------------|------------------------------|------------------|-------------------|-----------------|-------|
| Tech  | nical posts                           |                              |                  |                   |                 |       |
| 1     | T-4                                   | 9300-34800 +<br>4200         | 2                | 2                 | -               | 2     |
| 2     | T-II-3                                | 5200-20200 +<br>GP 2800/-    | 2                | 1                 | 1               | 2     |
| 3     | T-2                                   | 5200-20200 +<br>GP 2400/-    | 1                | 1                 | -               | 1     |
| 4     | T-1                                   | 5200-20200 +<br>GP 2000/     | 8                | 8                 | -               | 8     |
|       | Grand total                           |                              | 13               | 12                | 1               | 13    |
| Adm   | inistrative posts                     |                              |                  |                   |                 |       |
| 1     | Administrative<br>Officer             | 15600-39100 -<br>GP 5400/-   | - 1              | 1                 | -               | 1     |
| 2     | Assistant Finance and Accounts Office | 9300-34800 +<br>er GP 4600/- | 1                | 1                 | -               | 1     |
| 3     | Assistant Administrative Officer      | 9300-34800 +<br>GP 4600/-    | 1                | 1                 | -               | 1     |
| 4     | Private Secretary                     | 9300-34800 +<br>GP 4600/-    | 1                | 1                 | -               | 1     |
| 5     | Assistant                             | 9300-34800 +<br>GP 4200/-    | 4                | 3                 | 1               | 4     |
| 6     | Personal Assistant                    | 9300-34800 +<br>GP 4200/-    | 1                | 1                 | -               | 1     |
| 7     | UDC                                   | 5200-20200 +<br>GP 2400/-    | 2                | 2                 | -               | 2     |
| 8     | Stenographer Gr.III                   | 5200-20200 +<br>GP 2400/-    | 1                | 1                 | -               | 1     |

| 9         | LDC           | 5200-20200 +  | 2  | 3  | - | 3* |
|-----------|---------------|---------------|----|----|---|----|
|           |               | GP 1900/ -    |    |    |   |    |
|           | Grand total   |               | 14 | 13 | 2 | 15 |
| Skilled s | support staff |               |    |    |   |    |
| 1         | SSS           | Rs.5200-20200 | 10 | 5  | 5 | 10 |
|           |               | + GP 1800/ -  |    |    |   |    |
|           | Grand total   |               | 10 | 5  | 5 | 10 |

\*Due to revised Cadre Strength of Administrative Staff one post of LDC is excess which will be adjusted in near future

### Staff in position at ICAR-DMR (HP)

| Sl. No | Name of employee     | Designation         | Email                       |
|--------|----------------------|---------------------|-----------------------------|
| 1      | Dr. V.P. Sharma      | Director            | vpsharma93.icar@gov.in      |
| 3      | Dr. O. P. Ahlawat    | Principal Scientist | ahlawat22.icar@gov.in       |
| 4.     | Dr. B L Attri        | Principal Scientist | attribl_cith@rediffmail.com |
| 5      | Dr. Satish Kumar     | Principal Scientist | satish132.icar@gov.in       |
| 6      | Dr. Shwet Kamal      | Senior Scientist    | shwetkamal.icar@gov.in      |
| 7      | Dr. Yogesh Gautam    | Senior Scientist    | ygautamdmr.icar@gov.in      |
| 8      | Dr. Mahentesh Shirur | Scientist           | mshirur.icar@gov.in         |
| 9      | Sh. Sudheer Kumar A  | Scientist           | sudheerannepu@gmail.com     |
| 10     | Dr. Anupam Barh      | Scientist           | anupambarh6@gmail.com       |
| Admin  | istrative staff      |                     |                             |
| 1      | Sh. H. N Sharma      | AO                  | sharmahns9@gmail.com        |
| 2      | Sh. J R Mangle       | AF&AO               | afacodmr.icar@gov.in        |
| 3      | Sh. Rajinder Sharma  | AAO                 | rajinder1.icar@gov.in       |
| 4      | Sh. Surjit Singh     | PS                  | skanwar.icar@gov.in         |
| 5      | Smt. Sunila Thakur   | PA                  | sunilathakur.icar@gov.in    |
| 6      | Sh. Bhim Singh       | Assistant           | bhim.icar@gov.in            |
| 7      | Sh. T.D. Sharma      | Assistant           | tdsharma.icar@gov.in        |
| 8      | Sh. Deep Kumar       | Steno Gr.III        | deep.icar@gov.in            |
| 9      | Sh. N.P. Negi        | Assistant           | npnegi.icar@gov.in          |
| 10     | Sh. Satinder Thakur  | UDC                 | satenderk.icar@gov.in       |

| 1.1     | Ch Dhaman Davi      | LIDC                        | dhamma iaan@ai-         |
|---------|---------------------|-----------------------------|-------------------------|
| 11      | Sh. Dharam Dass     | UDC                         | dharma.icar@gov.in      |
| 12      | Smt. Shashi Poonam  | LDC                         | shaship.icar@gov.in     |
| 13      | Sh. Roshan Lal Negi | LDC                         | roshannegi.icar@gov.in  |
| 14      | Sh. Sanjeev Sharma  | LDC                         | sanjeevs.icar@gov.in    |
| Techni  | cal staff           |                             |                         |
| 1       | Sh.Sunil Verma      | Assistant Chief Technical   | sunilv.icar@gov.in      |
|         |                     | Officer (Farm)              | sumiv.icai@gov.iii      |
| 2       | Smt. Reeta          | Assistant Chief Technical   | reeta30.icar@gov.in     |
|         |                     | Officer (Library)           | rectaso.rear@gov.m      |
| 3       | Smt. Shailja Verma  | Assistant Chief Technical   | chailiov 1 icar@gov in  |
|         |                     | Officer (Art)               | shailjav1.icar@gov.in   |
| 4       | Sh. Gian Chand      | Technical Officer (Boiler)  | gianchand1.icar@gov.in  |
| 5       | Sh. Dala Ram        | Technical Officer (Vehicle) | dalaram.icar@gov.in     |
| 6       | Sh. Ram Lal         | Technical Officer (Vehicle) | ramlal.icar@gov.in      |
| 7       | Sh. Ram Swaroop     | Senior Technical Assistant  | ramwaroop.icar@gov.in   |
|         |                     | (Farm)                      |                         |
| 8       | Sh. Lekh Raj Rana   | Technical Assistant (Farm)  | lekhraj.icar@gov.in     |
| 10      | Sh.Jeet Ram         | Technical Assistant (Farm)  | jeetram.icar@gov.in     |
| 11      | Sh.Guler Singh Rana | Technical Assistant         | gulerrana.icar@gov.in   |
|         |                     | (Electrician)               |                         |
| 12      | Sh.Deepak Sharma    | Senior Technical Assistant  | depsun.icar@gov.in      |
|         |                     | (Computer)                  |                         |
| 13      | Sh.Raj Kumar        | Technical Assistant (Farm)  | rajkumar1.icar@gov.in   |
| Skilled | Supporting Staff    |                             |                         |
| 1       | Sh. Naresh Kumar    | SSS                         | nareshkumar.icar@gov.in |
| 2       | Sh. Tej Ram         | SSS                         | tejram.icar@gov.in      |
| 3       | Smt. Meera Devi     | SSS                         | meeradevi.icar@gov.in   |
| 4       | Sh. Ajeet Kumar     | SSS                         | ajeetkumar.icar@gov.in  |
| 5       | Sh. Vinay Sharma    | SSS                         | vinaysharma.icar@gov.in |
|         |                     |                             |                         |

### **Annexure-II**

### **II**. स्टाफ समाचार

### **II Staff News**

### कार्यभार ग्रहण

डॉ अनुपम बड ने दिनाकं 11.04.2016 (पूर्वाह्र) को निदेशालय में वैज्ञानिक (अनुवांशिकी एंड पादप प्रजनन) का पदभार ग्रहण किया ।

श्री एच एन शर्मा ने दिनाकं 25.10.2016 (पूर्वाह्न) को निदेशालय मे प्रशासनिक अधिकारी का पदभार ग्रहण किया।

### पदोन्नति

डॉ योगेश गौतम, वैज्ञानिक 8.1.2016 से वरिष्ठ वैज्ञाानिक में पदौन्नति हुई ।

श्रीमती शैलजा वर्मा को 26.8.2016 से सहायक मुख्य तकनीकी अधिकारी टी (7–8) के रूप में पदोन्नत किया गया था।

श्री रोशन लाल नेगी, एलडीसी को 17.6.2016 से दूसरे एमएसीपी मिला ।

श्री डाला राम को 28.6.2016 से वरिष्ठ तकनीकी सहायक को तकनीकी अधिकारी (वाहन) के रूप में पदोन्नत किया गया था।

श्री राम लाल, को 10.8.2016 से वरिष्ठ तकनीकी सहायक को तकनीकी अधिकारी (वाहन) के रूप में पदोन्नत किया गया था।

### सेवानिवृत्ति

डॉ आर.सी. उपाध्याय, प्रिंसिपल वैज्ञानिक 31.12.2016 को परिषद के सेवाओं से सेवानिवृत हुए ।

#### स्थानान्तरण

श्रीमती ममता गुप्ता, वैज्ञानिक को इस निदेशालय से 10.11. 2016 (अपराहन) को आईसीएआर—भारतीय मक्का अनुसंधान संस्थान, लुधियाना में स्थानांतरित किया गया था।

### **Joining**

- 1. Dr. Anupam Barh has joined at this Directorate on 11.04.2016 (FN) as Scientist (Genetics and Plant Breeding).
- 2. Sh. H.N. Sharma has joined at this Directorate on 25.10.2016 (FN) as Administrative Officer.

#### **Promotion**

- 1. Dr. Yogesh Gautam, was promoted as Senior Scientist w.e.f. 08.01.2013.
- 2. Smt. Shailja Verma was promoted as Asstt. Chief Technical Officer, w.e.f. 26.08.2014.
- 3. Sh. Roshan Lal Negi, LDC got 2<sup>nd</sup> MACP w.e.f. 17.06.2016.
- 4. Sh. Dala Ram, Sr. Technical Assistant was promoted as Technical Officer (Vehicle) w.e.f. 29.06.2016
- 5. Sh. Ram Lal, Sr. Technical Assistant was promoted as Technical Officer (Vehicle) w.e.f. 19.09.2016

### **Superannuation**

1. Dr. R.C. Upadhyay, Principal Scientist superannuated from Council services w.e.f. 31.12.2016.

### **Transfer**

Ms. Mamta Gupta, Scientist was transferred from this Directorate on 10.11.2016(AN) to join her duties at ICAR-Indian Maize Research Institute, Ludhiana



Felicitation to Dr. R C Upadhyay, Principal Scientist on his superannuation डॉ. आर सी. उपाध्याय की परिषद सेवाओं से सेवानिवृत्ति

#### **Annexure -III**

### (III). पुरस्कार एवं मान्यताएं III Awards & Recognitions

भाकृअनुप— खुम्ब अनुसंधान निदेशालय को , भाकुअनुप प्रणाली में नकद रहित संस्थान के रूप में सम्मानित किया गया है और भाकुअनुप— खुम्ब अनुसंधान निदेशालय के निदेशक, को यह सम्मान 14 फरवरी, 2017 को नई दिल्ली, में आयोजित निदेशकों के सम्मेलन के दौरान कृषि और किसान कल्याण के माननीय मंत्री से प्राप्त हुआ था। ICAR-Directorate of Mushroom Research, Solan was awarded as the cashless institute in ICAR system and the Director, ICAR-DMR, has received the ashless Institute Award from Honourable Minister for Agriculture and Farmers Welfare during the Directors' conference held at New Delhi on 14<sup>th</sup> February, 2017.



डॉ महंतेश शिरूर द्वारा प्रस्तुत मौखिक प्रस्तुति जिसका शीर्षक , "खुम्ब की खेती प्रौद्योगिकी पर प्रशिक्षण में भाग लेने वाले किसानों और उद्यमियों की ई—तत्परता" था, को सर्वश्रेष्ठ मौखिक प्रस्तुति घोषित किया गया था इन्हें यह पुरस्कार गोवा मे 15—17 फरवरी, 2017 को आयोजित राष्ट्रीय संगोष्ठी मे मिला जिसका शीर्षक "टिकाऊ प्रौद्योगिकियों और समग्र दृष्टिकोण से कृषि अग्रिमता" था

The oral presentation delivered by Dr. Mahantesh Shirur, Scientist entitled "E-readiness of farmers and entrepreneurs attending training on mushroom cultivation technology" was adjudged as the best oral presentation in the "National symposium on advances in agriculture through sustainable technologies and holistic approaches (AASTHA)" at Goa 15-17 Feb. 2017.



श्रीमती सुनीला ठाकुर ने 16—19 अप्रैल 2016, कर्नाल में आयोजित भाकुअनुप शेत्रीय खेलकूद में हाई जम्प (पहली स्थिति), लंबी छलांग और शॉट पॉट (दूसरा स्थान), भाला फेंक और डिस्कस थ्रो (तीसरे स्थान) में कुल पांच पदक जीते थे।

Mrs. Sunila Thakur, PS has won five medals at ICAR-Zonal Sports Meet held at ICAR-NDRI, Karnal from 16-19<sup>th</sup> April 2016 in high jump (first position), long jump and shot put (second position), javelin throw and discus throw (third position).



डॉ बी.एल. अत्री और श्री दीप कुमार ठाकुर, सोलन 14—16 सितंबर, 2016 को टाउन राजभाषा कार्यान्वयन समिति, सोलन द्वारा आयोजित हिंदी पाखवाड़ा में भाग लिया और कविता और सामान्य ज्ञान प्रतियोगिताओं में पहला पुरस्कार जीता। Dr. BL Attri and Mr. Deep Kumar Thakur, Solan were participated in the Hindi Pakhwara organized by Town Official Language Implementation Committee, Solan from 14-16<sup>th</sup> September, 2016 and won first prize in Poetry and General Knowledge competitions.





# (IV). वित्त वर्ष 2016-17 का वित्तीय विवरण IV Financial Statement for FY: 2016-17

Budget position under Non-Plan and Plan for the year 2016-17 (Rs. In lakhs)

| S. No.                          | Head of Accounts                       | Non-Plan    | Non-Plan | Plan       | Plan Exp. |  |  |
|---------------------------------|----------------------------------------|-------------|----------|------------|-----------|--|--|
|                                 |                                        | Allocation  | Exp.     | Allocation | 2016-17   |  |  |
|                                 |                                        | 2016-17     | 2016-17  | 2016-17    |           |  |  |
| A. Cap                          |                                        |             |          |            |           |  |  |
| i                               | Land                                   | -           | -        | -          | -         |  |  |
| ii                              | Works                                  | -           | -        | 292.30     | 292.30    |  |  |
| iii                             | Equipment                              | 2.90        | 2.90     | 20.32      | 20.32     |  |  |
| iv                              | Information Technology                 | 0.74        | 0.74     | 1.38       | 1.38      |  |  |
| V                               | Library                                | -           | -        | 3.00       | 3.00      |  |  |
| vi                              | Furniture & Fixture                    | -           | -        | -          | -         |  |  |
| vii                             | Others                                 | 0.36        | 0.34     | -          | -         |  |  |
| viii                            | Others (TSP Equipment)                 | -           | -        | 5.00       | 5.00      |  |  |
| Total - Non-Plan Capital Assets |                                        | 4.00        | 3.98     | 322.00     | 322.00    |  |  |
| B. Rev                          |                                        |             |          |            |           |  |  |
| I                               | Establishment Expenses                 | -           | -        | -          | -         |  |  |
| i                               | Establishment Charges                  | 343.90      | 343.59   | -          | -         |  |  |
| ii                              | Wages                                  | -           | -        | -          | -         |  |  |
| iii                             | O.T.A                                  | 0.03        | 0.03     | -          | -         |  |  |
|                                 | Total Estt. Charges                    | 343.93      | 343.62   | -          | -         |  |  |
| II                              | General Revenue                        |             |          |            |           |  |  |
| 1                               | Pension & Other Retirement<br>Benefits | 89.70 89.70 |          | -          | -         |  |  |
| 2                               | Traveling Expenses                     |             |          | -          | -         |  |  |
|                                 | TA Domestic/Transfer TA                | 2.00        | 2.00     | 5.00       | 5.00      |  |  |
|                                 | Total Travelling Allowance             | 2.00        | 2.00     | 5.00       | 5.00      |  |  |
| 3                               | Research & Operational Expenses        | 15.00 15.00 |          | 36.41      | 36.41     |  |  |
| 4                               | Administrative Expenses                | 91.42       | 91.41    | 40.44      | 40.43     |  |  |
| 5                               | Misc. Expenses                         | 7.00        | 7.00     | 6.15       | 6.15      |  |  |
|                                 |                                        | -           | -        | -          | -         |  |  |
|                                 | Total - Revenue                        | 549.05      | 548.73   | 88.00      | 87.99     |  |  |
|                                 | NEH                                    | -           | -        | 1.00       | 1.00      |  |  |
|                                 | TSP                                    | -           | -        | 4.00       | 3.89      |  |  |
| Gran                            | nd Total:(Capital & Revenue)           | 553.05      | 552.71   | 415.00     | 414.88    |  |  |
| Sl. No.                         | . Head of Account                      | All         | ocation  | Exp        | enditure  |  |  |
| 1                               | Non-Plan                               | 553         | 3.05     | 4          | 552.71    |  |  |
| 2                               | Plan                                   |             | 5.00     |            | 414.88    |  |  |
| 3                               | AICRP on Mushroom                      |             | 0.00     |            | 250.00    |  |  |
|                                 |                                        | Tar         |          | Ac         | hieved    |  |  |
| 4                               | Revenue Receipt                        | 33.0        |          |            | 43.16     |  |  |
| 4                               | Revenue Receipt                        | 33.         | 07       | 4          | 43.16     |  |  |

### **Annexure V**

## V. खुम्ब स्पॉन की बिक्री

### **V Sale of mushroom Spawn**

|                |        |        | Mushi    |       |           | No of                      |                           |                            |                                         |
|----------------|--------|--------|----------|-------|-----------|----------------------------|---------------------------|----------------------------|-----------------------------------------|
| Month          | Button | Oyster | Shiitake | Milky | Macrocybe | Paddy<br>straw<br>mushroom | Total<br>quantity<br>(kg) | Sale of<br>Mother<br>spawn | trainees participated in spawn training |
| Apr-16         | 62     | 425    | 15       | 414   | 135       | 0                          | 1051                      | 0                          | 3                                       |
| May-16         | 200    | 202    | 21       | 234   | 58        | 0                          | 715                       | 3                          | 4                                       |
| Jun-16         | 0      | 172    | 1        | 53    | 25        | 14                         | 265                       | 0                          | 0                                       |
| Jul-16         | 355    | 178    | 2        | 26    | 1         | 9                          | 571                       | 0                          | 4                                       |
| Aug-16         | 914    | 365    | 2        | 5     | 55        | 0                          | 1341                      | 2                          | 2                                       |
| Sep-16         | 945    | 332    | 26       | 0     | 1         | 0                          | 1304                      | 24                         | 6                                       |
| Oct-16         | 1785   | 227    | 15       | 0     | 0         | 0                          | 2027                      | 0                          | 8                                       |
| Nov-16         | 1223   | 54     | 1        | 0     | 0         | 0                          | 1278                      | 0                          | 7                                       |
| Dec-16         | 722    | 1131   | 50       | 0     | 0         | 0                          | 1903                      | 1                          | 5                                       |
| Jan-17         | 349    | 756    | 23       | 0     | 0         | 0                          | 1128                      | 1                          | 11                                      |
| Feb-17         | 360    | 2174   | 150      | 0     | 40        | 0                          | 2724                      | 0                          | 2                                       |
| Mar-17         | 375    | 1184   | 7        | 23    | 11        | 0                          | 1600                      | 7                          | 6                                       |
| Grand<br>Total | 7290   | 7200   | 313      | 755   | 326       | 23                         | 15907                     | 38                         | 58                                      |



Demonstration of commercial spawn preparation to the trainees व्यावसायिक स्पॉन उत्पादन का प्रशिक्षुओं को प्रदर्शन